таликов различного генезиса, имеющие круглый год положительную температуру. Пространственно К. охватывает горные сооружения всех континентов, возвышающиеся над снеговой линией, все высотные климатические пояса полярных, субполярных и умеренных широт, а также все широтные климатические пояса, кроме экваториального и частично тропических и субтропических, где явления промерзания влажных почв или охлаждения ниже 0°С сухих песков и трещиноватых скальных пород связаны только с радиационными заморозками и имеют спорадический характер (см. карту к ст. Многолетняя криолитозона ).

  В обширных материковых областях К. с положительной среднегодовой температурой поверхности распространён лишь сезонно мёрзлый (активный) слой. При отрицательных среднегодовых температурах поверхности Земли К. включает и активный слой, и все образования многолетней К. В области распространения многолетнемёрзлых горных пород активный слой называется сезоннопротаивающим, или сезонноталым; вне ее - сезоннопромерзающим, или сезонномёрзлым. На границе области распространения многолетнемёрзлых толщ среднегодовые температуры земной поверхности могут отклоняться от 0°С, что ведёт к периодическому или эпизодическому формированию и деградации мёрзлых перелетков - зародышей многолетней К. В областях с близкой к 0°С отрицательной среднегодовой температурой поверхности Земли многолетняя К. имеет островной характер.

  Для полярных, субполярных и высокогорных областей К. характерны криогенные и посткриогенные процессы и явления: криогенное выветривание; криолитогенез; растрескивание и пластическая деформация мёрзлых горных пород; пучение почв и рыхлых пород; вымораживание крупнообломочного материала на поверхность; просадки и термокарст; солифлюкция и криогенное обрушение пород со склонов; нивация и альтипланация; усиленная боковая эрозия и абразия льдистых отложений и др. С этими процессами связано образование определённых форм рельефа: экзарационных и нивальных (троги, цирки); гравитационных и солифлюкционных (склоновые террасы, оползни, обвалы, оплывины и др.), экструзивных и форм пучения (тарыны, гидролакколиты, каменные россыпи); термоабразионных; полигональных; перигляциальных и мн. др.

  Термин «К.» предложен П. Ф. Швецовым в 1955, хотя необходимость выделения зоны литосферы с отрицательной температурой была обоснована раньше, например в трудах русских и советских учёных Л. Я. Ячевского (1889), М. И. Сумгина (1927), Н. И. Толстихина (1941) и др.

  Лит.:Швецов П. Ф., Вводные главы к основам геокрилогии, М., 1955 (Материалы к основам учения о мерзлых зонах земной коры, в. 1); Основы геокриологии, ч. 1, М., 1959; Достовалов Б. Н., Кудрявцев В. А., Общее мерзлотоведение, М., 1967; Попов А. И., Мерзлотные явления в земной коре (Криолитология), М., 1967; Muller S. W., Permafrost or permanently frozen ground and related engineering problems, Ann Arbor, 1947; Terzaghi K., Permafrost, «Journal of the Boston Society of Civil Engineers», 195-2, v. 39,№ 1; Cailleux А., Taylor G., Cryopйdologie, йtudes des sols gelйs, P., 1954; Proceedings, International permafrost conference. Wash., 1965.

  А. А. Шарбатян.

Криология

Криоло'гия(от крио... и ...логия ) ,наука о криосфере.

Криопатология

Криопатоло'гия(от крио...и патология ), болезненные состояния и процессы, возникающие в организме под влиянием низких температур. У человека наиболее изучены общие и местные патологические процессы, происходящие при охлаждении и отморожении (см. также Гипотермия ) .

Криопланктон

Криопланкто'н(от крио...и планктон ), совокупность организмов, главным образом одноклеточных водорослей, живущих в талых лужах на поверхности льда или снега и в воде, пропитывающей морской лёд. См. Криофилы.

Криоскопия

Криоскопи'я(от крио... и ...скопия ), метод физико-химического исследования, основанный на измерении понижения температуры замерзания раствора по сравнению с температурой замерзания чистого растворителя. Согласно Рауля законам,для бесконечно разбавленного раствора (при отсутствии электролитической диссоциации ) существует зависимость D t k= E kЧn,где D t k- понижение температуры замерзания раствора, °С; n -концентрация раствора. Коэффициент E kназывается криоскопической постоянной растворителя. Значение E k для различных жидкостей различно: например, для воды оно составляет 1,86, для бензола 5,07, для уксусной кислоты 3,90, для диоксана 4,63, для фенола 7,27. Зная E k,можно вычислить молекулярную массуМвещества по формуле М=Р 1ЧЕ к·1000 2D t k, где P 1и P 2-соответственно масса растворённого вещества и растворителя в г.Разность температур D t кизмеряют обычно метастатическим термометром или с помощью термопары. Методом К. могут быть определены значения E kдля веществ с известной молекулярной массой, а также концентрация вещества в растворе.

  Лит.:Киреев В. А., Краткий курс физической химии, 4 изд., М., 1969; Справочник химика, 2 изд., т. 3, М.- Л., 1964, с. 485.

Криостат

Криоста'т(от крио... и греч. states - стоящий, неподвижный), термостат,в котором рабочий узел или исследуемый объект поддерживается при температурах менее 120 К (криогенных температурах) за счёт постороннего источника холода. Обычно в качестве источника холода (хладоагента) применяют сжиженные или отверждённые газы с низкими температурами конденсации и замерзания (азот, водород, гелий и др.). температуру помещенного в К. объекта регулируют, изменяя давление паров над заполняющим К. хладоагентом или подогревая пары хладоагента. К. различают: по роду применяемого хладоагента (азотные, гелиевые, водородные и т. д.), по используемым для изготовления материалам (стеклянные, металлические, пластмассовые), по назначению (для радиотехнических, оптических и др. исследований, для сверхпроводящих магнитов, приёмников излучения и т. д.).

  Для К. любого типа необходима защита его рабочего объёма от притока теплоты из окружающей среды. Чем ниже температура кипения и чем меньше теплота испарения используемого хладоагента, тем выше требования к теплоизоляции рабочих узлов К. В К., заполняемых жидким азотом или кислородом, часто используется высоковакуумная теплоизоляция, подобно применяемой в широко известных Дьюара сосудах и бытовых термосах. Для гелиевых К. обычная высоковакуумная изоляция уже недостаточна. Поэтому с целью уменьшения притока лучистой энергии от наружных стенок К. необходимо понизить их температуру, что достигается охлаждением стенок вспомогательным хладоагентом (например, жидким азотом) или установкой в теплоизоляционном пространстве защитных экранов, отражающих излучение.

  В лабораторной практике широко применяются стеклянные К., они просты в изготовлении и прозрачны, что позволяет непосредственно наблюдать за ходом опыта. Гелиевый стеклянный К. общего назначения ( рис. 1 ) обычно состоит из 2 сосудов Дьюара, вставленных один в другой. Внутренний сосуд заполняют жидким гелием, наружный - жидким азотом. К недостаткам стеклянных К. относится малая механическая прочность.

  Надёжны в эксплуатации металлические К., из которых наиболее универсальными являются К. с жидким гелием в качестве основного хладоагента. На рис. 2 приведена схема металлического гелиевого К. с дополнительным охлаждением жидким азотом. Гелиевый объём К. окружен со всех сторон медным экраном. В пространстве между гелиевым объёмом и кожухом создаётся глубокий вакуум, который поддерживается процессе эксплуатации с помощью адсорбента.Для компенсации температурных деформаций, возникающих между внутренними узлами и корпусом, в К. предусмотрен сильфон.Гелиевый объём, азотная ванна и корпус К. изготовляются из меди, нержавеющей стали или алюминиевых сплавов. Поверхности узлов К. со стороны «вакуумного пространства» полируются для отражения теплового излучения.

  В металлических К., предназначенных для оптических исследований, предусматриваются окна, а также поворотные устройства, при помощи которых можно изменять положение образца. Для охлаждения экранов гелиевых и водородных К. вместо жидкого азота используются пары основного хладоагента. К. широко применяются в криогенной технике.

Рис. 1. Стеклянный гелиевый криостат: 1 - охлаждаемый узел; 2 - сосуд Дьюара с гелием; 3 - сосуд Дьюара с азотом.

Рис. 2. Металлический гелиевый криостат: 1 - корпус; 2 - объём, заполняемый гелием; 3 - экран; 4 - адсорбент; 5 - ванна для азота; 6 - сильфон.

Криосфера

Криосфе'ра(от крио... и сфера ), прерывистая и непостоянная по конфигурации оболочка Земли в зоне теплового взаимодействия атмосферы, гидросферы и литосферы. Характеризуется отрицательной или нулевой температурой, при которых вода, содержащаяся в К. в парообразном, свободном или химически и физически связанном с др. компонентами виде, может существовать в твёрдой фазе (лёд, снег, иней и др.). температура 0°С (273,15 К) определяет равновесие между химически чистыми льдом и водой при атмосферном давлении 760 мм рт. cm.вне посторонних силовых полей. В естественных условиях различные примеси и растворённые вещества, а также поверхностные силы и давление понижают точку замерзания воды, в результате чего в границы К. попадает и жидкая фаза H 2O во временно или устойчиво охлажденном ниже 0°С состоянии (солёные морские и подземные воды, незамёрзшие связанные воды, высоконапорные пресные воды под ледниковыми покровами, переохлажденные капли воды в облаках и туманах). К. включает также безводные толщи горных пород и относительно сухие воздушные массы с отрицательной температурой, в которых естественными или искусственными путями могут создаваться условия для конденсации H 2O, а тем самым и сформирования её твёрдой фазы.

  К. простирается от верхних слоев земной коры до нижних слоев ионосферы,прерываясь в переменных по мощности сегментах, временно или устойчиво прогретых выше 0°С. Нижняя граница совпадает с подошвой слоя мёрзлых и охлажденных горных пород. Этот слой характеризуется большой устойчивостью и достигает максимальной глубины залегания от поверхности Земли в высоких широтах - в Антарктиде (свыше 4 км) и Субарктике (около 1,5 км) ,но отличается сезонной изменчивостью и выклинивается в средних и низких широтах. Верхняя граница К. проходит на высотах около 100 кмнад уровнем моря в разреженных слоях атмосферы, над сильно охлажденной мезопаузой , содержащей серебристые облака.

  К. свойственны эпизодические, кратковременные, сезонные, многолетние и многовековые криогенные образования: мигрирующие системы облаков, содержащих атмосферные льды; кратковременный, сезонный и многолетний снежный покров, аккумулирующий эти льды и конденсирующий водяные пары; сезонномёрзлые (ежегодно и в отдельные годы) почвы и горные породы, содержащие лёд в пустотах и порах: сезонный и многолетний ледяной покров пресных и солёных водоёмов, объединяющий льды атмосферного, поверхностного и внутриводного происхождения; сезонные и многолетние наледи поверхностных и подземных вод; горные ледники и ледниковые покровы полярных островов и материков; толщи мёрзлых горных пород, содержащие подземные льды различного генезиса (конституционные, сегрегационные, трещинно-жильные, погребённые, пещерные и др.) и не оттаивающие многие годы, века и тысячелетия. Определённая высотная приуроченность криогенных образований и циркумполярный характер их распространения (см. карту к ст. Многолетняя криолитозона ) связаны с неравномерным распределением солнечной радиации по широте и высоте над уровнем моря. Примерная количественная характеристика основных криогенных образований даётся в табл. (по П. Л. Шумскому и А. Н. Кренке, 1964, с уточнениями).

Виды льда Масса Площадь распространения
Г % млн. км 2 % от по- верхности
Ледники и ледниковые покровы 2,4Ч10 22 97,72 16 11 суши
Подземные льды 5Ч10 20 2,04 32 25 суши
Морские льды 4Ч10 19 0,16 26 7 океана
Снежный покров 1Ч10 19 0,04 72 14 суши
Айсберги 8Ч10 18 0,03 64 19 океана
Атмосферные льды 2Ч10 18 0,01 - -
Всего: 2,456Ч10 22 100

  Размеры областей распространения криогенных образований дают представление о масштабах их участия в круговороте воды на Земле, а значительный объём многовековых скоплений поверхностного и подземного льда свидетельствует об устойчивости низкотемпературной ветви этого процесса. Значительна роль К. в ходе всех планетарных климатообразующих процессов, вместе с которыми она подвержена суточным, годовым и многолетним колебаниям. В криолитозоне К. порождает специфические криогенные и посткриогенные явления и соответствующие формы рельефа. Определённое влияние оказывает К. на жизнедеятельность растений, животных и отдельные виды хозяйственной деятельности человека.

  К. существовала, по-видимому, на протяжении всей геологической истории Земли. Наиболее яркого выражения она достигала в эпохи глобальных похолоданий, характеризующиеся максимальным развитием ледниковых покровов и областей распространения многолетнемёрзлых горных пород.

  Термин «К.», без точного указания ее границ, предложен польским ученым А. Б. Добровольским в 1923, хотя научное представление о характере векового охлаждения Земли и об особой ледяной оболочке появилось раньше, например в трудах М. В. Ломоносова (1763), французского учёного Ж. Фурье (1820), А. И. Воейкова (1886). В 1933 В. И. Вернадский расширил понятие о К. и ввёл представление об области охлаждения Земли (до температур не выше 4°С - точки максимальной плотности воды), занимающей почти всю толщу Мирового океана и более мощные, в сравнении с современным определением объёма К., слои атмосферы и подземной гидросферы. Значительный вклад в дальнейшее развитие представлений о К. внесли советские (Н. И. Толстихин, П. А. Шумский и др.), а также французские (Л. Либутри и др.), канадские (Дж. Р. Маккей и др.), английские и американские (А. Л. Уошберн, Т. Л. Певе и др.) учёные.

  Лит.:Вернадский В. И., Об областях охлаждения земной коры, «Зап. Гос. гидрологического ин-та», 1933, т. 10; Толстихин Н. И., Подземные воды мерзлой зоны литосферы, М.- Л., 1941; Шумский П. А., Основы структурного ледоведения, М., 1955; Основы геокриологии. ч.1, М., 1959; Перигляциальные явления на территории СССР. Сб. ст., М., 1960; Шумский П. А., Кренке А. Н., Современное оледенение Земли и его изменения, «Геофизический бюллетень», 1964, № 14; Баранов И. Я., Вечная мерзлота и ее возникновение в ходе эволюции Земли как планеты, «Астрономический журнал», 1966, т. 43. в. 4; Достовалов Б. Н., Кудрявцев В. А., Общее мерзлотоведение, М., 1967; Савельев Б. А., Физика, химия и строение природных льдов и мерзлых горных пород, М., 1971; Дерпгольц В. Ф., Вода во Вселенной, Л., 1971; Мерзлые горные породы Аляски и Канады. Сборник статей, пер. с англ., М., 1958; Llibutгу L., Traнtй de glaciologie, t. I-2, P., 1964-65; Рйwй Т. L., The periglacial environment, Montreal, 1969; Washburn A. L., Periglacial processes and environments, L., 1973.

  Н. Л. Граве, А. А. Шарбатян.

Криотерапия

Криотерапи'я(от крио... и терапия ), лечение холодом. С лечебной целью издревле применяли обкладывания льдом, обёртывания в смоченные водой простыни. Умеренное, не вызывающее оледенения охлаждение используется в медицине с целью уменьшения воспалительных явлений, как кровоостанавливающее, болеутоляющее и уменьшающее отёк средство. Эффект объясняется либо рефлекторной реакцией (сужение кровеносных сосудов и замедление кровотока), либо снижением обмена веществ в подвергаемом действию холода участке. Холод (аппликации пузырей со льдом) применяют при различных воспалительных процессах (в области жёлчного пузыря, червеобразного отростка, желудка, поджелудочной железы и т. д.), ушибах, переломах. При лёгочных, носовых и желудочно-кишечных кровотечениях назначаются аппликации пузырей со льдом на соответствующую область или заглатывание кусочков льда. На ожоговые поверхности накладывают повязки с охлажденным спиртом. При сотрясениях и ушибах головного мозга для борьбы с отёком пострадавшему на голову надевают специальной конструкции резиновый шлем, через который постоянно пропускают холодную воду. При кратковременных операциях (вскрытие абсцессов, флегмон) обезболивания достигают распылением хлорэтила и, отнимая у тканей тепло, замораживают их и снижают чувствительность. Общее охлаждение организма - гипотермию-применяют при выполнении операций на сердце, крупных сосудах, головном мозге.

  В. А. Думчев.

 Один из важнейших разделов К. - криохирургия, новое направление в хирургии, использующее низкие температуры для деструкции органов и тканей больного, подлежащих удалению или разрушению. Попытки использовать холод для разрушения тканей были предприняты в 40-х гг., когда американский хирург Т. Фей длительно охлаждал раковые опухоли у неоперабельных больных и получил заметное, хотя и временное, улучшение. Многие дерматологи применяют локальное замораживание кожи (преимущественно углекислотой) при некоторых её заболеваниях и раковых поражениях. Значительно труднее оказалось локально замораживать ткани в глубине тела. Замораживание тканей млекопитающих до состояния льда ведёт к полному и необратимому их некрозу . Это результат дегидратации клеток при образовании кристаллов льда в их недрах и во внеклеточной жидкости; резкого повышения концентрации электролитов в клетках («осмотический шок»); механические повреждения клеточных мембран и органоидов образующимися кристаллами льда; прекращения кровообращения в зоне замораживания.

  Локальное замораживание глубоких структур человеческого организма стало возможным с созданием соответствующей аппаратуры. Это позволило внедрять криохирургию в разных областях медицины. Испытание фреона и др. хладоагентов показало, что для целей криохирургии наиболее подходит жидкий азот ( t kип-195,8°С). Широко применяется криохирургический метод при операциях на головном мозге. В 1961 его впервые применили в США при стереотаксических операциях с целью создания строго локального очага деструкции размером 7-9 ммв глубоких подкорковых структурах мозга. В 1962 советскими учёными (А. И. Шальников, Э. И. Кандель и др.) был создан оригинальный прибор для криогенной деструкции глубоких образований мозга. Основная его часть - тонкая металлическая трубка (канюля) с резервуаром, в который заливают жидкий азот. Пользуясь стереотаксии методом , канюлю вводят в заданную структуру мозга. Прибор позволяет получить на конце канюли достаточно низкую температуру, способную превратить в лёд заданный объём мозговой ткани. Т. к. тонкий холодопровод внутри канюли теплоизолирован глубоким вакуумом (10 - 7 мм рт. ст.) ,она остаётся тёплой и лишь на конце канюли (длина 2 мм) создаётся температура -70°, что обеспечивает образование ледяного шарика диаметром 5-9 мм.После выкипания азота шарик тает, а превращённая в лёд и затем оттаявшая мозговая ткань гибнет. Др. модель этого прибора (1970) позволяет замораживать значительные объёмы опухолевой ткани (до 50-55 ммв диаметре). Криохирургией пользуются при стереотаксических операциях на головном мозге с целью лечения паркинсонизма, торсионной дистонии, атетоза, спастической кривошеи, тяжёлых болевых синдромов и т. д. Криодеструкция нормального гипофиза эффективна при метастазах некоторых видов рака; замораживание опухолей гипофиза перспективно при акромегалии и болезни Иценко-Кушинга. Обнадёживающие результаты получены при холодовой деструкции опухолей в больших полушариях мозга. Криохирургию применяют и для лечения некоторых глазных болезней (при отслойке сетчатки, для удаления внутриглазных опухолей и т. д.), а также для удаления миндалин, полипов носоглотки, опухолей носа, аденом предстательной железы и т. д.

  Э. И. Кандель.

Криотрон

Криотро'н[от крио... и (элек)трон ], переключательный криогенный элемент , основан на свойстве сверхпроводников скачком менять свою проводимость под воздействием критического магнитного поля . Действие К. аналогично работе ключа или реле; К. может находиться только в одном из двух состояний - либо в сверхпроводящем, либо с малой проводимостью. К. могут быть как проволочными, так и плоскими (плёночными), На рисунке показана конструкция плёночного К. К. обладают высоким быстродействием (время перехода из одного состояния в другое несколько долей мксек) ,малыми размерами (до нескольких тысяч К. на площади в 1 см 2) ,дёшевы в изготовлении и достаточно надёжны. Технологические трудности, связанные с глубоким охлаждением, являются причиной того, что применение К. к 1973 находилось на стадии лабораторных исследований и опытных образцов.

  Лит.:Крайзмер Л. П., Устройства хранения дискретной информации, 2 изд.; Л., 1969.

  Л. П. Крайзмер.

Крестообразный плёночный криотрон: 1 - управляющая плёнка (Pb); 2 - изолирующий слой (SiO 2); 3 - управляемая плёнка (Sn); 4 - изоляция (SiO 2); 5 - экранирующий подслой (Pb); 6 - подложка; I y- управляющий электрический ток; I в- управляемый электрический ток.

Криотурбация

Криотурба'ция(от крио... и лат. turbatio - смятение, беспорядок), участки сильно деформированных почв и грунтов со следами их движения; имеют вид завихрений, фиксируемых различно окрашенными или различно сложенными слоями. К. формируются при протаивании грунтов, а также при их промерзании в условиях замкнутых грунтовых систем.

Криофилы

Криофи'лы(от крио... и греч. philйM - люблю), организмы, живущие в талых лужах на поверхности льда или снега и в воде, пропитывающей морской лёд; при понижении температуры они оказываются вмёрзшими в лёд. К К. относятся одноклеточные водоросли (составляющие оснjdye. массу криопланктона ) и мелкие животные (некоторые черви и насекомые). Массовое развитие водорослей-К. вызывает окрашивание снега или льда (например, раститtkmysv жгутиконосцем Chlamydomonas nivalis - в красный цвет). В полярных морях диатомовые водоросли, обитающие в толще морского льда, окрашивают льдины в жёлто-бурый цвет, что способствует их таянию и уменьшает прочность Микроорганизмы, относящиеся к К., чаще называют психрофильными микроорганизмами .

Криофильные микроорганизмы

Криофи'льные микрооргани'змы,бактерии, плесневые грибы и некоторые др. микроорганизмы, способные развиваться при относительно низких температурах (около 0°С); то же, что психрофильные микроорганизмы .

Криофиты

Криофи'ты(от крио... и греч. phytуn - растение), растения, приспособленные к холодным и сухим местообитаниям. Вместе с психрофитами образуют основу растительного покрова тундр, альпийских лугов, осыпей и скал в высокогорьях. Пример К. - подушковидные растения высокогорных пустынь Памира, Тянь-Шаня, Тибета.

Криоэлектроника

Криоэлектро'ника,криогенная электроника, направление, охватывающее исследование взаимодействия электромагнитного поля с электронами в твёрдых телах при криогенных температурах (ниже 90К) и создание электронных приборов на их основе. В криоэлектронных приборах используются различные явления: сверхпроводимость металлов и сплавов, зависимость диэлектрической проницаемости некоторых диэлектриков от электрического поля, появление у металлов при Т < 80К полупроводниковых свойств при аномально высокой подвижности электронов проводимости и др.

  К криоэлектронным приборам следует отнести: запоминающие и логические криоэлектронные устройства вычислительной техники; генераторы, усилители, переключатели, резонаторы, детекторы, преобразователи частоты, фильтры, линии задержки, модуляторы и др. приборы СВЧ; сверхпроводящие магнитометры , гальванометры , болометры и др. Одной из задач К. является создание электронных охладителей, а также миниатюрных приборов, сочетающих в одной конструкции электронную схему, криостат , служащий герметической оболочкой, и охлаждающее устройство.

  Криотроны.Развитие К. началось с создания криотрона (1955) - миниатюрного переключательного элемента, действие которого основано на явлении сверхпроводимости. Криотроны - элементы логических, запоминающих и переключательных устройств. Они отличаются низким потреблением энергии (10 -18 дж) ,малыми габаритами (до 10