Шла весна 1942 года. Академия наук СССР мобилизовала все силы ученых на помощь фронту. Это касалось в первую очередь физиков, химиков, математиков, металлургов. Биологи, работавшие по теоретическим разделам науки, оказались в трудном положении. Конечно, надо было исследовать фундаментальные проблемы науки, чтобы, когда окончится война, иметь большие заделы для успешного продвижения вперед после победы. Вместе с тем неотвязно мучило желание всемерно помогать стране восстанавливать разрушенное гитлеровскими армиями хозяйство.
   Условия эвакуации были трудными для проведения крупных работ практического направления. Задача состояла в том, чтобы путем использования новых экспериментальных подходов решить важную производственную задачу. Генетика имеет много подходов, чтобы целесообразно изменять качества растений, животных и микроорганизмов. Не раз было доказано, что успехи фундаментальных научных областей, полученные в генетических лабораториях, приводили к кардинальным изменениям в практике. Такое положение было, например, в истории гибридной кукурузы. Ученые в экспериментах изучали влияние родственного размножения. Кукуруза является перекрестноопыляемым растением, но, изолируя соцветия кукурузы, можно заставить ее самоопыляться. Оказалось, что самоопыление ведет к ухудшению качеств растений, вместе с тем оно выравнивает наследственные свойства линии, в которой проводится длительное самоопыление.
   Таким образом, получались так называемые гомозиготные, то есть наследственно однородные внутри себя, или чистые, линии. Казалось, что эти исследования имеют только теоретическое значение. Но когда была проведена гибридизация чистых линий, свойства некоторых гибридов поразили ученых. Урожайность у таких исключительных гибридов была очень высокой. Так были заложены основы для разработки методов использования самоопыленных линий в практике получения высокоурожайных и ценных по своим биохимическим и другим качествам гибридных сортов кукурузы.
   В настоящее время получение гетерозисных гибридов имеет крупнейшее производственное значение. Оно касается как растений, так и животных. Весь мир завоевало бройлерное птицеводство, основанное на производственном использовании гибридных цыплят. Суть метода состоит в создании гомозиготных линий с помощью родственного размножения и подбора в качестве родителей той пары линий, которые при скрещивании дают гетерозисных, высокоурожайных гибридов. Хотя в поисках таких линий все еще много эмпиризма, однако сам метод в целом отработан очень хорошо, и по своим практическим результатам поиски удачной гибридной комбинации оправдываются сторицей.
   Использование гетерозиса у культурных растений - одно из важнейших производственных направлений в области генетики и селекции. Но процесс создания линий и их испытания при гибридизации - долгий процесс. Работа по созданию гибридной кукурузы, например, продолжалась около 30 лет и потребовала большого труда и затрат.
   В условиях 1942 года в Алма-Ате надо было искать другие эффективные пути. Казалось, что таким путем может служить экспериментальное получение полиплоидов, поскольку и здесь при получении товарных семян может быть использована гибридизация. В этом случае полиплоидия сочетается с гетерозисом.
   Явление полиплоидии состоит в том, что у полиплоидов число хромосом в клетках оказывается кратно увеличено в сравнении с исходным. Например, дикие пшеницы имеют в ядрах своих клеток по 14 хромосом, культурные виды твердых пшениц содержат по 28 хромосом (тетраплоиды, тетра четыре), мягкие пшеницы - по 42 хромосомы (гексаплоиды, гекса шесть).
   Создавалось впечатление, что факт кратного увеличения числа хромосом в клетках внешне очень прост. Но чтобы это осуществилось, должны быть включены в действие очень сложные законы размножения клетки и законы взаимодействия ядра и цитоплазмы. При удвоении числа хромосом такие полиплоиды получили название тетраплоидов. Причина этого наименования лежит в том, что они, имея удвоенное общее число хромосом, содержат четыре основных исходных набора хромосом. Это вызвано тем, что любой исходный, обычный набор хромосом является двойственным (диплоидным).
   Двойственность набора хромосом обусловлена происхождением: половина его в виде одного простого (гаплоидного) набора приходит от матери, а другая, такая же половина приходит от отца. Во время образования половых клеток имеет место работа очень сложного редукционного деления, который превращает диплоидный набор в гаплоидный. Это достигается тем, что хромосомы в каждой паре разделяются, и в половые клетки попадает простой гаплоидный набор. У диких пшениц в пыльцу и в яйцеклетки из каждой из семи пар хромосом попадает по одному гомологу. В результате каждая половая клетка имеет семь индивидуальных хромосом, то есть она содержит гаплоидный набор хромосом. После слияния яйцеклетки и спермия образуется зигота, то есть та исходная клетка, из которой развивается весь организм. Очевидно, что при образовании зиготы в процессе оплодотворения встречаются клетки, каждая из которых несет гаплоидный набор хромосом. В результате организм имеет удвоенное (парное) число хромосом, которое получило название диплоидного набора. В нашем примере у диких пшениц оно будет равно 14 хромосомам.
   Но в природе все подвержено изменениям. Бывают и такие случаи, что при созревании половых клеток нарушаются процессы редукционного деления ядра и весь диплоидный набор хромосом попадает в одну клетку. Потомство, развивающееся из такой клетки, испытавшей на себе процесс нерасхождения хромосом, приобретает измененное число хромосом. Очевидно, что слияние диплоидного (результат нерасхождения) и гаплоидного (результат нормального редукционного деления) наборов поведет к тому, что в такой зиготе каждая хромосома будет представлена уже в тройном числе, и растение, которое развивается из такой зиготы, получает название триплоида. В том же случае, если встретятся две половые клетки с диплоидными наборами, то возникнет растение с учетверенным набором хромосом, то есть тетраплоид.
   Может показаться, что наблюдения за числом хромосом имеют сугубо теоретический характер и представляют интерес только для узкого специалиста. На самом же деле это далеко не так. Изучение внутриклеточных явлений пролило свет на важнейшие явления формообразования у растений.
   Обширные исследования генетиков и цитологов показали, что человек хотя и бессознательно, то есть не понимая механизма деления клетки, тем не менее широко использовал явление нерасхождения хромосом при создании различных культурных растений. Полиплоидами являются пшеницы, картофель, хлопчатник, многие плодовые культуры и т. д. Стало очевидным, что явление кратного увеличения числа хромосом в клетках растений (полиплоидия) служит могучим орудием изменения природы растений. Оно сыграло важнейшую роль в явлениях естественной эволюции в природе, ибо появление новых видов растений во многих случаях было связано с полиплоидией. Это коснулось и создания человеком культурных растений.
   Явления нерасхождения хромосом были широко зарегистрированы в природе, где они возникали под влиянием неучитываемых условий. Такие появляющиеся под влиянием каких-то неизвестных причин нарушения деления ядра можно было использовать в опыте и в практике. В 1927-1928 годах в Ленинграде Георгий Дмитриевич Карпеченко проводил свои знаменитые опыты по скрещиванию редьки и капусты. Гибриды этих растений были бесплодны, так как имели два разных гаплоидных набора хромосом. Карпеченко удалось, используя случайно возникавшие нередуцируемые половые клетки, получить зиготы, в которых в диплоидном числе были объединены и ядро редьки и ядро капусты. Как по мановению волшебной палочки, такие тетраплоидные гибриды стали плодовитыми. Эти опыты заложили основу важнейшего современного направления по скрещиванию видов.
   Вполне понятно, что в течение трех первых десятилетий нашего века многие ученые бились над проблемой управления явлением нерасхождения хромосом, чтобы разработать метод, который позволил бы по желанию в экспериментах получить нужные полиплоидные формы растений. Первый шаг в решении этой важнейшей проблемы еще в самом начале текущего века был сделан в Московском университете в опытах Ивана Ивановича Герасимова, действовавшего температурными шоками и некоторыми ядами на клетки водорослей спирогира. Ему экспериментально удалось вызывать нерасхождение хромосом. После длительных поисков тех условий, в которых экспериментатор мог бы безотказно вызывать явление полиплоидии, в 1937 году Айвери и Блексли показали, что полиплоидию можно искусственно вызывать с помощью химии, а именно воздействуя алкалоидом колхицином на делящуюся клетку. Деление ядра клетки связано с образованием внутри ее особой временной структуры, так называемого веретена деления. По нитям этого веретена хромосомы скользят к разным полюсам деления. Оказалось, что колхицин разрушает веретено деления, то есть основной элемент в механизме нормального расхождения хромосом в дочерние ядра. В результате возникает картина нерасхождения хромосом. Разделившиеся хромосомы, вместо того чтобы попасть в две дочерние клетки, все вместе, то есть в двойном количестве, остаются в одной клетке, обработанной колхицином.
   Итак, в 1942 году основы экспериментального получения полиплоидов были ясны. Какое же сельскохозяйственное растение следовало вовлечь в опыты по получению полиплоидов? Где можно было ожидать наибольший производственный эффект при такой работе? Выяснилось, что усилия надо направить на получение полиплоидов у сахарной свеклы. Это культурное растение является у нас в стране источником получения сахара, оно высевается на громадных площадях, и конечно же любое повышение выхода сахара с гектара будет иметь величайшее производственное значение. В литературе имелись указания, что у сахарной свеклы особо перспективными являются растения с тройным набором хромосом, так называемые триплоиды. Выходило, что перед сельским хозяйством нашей страны надо было ставить вопрос о переводе использования обычной сахарной свеклы на триплоидный уровень с учетом гетерозисности гибридов.
   Новые подходы к селекции сахарной свеклы диктовались также тем, что ко времени начала войны стали очевидны большие трудности, которые встали перед обычной селекцией этого ценнейшего растения. Нашими выдающимися селекционерами, в первую очередь А. В. Мазлумовым, были созданы замечательные сорта этой культуры. Вместе с тем стало очевидно, что дальнейшее улучшение сахарной свеклы обычными методами встречает серьезные затруднения. Увеличение сахаристости в корнях, выражаемое даже в долях процента, шло с трудом. Надо было искать новые пути, и все указывало, что экспериментальная полиплоидия у сахарной свеклы такие новые пути действительно сможет открыть.
   Решение этой задачи надо было нацелить на получение триплоидных товарных семян сахарной свеклы. Такие семена регулярно и в нужных количествах можно получать только при скрещивании тетраплоидных линий на диплоидные линии обычной свеклы. Встала задача решить первый цикл в этом процессе, а именно в экспериментах с помощью колхицина получить новые тетраплоидные формы сахарной свеклы.
   На предоставленном участке земли при проведении опытов пришлось выполнять все обязанности, от обработки почвы до микроскопического анализа пыльцы. Когда однолетние корешки, посаженные в почву, дали побеги, их точки роста обработали раствором колхицина. Можно было рассчитывать, что если на такой ранней стадии какое-то количество обычных, диплоидных клеток под влиянием колхицина превратится в тетраплоидные клетки, то они могут послужить основой для развития целого побега, обладающего тетраплоидной тканью.
   Растения сахарной свеклы характеризуются способностью так называемой факультативной перекрестной опыляемости. Яйцеклетки их цветков, как правило, опыляются перекрестно, то есть пыльцой с другого растения. Тетраплоидные ткани отличаются по размерам листьев, более темно-зеленой окраской и по другим признакам. Если бы колхицин вызвал образование тетраплоидной ткани у разных растений, тогда можно было бы, уничтожив обычные, диплоидные побеги, заставить тетраплоидную пыльцу опылить тетраплоидную яйцеклетку.
   Такой подход к делу резко увеличивал темпы создания тетраплоидных растений сахарной свеклы, он позволял создать экспериментальные тетраплоиды в течение одного лета. В последующие годы надо было получить тетраплоиды из всех основных лучших сортов и изучить качество разных гибридов между тетраплоидами и диплоидами. Использование высокоурожайных триплоидных сортов требовало создания особого семеноводства, связанного с постоянной гибридизацией диплоидных растений на избранную тетраплоидную форму сахарной свеклы.
   Лето 1942 года мне пришлось провести, работая и оберегая посадки экспериментальных корней сахарной свеклы. После обработки точек роста колхицином многие побеги приобрели явно уклоняющийся характер. Их листья стали более крупными, мясистыми, более круглыми, устьица на поверхности листьев увеличились.
   На экспериментальном участке появилась большая доска с надписью: "Идут опыты, осторожно: яд!" Но охранять посадки надо было не только от людей, но и от четвероногих, которые надписей не читают. В Алма-Ате очень много осликов, этих чудных созданий, которым так не повезло в баснях и в пословицах. На самом деле ослики - у меня даже язык не поворачивается назвать их ослами,- это безмерно терпеливые и трудолюбивые, милые и очень привязчивые животные.
   Трудно придумать что-нибудь более очаровательное для сравнения с осликами-детьми. Мохнатые, маленькие, с ушами, расставленными словно чуткие локаторы, с чудными громадными, бездонно-непроницаемыми глазами - эти существа казались диковинными игрушками. В их играх и милых забавах вся прелесть юной вскипающей жизни. И вот эти ослики несколько раз пытались съесть колхицинированные побеги у подопытных растений.
   Приближалась осень. На развившихся тяжелых, тетраплоидных побегах завязались семена. Стало ясно, что колхицин оказал свое волшебное действие на деление клетки, в результате чего появились тетраплоидные побеги и на них - тетраплоидные семена. Крупные, резко выделяющиеся семена были получены с явно уклонившихся побегов, имевших более зеленые, грубые и крупные листья. Это были тяжелые семена тетраплоидов сахарной свеклы, впервые полученные в нашей стране. Вид этих семян знаменовал собою зарю важнейшего производственного перелома в разведении сахарной свеклы, резкого повышения выхода сахара с гектара за счет внедрения в практику триплоидных сортов свеклы.
   Весною 1943 года эти драгоценные семена были высажены в те же грядки в саду. Они взошли и превратились в маленькие тетраплоидные растения с крепкими темно-зелеными листьями.
   Однако уже в 1943 году, имея в виду поворот войны, наше правительство решило вернуть учреждения Академии наук в Москву, установив сроки их реэвакуации на время между маем и октябрем. Это было свидетельством того, что война шла к концу, приближалась победа.
   Летом 1943 года все учреждения Академии наук СССР, ранее вывезенные в Алма-Ату, были реэвакуированы. Эксперименты по тетраплоидии у сахарной свеклы прекратились. Однако опыт экспериментальной работы и обдумывание вопросов, выполненных в 1942-1943 годах, не пропали даром.
   По возвращении в Москву мне пришлось отвлечься множеством других дел. С 1948 по 1955 год я занимался птицами в лесопосадках. В годы 1955-1957-й решал важные проблемы о воздействии радиации на наследственность. Но успешные эксперименты по тетраплоидам сахарной свеклы все время помнились, и они были продолжены и осуществлены, как только представилась реальная возможность.
   Это случилось в 1957 году в Институте цитологии и генетики Сибирского отделения Академии наук СССР. Будучи директором этого института, среди первых и главных дел института я выдвинул научно-производственную задачу получения триплоидных гетерозисных сортов сахарной свеклы. Еще до того, как в Новосибирск поехали первые сотрудники института, срочно на Бийскую опытную станцию из Москвы я послал только что принятую на работу ботаника Е. Б. Панину для того, чтобы взять там семенной материал и затем немедленно в Новосибирске начать опыты по созданию тетраплоидов и затем триплоидных производственных сортов сахарной свеклы. Эта работа, начатая в первые же дни организации института, была успешно выполнена лабораторией экспериментальной полиплоидии.
   Ныне триплоидные сорта вошли в практику сельского хозяйства. За счет повышения урожайности они увеличивают выход сахара с гектара посевов на 12-20 процентов. Это достижение в наши дни является одним из наиболее существенных вкладов экспериментальной генетики в сельском хозяйстве. Основные проблемы улучшения сахарной свеклы и новые формы ее семеноводства строятся теперь на признании реального высокого товарного значения триплоидных гетерозисных сортов.
   Проводя опыты с сахарной свеклой в Алма-Ате в 1942-1943 годах, одновременно я экспериментировал с дрозофилой. Сады, склады и винный завод в Алма-Ате были полны миллионами плодовых мушек. Здесь был неисчерпаемый резерв материала для экспериментов по естественным популяциям. Опыты с дрозофилой, заложенные в Алма-Ате, послужили одному из моих самых крупных исследований по генетике популяций, а именно изучению природы гетерозиса. Этот термин означает, что скрещивание, гибридизация у растений и у животных, как правило, имеет благодетельное влияние на жизнеспособность потомства. Недаром почти все животные и масса растений дают потомство путем полового размножения. В селекции растений и животных гибридизация имеет громадное значение. Использование гетерозисных промышленных гибридов у животных и у гибридных сортов растений в настоящее время является основой нового, индустриального сельского хозяйства.
   Жизнь естественных популяций в природе также опирается на скрещивание особей, что ведет к широкому проявлению гетерозиса.
   В чем же состоит сущность этого генетического явления? Увы, несмотря на всю важность самого явления гетерозиса, его генетическая природа все еще остается загадкой. В опытах 1942 года были начаты исследования природы той формы гетерозиса, которая проявляется в естественных популяциях дрозофилы. Конечно, дрозофила была использована как модель, на которой следовало изучить общие стороны такого фундаментального явления, как гетерозис.
   После сбора дрозофил было заложено несколько сот линий, и опыт начался. Этот опыт превратился в обширнейшее исследование, которое продолжалось в течение трех лет - до 1945 года.
   В результате этих экспериментов удалось открыть в популяциях дрозофилы особые наследственные структуры в виде целой генетической системы, которая обеспечивает явление внутрипопуляционного гетерозиса. Дальнейшая разработка этого вопроса во многих генетических лабораториях мира показала, что, действительно, внутрипопуляционный гетерозис это крупнейший фактор, обеспечивающий жизнь и эволюцию популяций. То же касается и популяций домашних животных и растений. В некоторых случаях элементы этого же явления открыты и для популяций человека. Показано, например, что в популяциях человека в Африке широко распространен ген, который у гомозигот вызывает смерть новорожденных от злокачественной анемии. А у гетерозигот этот же ген делает людей невосприимчивыми к тропической малярии. Благодаря такому эффекту этот ген распространился по многим популяциям у человека.
   Группа ученых, работавшая в эвакуации в Алма-Ате, конечно, представляла собой очень маленькую частицу всего фронта науки.
   Зимой 1942/43 года вся страна, весь мир, затаив дыхание, следили за эпопеей величайшей битвы под Сталинградом. После обороны пришла победа, которая озарила жизнь нашей страны и всего мира. Надежда на конечную победу над фашизмом перешла в уверенность. Все понимали, что впереди еще гигантские трудности, но после битвы под Сталинградом заря освобождения от черных сил фашизма уже вставала над миром.
   Победа под Сталинградом на рубеже 1942 и 1943 года явилась крупнейшим военным и политическим событием всей второй мировой войны.
   18 января 1943 года советские армии прорвали блокаду под Ленинградом. Это также явилось огромным военно-политическим событием. Началось массовое изгнание врага с советской территории. Мы стали готовиться к выезду в Москву, обратно в институт, на Воронцово поле, 6. С радостью думалось о Москве, об институте, о лабораториях, которые ждут нашего труда.
   И вот настало время - мы прибыли в Москву. Столица стояла военная, затемненная, несокрушимая и непобедимая. Началась жизнь и работа во второй половине Великой Отечественной войны.
   На весь мир прогремела битва на Курской дуге, которая началась 5 июля 1943 года. Цвет фашистских армий был уничтожен в этом гигантском сражении. Звон погребального колокола над гитлеровской Германией стал слышен во всех уголках мира.
   Одним из замечательных впечатлений по возвращении в Москву был первый салют 5 августа 1943 года. Он расцветил небо в честь освобождения от фашистских войск городов Орла и Белгорода. До окончания войны оставалось еще далеко, но эти первые огни, вспыхнувшие в торжествующем небе Москвы, говорили: победа придет.
   В Москву были привезены 20 ящиков с дрозофилами из алма-атинских популяций, и здесь в московской лаборатории продолжалась работа по выяснению природы явления внутрипопуляционного гетерозиса. Почти все сотрудники отдела были на месте. Не хватало только И. А. Рапопорта и Н. Н. Соколова. И. А. Рапопорт в 1941 году добровольцем ушел на фронт. Мы знали, что он удостоен многих орденов Советского Союза и ряда иностранных орденов. Н. Н. Соколов служил лейтенантом в медсанбате, и замена его в медсанбате не представляла труда. Я обратился с письмом к Л. А. Орбели, где указывал, что, учитывая научные качества Н. Н. Соколова, следует добиться его демобилизации и возвращения на работу в Москву.
   В 1944 году Н. Н. Соколов вернулся в наш институт.
   С осени 1943 года исследовательская работа у нас заметно усилилась еще в одном направлении. Наряду с изучением природы внутрипопуляционного гетерозиса, которое проводилось на линиях дрозофилы, привезенных из Алма-Аты, мы детально стали изучать некоторые процессы эволюции популяций на дрозофилах, обитающих на севере, в том числе в Москве и в окружающих ее районах. Это был другой вид дрозофилы, который называется дрозофила погребальная, или, по-латыни, дрозофила фунебрис. Это более крупные сравнительно с плодовой дрозофилой черные мушки, живущие на портящихся овощных и других отбросах.
   Изучая популяции этого вида, мы еще до войны нашли, что некоторое количество особей в каждой популяции, взятой из разных мест страны, характеризуется определенными структурными изменениями в хромосомах. Эти изменения носят название инверсий, так как они представляют собой поворот на 180 градусов того или иного участка внутри хромосомы. В результате в повернутом участке хромосомы блок генов этого участка расположен по отношению к хромосоме в целом в обратном порядке. Наличие этих структурных изменений в хромосомах можно безошибочно устанавливать с помощью рассмотрения клеток из слюнной железы личинок под микроскопом. Было известно, что разные виды дрозофил отличаются друг от друга инверсиями. Однако как же идет эта эволюция внутри популяции, когда происходят процессы становления новых видов? Долгое время считалось, что инверсии нейтральны, в силу законов чисто случайного распределения мутаций они оказываются присутствующими в природных популяциях.
   В работах 1943-1945 годов нам удалось раскрыть иную картину. Опыты отчетливо показали, что распределение инверсий связано с действием естественного отбора в природе. Известно, что принцип естественного отбора занимает центральное положение в эволюционной теории Дарвина. Но, будучи великолепной дедукцией из массы фактов, он тем не менее очень трудно поддается экспериментальному изучению. Даже современная теория эволюции имеет в своем распоряжении мало фактов о действии естественного отбора в природе, которые были бы строго обоснованными как в качественном, так и количественном отношении.
   Тем поразительнее было открытие, что ничем внешне не изменяющие облик дрозофил структурные изменения хромосом, казалось бы, скрытые в глубинах ядра клетки, через какие-то биологические механизмы, через преобразования в действии генетической информации, записанной в хромосомах, оказываются отчетливым образом связанными с деятельностью естественного отбора. Изучая сотни и тысячи особей, оказалось возможным установить характер естественного отбора на базе строгих количественных методов.
   Это важное открытие указывало на новые перспективы в экспериментальном обосновании и изучении дарвиновской теории эволюции, на базе принципов современной генетики.
   Одним из пороков старой генетики было широкое хождение в ней всяких автогенетических теорий, отрицавших влияние внешней среды как для появления мутаций, так и для протекания процессов эволюции. В нашей работе с популяциями дрозофилы фунебрис ярко раскрывалось значение факторов внешней среды, которые определяли течение структурной эволюции хромосом. В этом случае оказалось возможным в прямых экспериментах проследить быструю эволюцию ядерных структур при изменении условий обитания популяций дрозофилы.