100,0

  Табл. 2. - Производство основных видов текстильных волокон в СССР, млн. т (1969)

Хлопок-волокно 1,92
Пенька 0,07
Лён 0,49
Шерсть немытая 0,39
Шёлк-сырец 0,003
Искусственное штапельное волокно 0,22

  Важнейшим, наиболее распространённым, дешёвым В. т. является хлопок - прочное, тонкое, гигроскопическое волокно. Оно развивается на поверхности семян хлопчатника . Из хлопчатобумажной пряжи вырабатывают ткани бытовые для белья, одежды и др., технические, разнообразный трикотаж, швейные нитки, а из хлопка - вату, нетканые полотна и др.

  Лубяные волокна получают из стеблей, листьев и плодов растений обычно в виде технических волокон. Наиболее тонкое стеблевое волокно - лён , очень прочное, малорастяжимое, гигроскопичное. Из льняной пряжи вырабатывают тарные, бельевые, платьевые, технические и другие ткани. Отходы льна (короткое волокно) служат для производства тарных тканей, верёвок и др. Пенька - грубостеблевое волокно, получаемое из конопли. Из пеньки изготовляют канатно-верёвочные изделия, грубые ткани и др. Наиболее распространённое грубостеблевое влагоёмкое волокно - джут , применяемое для изготовления мешков (сахарных и др.); близок к нему по свойствам кенаф . Для производства канатов наряду с пенькой широко используют жёсткие листовые волокна - абаку или манильскую пеньку , сизаль и др.

  Шерсть - волокно волосяного покрова овец, коз, верблюдов и других животных - ценное В. т., обладающее высокими эластичностью, гигроскопичностью и теплозащитными свойствами. Из шерсти в основном вырабатывают пряжу для костюмных, платьевых, пальтовых, технических тканей и верхнего трикотажа. Шерсть обладает способностью свойлачиваться, благодаря чему её применяют при выработке валяльно-войлочных изделий (войлоков, валенок, шляп и др.). В небольших количествах используют «заводскую» шерсть, получаемую со шкур убитых животных, и «утильную» шерсть, изготовляемую расщипыванием лоскута, рвани пряжи и т.п.

  Шёлк -сырец - нити, получаемые при размотке коконов (см. Кокономотание ), - употребляется непосредственно или после скручивания главным образом для выработки тканей - платьевых, бельевых, технических и др. Расщипыванием шёлковых отходов получают шёлковые волокна, перерабатываемые в пряжу; из неё изготовляют полотна, ворсовые ткани.

  Асбест - минеральные В. т. - применяют для выработки пряжи, служащей для производства технических (негорючих, фильтровальных и др.) тканей.

  Натуральные В. т. используют в чистом виде, а также в смесях (например, шерсть-хлопок), чаще всего со штапельными волокнами. Смешивание улучшает качество (совмещаются различные ценные свойства компонентов), удешевляет производство, позволяет получать разнообразные внешние эффекты.

  Показатели важнейших свойств В. т. даны в табл. 3.

Табл. 3. - Показатели важнейших свойств текстильных волокон

Виды волокон и нитей Длина, мм Толщина, г/км Разрывное напряжение, Мн/м 2( кгс/мм 2) Удлинение, % Влажность*, %
Хлопок 25-45 0,1-0,2 250–550 (25-45) 6-9 7-9
Лён технический 500-700 4,0-10,0 300–600 (50-60) 2-3 11-13
Шерсть тонкая 50-80 0,3-1,0 200–250 (20-25) 30-50 16-17
Шерсть грубая 50-200 1,2-3,0 150–200 (15-20) 25-35 14-15
Шёлк (нить коконная) - 0,31-0,37 400–450 (40-45) 15-20 10-11

  *  При температуре 20° и относительной влажности воздуха 65%.

  Особое место среди В. т. занимают стекловолокно и нити, широко применяемые в технике для электро-, тепло-, звуко- и других видов изоляции, в виде фильтровальных материалов, несгораемых изделий, в производстве стеклопластиков и др.

  О первоначальном применении В. т. как материала для изготовления одежды см. Ткань текстильная , Прядение .

  Лит.:Кукин Г. Н., Соловьев А. Н., Текстильное материаловедение, ч. 1-2, М., 1961-64; Народное хозяйство СССР в 1967 г. Статистический ежегодник, М., 1968; ZyliDski Т., Fiber science, Warsz., 1964.

  Г. Н. Кукин, А. Н. Соловьёв.

Волокна натуральные.

Волокна химические

Воло'кна хими'ческие,волокна, получаемые из органических природных и синтетических полимеров. В зависимости от вида исходного сырья В. х. подразделяются на синтетические (из синтетических полимеров) и искусственные (из природных полимеров). Иногда к В. х. относят также волокна, получаемые из неорганических соединений (стеклянные, металлические, базальтовые, кварцевые). В. х. выпускают в промышленности в виде: 1) моноволокна (одиночное волокно большой длины); 2) штапельного волокна (короткие отрезки тонких волокон); 3) филаментных нитей (пучок, состоящий из большого числа тонких и очень длинных волокон, соединённых посредством крутки), филаментные нити в зависимости от назначения разделяются на текстильные и технические, или кордные нити (более толстые нити повышенной прочности и крутки).

  Историческая справка.Возможность получения В. х. из различных веществ (клей, смолы) предсказывалась ещё в 17 и 18 вв., но только в 1853 англичанин Аудемарс впервые предложил формовать бесконечные тонкие нити из раствора нитроцеллюлозы в смеси спирта с эфиром, а в 1891 французский инженер И. де Шардонне впервые организовал выпуск подобных нитей в производственном масштабе. С этого времени началось быстрое развитие производства химического волокон. В 1896 освоено производство медноаммиачного волокна из растворов целлюлозы в смеси водного аммиака и гидроокиси меди. В 1893 англичанами Кроссом, Бивеном и Бидлом предложен способ получения вискозных волокон из водно-щелочных растворов ксантогената целлюлозы, осуществлённый в промышленном масштабе в 1905. В 1918-20 разработан способ производства ацетатного волокна из раствора частично омыленной ацетилцеллюлозы в ацетоне, а в 1935 организовано производство белковых волокон из молочного казеина. Производство синтетических волокон началось с выпуска в 1932 поливинилхлоридного волокна (Германия). В 1940 в промышленном масштабе выпущено наиболее известное синтетическое волокно - полиамидное (США). Производство в промышленном масштабе полиэфирных, полиакрилонитрильных и полиолефиновых синтетических волокон осуществлено в 1954-60.

  Свойства.Волокна химические часто обладают высокой разрывной прочностью [до 1200 Мн/м 2(120 кгс/мм 2)], значительным разрывным удлинением, хорошей формоустойчивостью, несминаемостью, высокой устойчивостью к многократным и знакопеременным нагружениям, стойкостью к действиям света, влаги, плесени, бактерий, хемо- и термостойкостью. Физико-механические и физико-химические свойства В. х. можно изменять в процессах формования, вытягивания, отделки и тепловой обработки, а также путём модификации как исходного сырья (полимера), так и самого волокна. Это позволяет создавать даже из одного исходного волокнообразующего полимера В. х., обладающие разнообразными текстильными и другими свойствами (табл.). В. х. можно использовать в смесях с природными волокнами при изготовлении новых ассортиментов текстильных изделий, значительно улучшая качество и внешний вид последних.

  Производство.Для производства В. х. из большого числа существующих полимеров применяют лишь те, которые состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавиться без разложения или растворяться в доступных растворителях. Такие полимеры принято называть волокнообразующими. Процесс складывается из следующих операций: 1) приготовления прядильных растворов или расплавов; 2) формования волокна; 3) отделки сформованного волокна.

  Приготовление прядильных растворов (расплавов) начинают с перевода исходного полимера в вязкотекучее состояние (раствор или расплав). Затем раствор (расплав) очищают от механических примесей и пузырьков воздуха и вводят в него различные добавки для термо- или светостабилизации волокон, их матировки и т.п. Подготовленный таким образом раствор или расплав подаётся на прядильную машину для формования волокон.

  Формование волокон заключается в продавливании прядильного раствора (расплава) через мелкие отверстия фильеры в среду, вызывающую затвердевание полимера в виде тонких волокон. В зависимости от назначения и толщины формуемого волокна количество отверстий в фильере и их диаметр могут быть различными. При формовании В. х. из расплава полимера (например, полиамидных волокон ) средой, вызывающей затвердевание полимера, служит холодный воздух. Если формование проводят из раствора полимера в летучем растворителе (например, для ацетатных волокон ), такой средой является горячий воздух, в котором растворитель испаряется (так называемый «сухой» способ формования). При формовании волокна из раствора полимера в нелетучем растворителе (например, вискозного волокна ) нити затвердевают, попадая после фильеры в специальный раствор, содержащий различные реагенты, так называемую осадительную ванну («мокрый» способ формования). Скорость формования зависит от толщины и назначения волокон, а также от метода формования. При формовании из расплава скорость достигает 600-1200 м/мин, из раствора по «сухому» способу - 300-600 м/мин, по «мокрому» способу - 30-130 м/мин. Прядильный раствор (расплав) в процессе превращения струек вязкой жидкости в тонкие волокна одновременно вытягивается (фильерная вытяжка). В некоторых случаях волокно дополнительно вытягивается непосредственно после выхода с прядильной машины (пластификационная вытяжка), что приводит к увеличению прочности В. х. и улучшению их текстильных свойств.

  Отделка В. х. заключается в обработке свежесформованных волокон различными реагентами. Характер отделочных операций зависит от условий формования и вида волокна. При этом из волокон удаляются низкомолекулярные соединения (например, из полиамидных волокон), растворители (например, из полиакрилонитрильных волокон), отмываются кислоты, соли и другие вещества, увлекаемые волокнами из осадительной ванны (например, вискозными волокнами). Для придания волокнам таких свойств, как мягкость, повышенное скольжение, поверхностная склеиваемость одиночных волокон и др., их после промывки и очистки подвергают авиважной обработке или замасливанию. Затем волокна сушат на сушильных роликах, цилиндрах или в сушильных камерах. После отделки и сушки некоторые В. х. подвергают дополнительной тепловой обработке - термофиксации (обычно в натянутом состоянии при 100-180°С), в результате которой стабилизируется форма пряжи, а также снижается последующая усадка как самих волокон, так и изделий из них во время сухих и мокрых обработок при повышенных температурах.

  Мировое производство В. х. развивается быстрыми темпами. Это объясняется, в первую очередь, экономическими причинами (меньшие затраты труда и капитальных вложений) и высоким качеством В. х. по сравнению с природными волокнами. В 1968 мировое производство В. х. достигало 36% (7,287 млн. т) от объёма производства всех видов волокон.

  В. х. в различных отраслях в значительной степени вытесняют натуральный шёлк, лён и даже шерсть. Предполагается, что к 1980 производство В. х. достигнет 9 млн. т, а в 2000 - 20 млн. тв год и сравняется с объёмом производства природных волокон. В СССР в 1966 было выпущено около 467 тыс. т, а в 1970 623 тыс. т.

  Основные свойства волокон химических

Вид волокна Плотность, г/см 3 Прочность Удлинение, % Набухание в воде, % Влагопогло- щение при 20°С и 65% относит. влажности, %
сухого во- локна, кгс/мм 2 мокрого волокна волокна в петле сухого волокна мокрого волокна
% от прочности сухого
Искусственные волокна
Ацетатное (текст. нить) 1,32 16-18 65 85 25-35 35-45 20-25 6,5
Триацетатное штапельное волокно 1,30 14-23 70 85 22-28 30-40 12-18 4,0
Вискозные волокна:
  штапельное обычное 1,52 32-37 55 35 15-23 19-28 95-120 13,0
  штапельное высокопрочное 1,52 50-60 75 40 19-28 25-29 62-65 12,0
  штапельное высокомодульное 1,52 50-82 65 25 5-15 7-20 55-90 12,0
  текст. нить обычная 1,52 32-37 55 45 15-23 19-28 95-120 13,0
  то же, высокопрочная 1,52 45-82 80 35 12-16 20-27 65-70 13,0
Медноаммиачные волокна:
  штапельное волокно 1,52 21-26 65 70 30-40 35-50 100 12,5
  текст. нить 1,52 23-32 65 75 10-17 15-30 100 12,5
Синтетические волокна
Полиамидное (капрон):
  текстильная нить обычная 1,14 46-64 85-90 85 30-45 32-47 10-12 4,5
  то же, высокопрочная 1,14 74-86 85-90 80 15-20 16-21 9-10 4,5
  штапельное волокно 1,14 41-62 80-90 75 45-75 10-12 4,5
Полиэфирное (лавсан):
  текст. нить обычная 1,38 52-62 100 90 18-30 18-30 3-5 0,35
  то же, высокопрочная 1,38 80-100 100 80 8-15 8-15 3-5 0,35
  штапельное волокно 1,38 40-58 100 40-80 20-30 20-30 3-5 0,35
Полиакрилонитрильное (нитрон):
  технич. нить 1,17 46-56 95 72 16-17 16-17 2 0,9
  штапельное волокно 1,17 21-32 90 70 20-60 20-60 5-6 1,0
Поливинилспиртовое штапельное волокно 1,30 47-70 80 35 20-25 20-25 25 3,4
Поливинилхлоридное штапельное волокно 1,38 11-16 100 60-90 23-180 23-180 0 0
Полипропиленовое волокно:
  текстильная нить 0,90 30-65 100 80 15-30 15-30 0 0
  штапельное волокно 0,90 30-49 100 90 20-40 20-40 0 0
Полиуретановая нить (спандекс) 1,0 5-10 100 100 500-1000 500-1000 - 1,0

  Лит.:Характеристика химических волокон. Справочник, М., 1966; Роговин З. А., Основы химии и технологии производства химических волокон, 3 изд., т. 1-2, М. - Л., 1964; Технология производства химических волокон, М., 1965.

  В. В. Юркевич.

Волокнистые растения

Волокни'стые расте'ния,растения, дающие волокнистый или прядильный материал; многие В. р. культивируют (см. Прядильные культуры ).

Волокнит

Волокни'т,прессовочный материал, состоящий из целлюлозного наполнителя (чаще всего волокнистого), пропитанного феноло (крезоло)-формальдегидной смолой. Наполнителем для В. служат волокна хлопка, сизаля, джута, кенафа и др. Используют также кусочки бумаги или древесного шпона (иногда их предварительно расщепляют на волокна), кусочки ткани (получают так называемый текстолит-крошку), кордные нити (получают кордоволокнит). Кроме наполнителя и связующего, В. содержит олеиновую кислоту (смазку), тальк (повышает текучесть при прессовании и увеличивает водостойкость), известь, окись магния или уротропин (ускорители отверждения смолы), графит (повышает износостойкость изделий из В.).

  Свойства В. определяются в основном видом наполнителя. Ниже приведены свойства В. на основе хлопковой целлюлозы. Плотность В. 1,45 г/см 3, теплостойкость по Мартенсу 140°С; прочность при изгибе 80 Мн/м 2(800 кгс/см 2), прочность при сжатии 120 Мн/м 2(1200 кгс/см 2), модуль упругости при растяжении 8500 Мн/м 2(85 000 кгс/см 2), ударная вязкость 9 кдж/м 2или кгс·см/см 2, твёрдость по Бринеллю 250 Мн/м 2(25 кгс/мм 2), водопоглощение за 24 ч- 9 г/м 3, удельное поверхностное электрическое сопротивление 10 10 ом; удельное объёмное электрическое сопротивление 10 Мом· м(10 Мом· см); электрическая прочность 4 Мв/мили кв/мм. Особенность изделий из В. - высокая ударная прочность, кроме того, они стойки к действию воды, минерального масла, бензина, слабых кислот и растворителей; разрушаются растворами щелочей, сильных кислот, хлора.

  При получении В. смешивают отдельные компоненты, а затем сушат сырой В. Из высушенного предварительно таблетированного В. при температуре 160-170°С прессуют изделия простой (при давлении 25 Мн/м 2, или 250 кгс/см 2) или сложной (при давлении 40-50 Мн/м 2, или 400-500 кгс/см 2) формы.

  Детали из В. применяют в приборо- и машиностроении (футляры, корпуса и крышки аппаратов, шестерни, маховики, втулки и др.), в строительстве (дверные ручки, панели, арматура и др.). Из него изготовляют также настилы для ступеней эскалаторов метрополитена и др. Из текстолит-крошки изготовляют детали с хорошими механическими и антифрикционными свойствами (сальники, ролики, шестерни, втулки, вкладыши подшипников и др.).

  Лит.:Николаев А. Ф., Синтетические полимеры и пластические массы на их основе, М., 1966, с. 458, 493.

Волокно

Волокно'в астрономии, тёмное образование, часто удлинённой формы, в атмосфере Солнца или светлая структурная протяжённая деталь в структуре некоторых диффузных туманностей.

Волокноотделитель

Волокноотдели'тель,машина для отделения хлопкового волокна от семян (см. Хлопок ). Имеются В. пильные и валичные. В пильных В. прядка волокон в её средней части захватывается зубом пилы и отрывается от семени протаскиванием сквозь щель; они применяются для сильно опушённых семян с прочно прикрепленными волокнами (советские средневолокнистые хлопки). Валичные В. работают по методу зажима пучка волокон и отрыва его от семени; валичными В. пользуются при обработке слабо опушённых семян с длинными и нежными, сравнительно легко отделяемыми волокнами (советские тонковолокнистые хлопки). Хлопок с пильных В. - рыхлый и пушистый, с валичных - напоминает руно, состоящее из плотных прядок.

Волоколамск

Волокола'мск,город, центр Волоколамского района Московской области РСФСР, на р. Городенка, близ впадения её в Ламу, в 5 кмот железнодорожной станции Волоколамск (на линии Москва - Ржев) и в 129 кмк С.-З. от Москвы, с которой соединён также автодорогой. 15 тыс. жителей (1970). Переработка с.-х. продукции (птицекомбинат, молочный завод), ремонтно-механический, стройдеталей и литейно-механический заводы, ткацкая фабрика. Политехникум, зооветеринарный техникум.

  В. впервые упоминается в Лаврентьевской летописи под 1135. Возник на волоке (протяжённость 5 км), на водном пути из Новгорода в Московско-Рязанскую землю, на р. Лама (отсюда название - Волок на Ламе). В 1382 под В. был разбит Тохтамыш . В 1513 В. присоединён к Московскому княжеству. С 1781 уездный город Московской губернии. Советская власть установлена в В. в конце октября 1917. Во время Великой Отечественной войны 1941-45 в районе В. происходили ожесточённые бои советских войск и партизан с немецко-фашистскими захватчиками. В ноябре 1941 в 9 км от В. (в районе разъезда Дубосеково) 28 панфиловцев 316-й стрелковой дивизии остановили вражеские танки, не допустив их прорыва на шоссе В. - Москва (в 1,5 кмот Дубосеково, на окраине деревни Нелидово, установлен монумент). Сохранились памятники архитектуры 15-17 вв.: Воскресенский собор, церковь Рождества на Возьмище (16 в.). В 17 кмк С.-В. от В. - ансамбль Иосифо-Волоколамского монастыря (15-17 вв.).

  Лит.:Тихомиров М. Н., Древнерусские города, 2 изд., М., 1956.

Волоконная оптика

Волоко'нная о'птика,раздел оптики, в котором рассматривается передача света и изображения по светопроводам и волноводам оптического диапазона, в частности по многожильным световодам и пучкам гибких волокон. В. о. возникла лишь в 50-е гг. 20 в.

  В волоконно-оптических деталях световые сигналы передаются по световодам с одной поверхности (торца световода) на другую - выходную как совокупность элементов изображения, каждый из которых передаётся по своей световедущей жиле ( рис. ). В волоконных деталях обычно применяют стеклянное волокно, световедущая жила которого (сердцевина) имеет высокий показатель преломления и окружена стеклом - оболочкой с более низким показателем преломления. Вследствие этого на поверхности раздела сердцевины и оболочки лучи претерпевают полное внутреннее отражение и распространяются только по световедущей жиле. Несмотря на множество таких отражений, потери в световодах обусловлены главным образом поглощением света в массе стекла жилы. Коэффициент пропускания световодов в видимой области спектра составляет 30-70% при длине 1 м. Диаметр световедущих жил в деталях различных назначений составляет от нескольких микрон до сантиметра. Распространение света по световодам, диаметр которых велик по сравнению с длиной волны, происходит по законам геометрической оптики , по более тонким же волокнам (порядка длины волны) распространяются лишь отдельные типы волн или их совокупности, что рассматривается в рамках волновой оптики.

  Для передачи изображения применяются жёсткие многожильные световоды и жгуты с регулярной укладкой волокон. На входной торец изображение проецируется объективом, а на выходном наблюдается в окуляр. Качество изображения в таких приборах определяется диаметром световедущих жил, их общим числом и совершенством изготовления. Обычно разрешающая способность таких жгутов составляет 10-50 линий на 1 мм, а в жёстких многожильных световодах и спечённых из них деталях -до 100 линий на 1 мм. Дефекты таких деталей, где бы они ни находились на длине световедущих жил, передаются по жилам на выходной торец и портят изображение. Это затрудняет изготовление высококачественных деталей.

  Пластины, вырезанные поперёк из плотно спечённых волокон, служат фронтальными стеклами кинескопов и переносят изображение на их внешнюю поверхность, что позволяет контактно его фотографировать. При этом до плёнки доходит основная часть света, излучаемого люминофором, а освещённость на ней создаётся в десятки раз большая, чем при съёмке фотоаппаратом с объективом.

  Числовая апертура волоконных деталей обычно лежит в пределах 0,4-1,0. Сужающиеся пучки световодов - фоконы (фокусирующие конусы) - собирают на узком торце световой поток, падающий на широкий торец. При этом на выходе возрастают освещённость и наклон лучей. Повышение концентрации возможно до тех пор, пока числовая апертура конуса лучей на выходе не достигает числовой апертуры световода. Дальнейшее уменьшение диаметра выходного торца приводит к выходу части лучей из боковой поверхности световода или же возвращению их к широкому торцу.

  В. о. применяют почти во всех отраслях научных исследований. Выпускают сотни типов оптических и электронно-оптических приборов с такими деталями. Жёсткие прямые или заранее изогнутые одножильные световоды и жгуты из волокон диаметром 15-50 мкмприменяют в медицинских приборах холодного света для освещения носоглотки, желудка и т.д. В таких приборах свет от электрической лампы собирается конденсором на входном торце световода или жгута и по нему подаётся в освещаемую полость; это позволяет удалить от неё лампу - источник нагревания. Световоды с заданным переплетением применимы в скоростной киносъёмке, для регистрации треков ядерных частиц, как преобразователи сканирования в фототелеграфии и телевизионной измерительной технике, как преобразователи кода и как шифровальные устройства. Созданы активные (лазерные) волокна, работающие как квантовые усилители и квантовые генераторы света, предназначенные для быстродействующих вычислительных машин и выполнения функций логических элементов , ячеек памяти и др. Волокна, закреплённые одним концом (подобно косой щётке), - септроны - позволяют анализировать спектры звуковых частот, выделять голоса из шума толпы, создавать устройства, управляющие машинами от голосовых сигналов, и т.д.

  Волоконные детали изготовляются из особо чистых материалов. Из расплавов подходящих марок стекол вытягиваются световод и волокно. Предложен новый оптический материал - кристалловолокно, выращиваемое из расплава. В нём световодами являются нитевидные кристаллы, а прослойками - добавки, вводимые в расплав.