Газонефтяной сепаратор
Газонефтяно'й сепара'тор, трап, аппарат для отделения попутного газа от нефти за счёт различия в их плотности. Выделению и отделению газа способствуют снижение давления, разбивка потока жидкости на тонкие струйки, уменьшение скорости и изменение направления движения потока. Различают Г. с.: по принципу действия - гравитационные, центробежные, комбинированные; по форме - сферические и цилиндрические (вертикальные, наклонные и горизонтальные); по рабочему давлению - вакуумные (до 0,1 Мн/м 2) ,низкого (0,1-0,6 Мн/м 2) ,среднего (0,6-1,6Мн/ м 2) и высокого (1,6- 6,4 Мн/м 2) давления. Наибольшее распространение на нефтепромыслах в СССР получили вертикальные цилиндрические Г. с. с тангенциальным вводом диаметром от 0,4 до 2,6 ми высотой до 4,5 м.Продукция скважины вводится в среднюю часть Г. с. Отбор нефти осуществляется из нижней части Г. с., а газ отводится из самой высшей точки, чтобы исключить попадание нефти в газопровод. Нормальный уровень нефти в Г. с. поддерживается автоматически поплавковым регулятором уровня, который управляет исполнительным механизмом регулятора расхода нефти. Намечается тенденция совместить функции Г. с. с обезвоживанием и деэмульгацией нефти. Для этого в поток нефти перед Г. с. вводится деэмульгатор, а внутрь сепаратора - горелочные устройства для подогрева нефти. Таковы, например, вертикальные сепараторы-подогреватели А-1 и А-9 (производительностью 200 и 2000 т/ ч) ,в которых предусматривается разделение продукции нефтяных скважин на 3 потока: газ, нефть и воду.
Б. В. Дегтярев.
Газонокосилка
Газонокоси'лка,машина для скашивания травы на газонах.Различают Г. ручные и с механическим приводом, с барабанным и ротационным режущим рабочим органом. В СССР выпускаются Г. с механическим приводом и ротационным рабочим органом, более производительным, простым по конструкции по сравнению с барабанным и обеспечивающим возможность работы на газонах с грубостебельными травами. Для привода во вращение рабочего органа на Г. установлен бензиновый одноцилиндровый двигатель мощностью 0,9 квт(1,25 л. с.) .При вращении ротора закрепленные на нём шарнирно ножи срезают траву, измельчают её и выбрасывают через отверстие в раме на скошенный участок. Производительность Г. 0,12 га/ч.Обслуживает её один рабочий.
С. В. Церковный.
Газоносность
Газоно'сностьгорных пород, количество свободных или сорбированных газов (главным образом метана ) ,которое содержится в единице массы или объёма горных пород вприродных условиях. Г. измеряется в м 3/тили м 3/м 3.Наиболее газоносными являются угольные месторождения. Например, при атмосферном давлении 1 см 3угля способен сорбировать 7-8 см 3метана или до 18 см 3углекислого газа. С повышением давления в газоносных пластах количество газов, которое может быть ими сорбировано, повышается. Г. зависит от влияния многих факторов, важнейшими из которых являются: геологические условия развития района, масштабы газообразования при метаморфизме горных пород, газопроницаемость вмещающих угольные пласты отложений, газоёмкость полезных ископаемых и вмещающих пород. Кроме метана, угольные пласты могут также содержать углекислый газ; из отдельных угольных пластов выделяется сероводород или сернистый газ и др.
Газообильность
Газооби'льность,количество газа, выделяющегося на единицу массы или объёма полезного ископаемого при его добыче. Г. зависит от газоносности,а также от газопроницаемости, способа и интенсивности добычи полезного ископаемого, от глубины разработки и давления газа, заключённого в трещинах и порах полезного ископаемого и окружающих пород. При подземной добыче полезного ископаемого количество газа, выделяющегося в подземные выработки в единицу времени, называют абсолютной Г., а отнесённое к единице добытого полезного ископаемого в единицу времени (обычно в сутки) - относительной. Г. шахт называют количество газа, выделяющееся из пластов угля (руды) и горных пород. Шахты (рудники), в которых выделяется метан, называются газовыми. По количеству выделяющегося метана, водорода или др. взрывоопасного газа на одну тсуточной добычи полезного ископаемого (угля, руды) шахты в СССР подразделяются на четыре категории (см. Газовый режим шахты).
П. М. Соловьев.
Газообмен
Газообме'н(биологическое), обмен газов между организмом и внешней средой. Из окружающей среды в организм непрерывно поступает кислород, который потребляется всеми клетками, органами и тканями; из организма выделяются образующийся в нём углекислый газ и незначительное количество др. газообразных продуктов обмена веществ.Г. необходим почти для всех организмов, без него невозможен нормальный обмен веществ и энергии, а следовательно и сама жизнь.
Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются СО 2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и в конечном итоге выделяющегося из него СО 2зависит не только от количества потребляемого О 2, но и от того, что преимущественно окисляется: углеводы, жиры или белки. Отношение удаляемого из организма СО 2к поглощённому за то же время О 2называется дыхательным коэффициентом, который равен примерно 0,7 при окислении жиров, 0,8 при окислении белков и 1,0 при окислении углеводов. Количество энергии, освобождающееся на 1 лпотребленного О 2(калорический эквивалент кислорода), равно 20,9 кдж(5 ккал) при окислении углеводов и 19,7 кдж(4,7 ккал) при окислении жиров. Т. о., по потреблению О 2в единицу времени и по дыхательному коэффициенту можно рассчитать количество освободившейся в организме энергии.
Г. (соответственно и расход энергии) у пойкилотермных животных (холоднокровных) понижается с понижением температуры тела. Такая же зависимость обнаружена и у гомойотермных животных (теплокровных) при выключении терморегуляции (в условиях естественной или искусственной гипотермии ) ;при повышении температуры тела (при перегреве, различных заболеваниях) Г. увеличивается.
При понижении температуры окружающей среды Г. у теплокровных животных (особенно у мелких) увеличивается в результате увеличения теплопродукции.Г. увеличивается также после приёма пищи, особенно богатой белками (т. н. специфически-динамическое действие пищи). Наибольших величин Г. достигает при мышечной деятельности. У человека при работе умеренной мощности Г. увеличивается, через 3-6 минпосле её начала достигает определённого уровня и затем удерживается в течение всего времени работы на этом уровне. При работе большой мощности Г. непрерывно возрастает; вскоре после достижения максимального для данного человека уровня (максимальная аэробная работа) работу приходится прекращать, т. к. потребность организма в О 2превышает этот уровень. В первое время после окончания работы сохраняется повышенное потребление О 2, используемого для покрытия кислородного долга, т. е. для окисления продуктов обмена веществ, образовавшихся во время работы. Потребление О 2может увеличиваться с 200-300 мл/минв состоянии покоя до 2000-3000 при работе, а у хорошо тренированных спортсменов - до 5000 мл/мин.Соответственно увеличиваются выделение СО 2и расход энергии; одновременно происходят сдвиги дыхательного коэффициента, связанные с изменениями обмена веществ, кислотно-щелочного равновесия и лёгочной вентиляции.
Расчёт общего суточного расхода энергии у людей разных профессий и образа жизни, основанный на определениях Г., важен для нормирования питания. Исследования изменений Г. при стандартной физической работе применяются в физиологии труда и спорта, в клинике для оценки функционального состояния систем, участвующих в Г.
Сравнительное постоянство Г. при значительных изменениях парциального давления О 2в окружающей среде, нарушениях работы органов дыхания и т. п. обеспечивается приспособительными (компенсаторными) реакциями систем, участвующих в Г. и регулируемых нервной системой.
Г. у человека и животных принято исследовать в условиях полного покоя, натощак, при комфортной температуре среды (18-22 °С). Количества потребляемого при этом О 2и освобождающейся энергии характеризуют основной обмен.Для исследования Г. применяются методы, основанные на принципе открытой либо закрытой системы. В первом случае определяют количество выдыхаемого воздуха и его состав (при помощи химических или физических газоанализаторов), что позволяет вычислять количества потребляемого О 2и выделяемого СО 2. Во втором случае дыхание происходит в закрытой системе (герметичной камере либо из спирографа, соединённого с дыхательными путями), в которой поглощается выделяемый СО 2, а количество потребленного из системы О 2определяют либо измерением равного ему количества автоматически поступающего в систему О 2, либо по уменьшению объёма системы ( рис. ).
Лит.:Гинецинский А. Г., Лебединский А. В., Курс нормальной физиологии, М., 1956; Физиология человека, М., 1966, с. 134-56; Беркович Е. М., Энергетический обмен в норме и патологии, М., 1964 (имеется библ.); Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967, с. 186-237.
Л. Л. Шик.
Схема аппарата для исследования газообмена: У - устройство для автоматической подачи кислорода; Б - сосуд с кислородом; К - камера; Х - холодильник; Щ - сосуд со щёлочью для улавливания углекислого газа; Н - насос; CaCl 2- сосуд с хлористым кальцием для поглощения водяных паров; Т - термометр; М - манометр.
Газоочистка
Газоочи'стка,см. Газов очистка.
Газопламенная обработка
Газопла'менная обрабо'тка,совокупность технологических процессов тепловой обработки металлов пламенем горючих газов сварочных горелок: газовая сварка, газопрессовая сварка,наплавка стали, твёрдых сплавов и различных цветных металлов; пайка (особенно медными и серебряными припоями); кислородная резка стали, флюсокислородная резка; кислородная строжка (снятие поверхностного слоя стали); кислородная вырубка дефектов стальных слитков; обдирка слитков по всей боковой поверхности с удалением дефектов наружного слоя металла (окалины, ржавчины, старой краски и др. загрязнений); термообработка металла (закалка, отжиг и др.); напыление порошкообразных материалов на поверхность металла с получением покрытий из металлических и неметаллических материалов - керамики и пластмасс; металлизация, т. е. напыление быстродвижущейся газовой струей капель жидкого расплавленного металла. Многие процессы Г. о. автоматизированы
К. К. Хренов.
Газопрессовая сварка
Газопре'ссовая сва'рка,процесс сварки с нагревом металла газовым пламенем и осадкой (сдавливанием) нагретых деталей. Нагрев производится многопламенными сварочными горелками с большим количеством (до ста и более) небольших огней, равномерно распределённых по нагреваемой поверхности, которая за 1-2 минчастично оплавляется, после чего детали сдавливаются и соединяются. Нагрев ведётся обычно ацетилено-кислородным пламенем, осадка производится гидравлическим устройством с зажимами для прочного захвата соединяемых деталей. Г. с. производят, например, стыковку трубопроводов ( рис. ), железнодоро-
жных рельсов и т. п. Г. с. часто заменяется контактной электросваркой.
К. К. Хренов.
Газопрессовая сварка стыков труб: 1 - горелка; 2 - труба; 3 - огни горелки; 4 - каналы для газа; 5 - каналы для охлаждающей воды; 6 - стык труб.
Газопровод
Газопрово'дмагистральный, сооружение для транспортировки на большие расстояния (сотни и тысячи км) горючих газов от места их добычи или производства к пунктам потребления.
По способу прокладки различают Г. подземные, наземные и в насыпи. Подземным способом магистральные Г. обычно укладывают в Европейской части СССР (в зоне сезонного промерзания грунта). В северных районах получила распространение надземная прокладка Г. на опорах, т. н. «змейкой». В зоне распространения многолетнемёрзлых грунтов Г. укладывают в насыпь или надземным и подземным способами. В отдельных случаях Г. располагают на опорах или подвешивают к тросам (большие овраги, реки), а также прокладывают по дну водоёмов (т. н. дюкеры).
Для предохранения труб от коррозии (внутренней или внешней) применяют антикоррозийную изоляцию, а также катодную и протекторную защиту.
Давление газа в магистральных Г. большой протяжённости поддерживается газокомпрессорными станциями.
В СССР оптимальные параметры Г.: рабочее давление 5,5 Мн/м 2(ведётся строительство Г. на рабочее давление до 7,5 Мн/м 2) ,степень сжатия, обеспечиваемая компрессорной станцией, 1,4-1,5; расстояние между соседними компрессорными станциями около 100-120 км,компрессорные агрегаты обладают большой единичной мощностью - от 5000 до 10 000 квти более. Выделившаяся в Г. при транспортировке жидкость (вода, конденсат, масло и др.) улавливается в конденсатосборниках.
В конечном пункте магистрального Г. расположены газораспределительной станции, на которых давление понижается до уровня, необходимого для снабжения потребителей. Вблизи крупных городов сооружаются подземные газовые хранилища,частично неравномерность суточного газопотребления покрывается за счёт применения газгольдеров.В современных магистральных Г. в СССР применяют тонкостенные трубы больших диаметров от 720 до 1420 мм.
Первые упоминания о Г. относятся к началу нашей эры, когда для передачи природного газа в Китае применяли бамбуковые трубы. В конце 18 в. в Европе начали применяться Г. из чугунных труб, замененных в 19-20 вв. стальными, обеспечивающими транспортировку газа под более высоким давлением, чем по чугунным трубопроводам. Наибольшего размаха добыча природного газа достигла к началу 20 в. в США (20 млрд. м 3) ,где общая протяжённость многочисленных коротких Г. достигла 22 тыс. км(1918). В 1928-31 в США построены Г. протяжённостью от 800 до 1500 км,диаметром 508-660 мм.
Развитие газопроводного транспорта в СССР до 1941 характеризовалось сооружением Г. из труб малых диаметров (100-250 мм) для подачи газа от месторождений со сравнительно небольшими запасами природного и попутного нефтяного газа. Первый Г. дальнего газоснабжения был сооружен в США в 1944 (Г. «Теннесси»). Диаметр этого Г. около 600 мм,длина основного Г. 3300 км.В последующие годы были созданы крупные межрайонные системы Г. диаметром до 762-914 мм.В 1946-50 в СССР сооружаются первые крупные магистральные Г. для подачи газа из месторождений Саратовской обл. в Москву и из месторождений Предкарпатья в Киев и др. города Украины. Введённый в эксплуатацию в 1946 Г. Саратов - Москва из труб диаметром 325 ммпротяжённостью 800 кмявился первым в СССР магистральным Г. Затем построены крупнейшие магистрали: Дашава - Киев - Москва (1300 км) ,Серпухов - Ленинград ( 813 км) ,Дашава - Минск (665 км) ,Шебелинка - Белгород - Курск - Орёл - Брянск (507 км) ,Саратов - Горький -Череповец (1188 км) .Краснодарский край - Ворошиловград - Серпухов (около 1300 км) и др. Наиболее крупными газотранспортными системами СССР являются двухниточная система Бухара - Урал общей протяжённостью 4503 км,построенная из труб диаметром 1020 мм,пропускной способностью 21 млрд. м 3в год, двухниточная система Средняя Азия - Центр из труб диаметром 1020 и 1220 мм,общей протяжённостью около 5500 кми пропускной способностью 25 млрд. м 3в год. Основной отличительной чертой строительства в СССР магистральных Г. является создание единой схемы кольцевания Европейской части (см. карту), что повышает их народно-хозяйственная эффективность, обеспечивает бесперебойность и надёжность газоснабжения. Характерная особенность развития газопроводного транспорта в СССР - неуклонное увеличение удельного веса Г. больших диаметров (табл. 1).
В 1967 впервые в мировой практике стали широко применяться трубы диаметром 1220 мм,из которых сооружается Г. Средняя Азия - Центр (вторая линия) и построен Г. Ухта - Торжок.
Высокая степень механизации и создание новых высокопроизводительных машин и механизмов позволили резко повысить темпы трубопроводного строительства. Так, Г. Саратов - Москва строился 2,5 года, Г. Дашава - Киев - 2 года, Г. Ставрополь - Москва протяжённостью около 1000 км,из труб диаметром 720-820 ммстроился менее 2 лет. Первая очередь Г. Бухара - Урал протяжённостью 2200 км,диаметром 1020 ммбыла построена, несмотря на тяжёлые природные условия (пустыня, скальные грунты), в течение 2 лет, а первая очередь Г. Средняя Азия - Центр протяжённостью более 2700 км,диаметром 1020 ммсооружена за 1,5 года.
В СССР разработаны предложения по коренному изменению техники транспорта газа на большие расстояния с применением труб диаметром до 2-2,5 м.Увеличение диаметров труб до определённого оптимума для транспорта газа даёт значительный рост производительности Г., снижает удельные капитальные затраты, эксплуатационные издержки и расход металла. Предварительные технико-экономические показатели передачи газа по сверхмощным Г. (за единицу приняты данные по Г. из труб диаметром 1020 мм) приведены в табл. 2.
Сооружение сверхмощных Г. характеризуется высокой экономической эффективностью. Для передачи из Тюменской обл. и Коми АССР в районы Центра, Северо-Запада и Урала в ближайшие 7-8 лет около 130 млрд. м 3газа в год по Г. из труб диаметром 1220-1420 ммпотребовалось бы строительство 7-8 линий общей протяжённостью около 25 тыс. км.Это же количество газа может быть передано по двум сверхмощным Г.: один диаметром 2,5 ми второй диаметром 2 м.
Максимальный диаметр труб, применяемый в США,-1067 мм,в СССР - 1420 мм,средний диаметр в СССР 674 мм,в США- 410 мм(1968). Строительство сверхмощных Г. требует организации сверхмощных газовых промыслов с ежегодной добычей газа 50-100 млрд. м 3.Суточная производительность скважины должна быть 2-3 млн. м 3вместо достигнутой максимальной производительности в 500 - 700 тыс. м 3газа. Трубы диаметром 2020-2520 ммдля сверхмощных Г. намечается изготовлять из стали с толщиной стенки до 25-26 мми пределом прочности 550-600 Мн/м 2и гарантированной ударной вязкостью не менее 0,3 Мн/м 2при температуре - 40°С. Общая протяжённость магистральных Г. в СССР около 70 тыс. км(1970).
Табл. 1. - Структура протяжённости газопроводов в СССР по диаметрам труб, %
годы | Диаметры труб,мм | ||
100-273 | 325-529 | 720-1020 | |
1959 | 15 | 48 | 37(0,5)* |
1963 | 11 | 39 | 50(11,2) |
1966 | 10 | 37 | 53(21,0) |
*В скобках - данные труб диаметром 1020 мм.
Табл. 2. - Технико-экономические показатели сверхмощных газопроводов
Показатели | Диаметры газопроводов, мм | |||
1220 | 1420 | 2520 | 2520 | |
Производительность | 1,6 | 2,37 | 5,94 | 10,5 |
Капиталовложения | 1,25 | 1,71 | 3,82 | 6,15 |
Металловложения | 1,42 | 1,95 | 4,0 | 6,13 |
Удельные капиталовложения | 0,89 | 0,82 | 0,68 | 0,59 |
Удельные металловложения | 0,9 | 0,82 | 0,67 | 0,58 |
Лит.:Яблонский В. С., Белоусов В. Д., Проектирование нефтегазопроводов, М., 1959; Ходанович И., Е., Аналитические основы проектирования и эксплуатации магистральных газопроводов, М., 1961; Справочник по транспорту горючих газов, М., 1962; Боксерман Ю. И., Пути развития новой техники в газовой промышленности СССР, М., 1964.
Ю. И. Боксерман, Б. Л. Кривошеий.
Важнейшие магистральные газопроводы СССР.
Газопроницаемость
Газопроница'емость,свойство твёрдого тела, обусловливающее прохождение газа через тело при наличии перепада давления. В зависимости от структуры твёрдого тела и величины перепада давления различают три основных типа Г.: диффузионный поток, молекулярную эффузию, ламинарный поток.
Диффузионный поток определяет Г. при отсутствии в твёрдом теле пор (например, Г. полимерных плёнок или покрытий). В этом случае Г. складывается из растворения газа в пограничном слое тела, диффузии его через тело и выделения газа с др. стороны тела.
Молекулярной эффузией называют Г. через систему пор, диаметр которых мал по сравнению со средней длиной свободного пробегалмолекул газа (при давлении 10 -3-10 -4 мм рт. ст.,1 мм рт. cm.= 133,322 н/м 2) .
Ламинарное течение газа через твёрдое тело имеет место при наличии в нём пор, диаметр которых значительно превышает l. При дальнейшем увеличении диаметра пор и переходе к крупнопористым телам (например, ткани) Г. определяется законами истечения из отверстий.
Г. веществ характеризуют коэффициент проницаемости Р( м 4/сек·н,или см2/cek·am,1 см 2/сек·am= 1,02 10 -9 м 4/сек·н), объёмом газа, прошедшего за 1 секчерез единичную площадку в теле (перпендикулярную к потоку газа) при перепаде давления, равном единице. Коэффициент Рзависит от природы газа, поэтому обычно Г. веществ сравнивают по их коэффициент водородопроницаемости. Ниже приведены значения Р( см 2/сек·am) некоторых материалов при 20°С:
Металлы................................10 -18- 10 -12
Стекла....................................10 -15- 10 -19
Полимеры (плёнки)..............10 -12- 10 -5
Жидкости...............................10 -7- 10 -5
Бумага, кожа..........................10 -5- 10
Широко применяемые во всех областях производства полимерные материалы занимают по своей Г. промежуточное положение между неорганическими твёрдыми материалами и жидкостями. Значение Р(в единицах 10 8 см 2/сек- am) дляполимерных материалов составляет:
Кремнийорганический каучук.................390
Натуральный каучук................................ 30
Полистирол.............................................. 6,9
Полиэтилен низкой плотности............. 5,9
Найлон.................................................... 0,7
Полиэтилентерефталат (лавсан)........... 0,5
Наибольшей Г. обладают аморфные полимеры с очень гибкими молекулярными цепями, находящиеся в высокоэластическом состоянии (каучук). Кристаллические полимеры (например, полиэтилен) имеют значительно меньшую Г. Очень малой Г. обладают высокомолекулярные стеклообразные полимеры с жёсткими цепями. Объясняется это тем, что более гибкие цепи легко смещаются, пропуская молекулы диффундирующего газа.
Газоразрядные источники света
Газоразря'дные исто'чники све'та,приборы, в которых электрическая энергия преобразуется в оптическое излучение при прохождении электрического тока через газы и др. вещества (например, ртуть), находящиеся в парообразном состоянии. Исследуя дуговой разряд,рус. учёный В. В. Петров в 1802 обратил внимание на сопровождавшие его световые явления. В 1876 рус. инженером П. Н. Яблочковым была изобретена дуговая угольная лампа переменного тока, положившая начало практическому использованию электрического разряда для освещения. Создание газосветных трубок относится к 1850-1910. В 30-х гг. 20 в. начались интенсивные исследования по применению люминофоров в газосветных трубках. Исследованием, разработкой и производством Г. и. с. в СССР начиная с 30-х гг. занималась группа учёных и инженеров Физического института АН СССР, Московского электролампового завода, Всесоюзного электротехнического института. Первые образцы ртутных ламп были изготовлены в СССР в 1927, газосветных ламп - в 1928,