кг,диаметр 0,75 м,длину 1,3 м-,«Э.-2» и «Э.-4» - массу 445 кг,диаметр 1,8 м,длину 24 м.Измерения, проведённые с помощью ИСЗ «Э.», позволили изучить временные вариации характеристик околоземного космического пространства при различных уровнях солнечной активности. «Э.» запускались попарно одной ракетой-носителем.

  Полёты искусственных спутников Земли «Электрон»

Наименование Дата запуска Начальные параметры орбиты
высота в перигее, км высота в апогее, км наклонение, ° Период обращения, мин
«Электрон-1» 30.1.64 406 7100 61 169
«Электрон-2» » 460 68200 61 1360
«Электрон-3» 11.7.64 405 7040 60,87 168
«Электрон-4» » 459 66235 60,87 1314

Электрон (магниевые сплавы)

Электро'н,редко употребляемое название .Под таким названием в 20-х гг. 20 в. появились первые промышленные магниевые сплавы на основе систем Mg - Al - Zn и Mg - Mn, содержащие до 10% Al, до 3% Zn и до 2,5% Mn.

Электрон проводимости

Электро'н проводи'мости,электрон металлов и полупроводников, энергия которого находится в частично заполненной энергетической зоне (зоне проводимости, см. ) .В полупроводниках при абсолютном нуле температуры электроны в зоне проводимости отсутствуют. Они появляются при повышении температуры, освещении, внедрении примесей и др. внешних воздействиях. В металлах всегда есть Э. п., и их концентрация велика. При Т =0 К в металле Э. п. занимают все состояния с энергией, меньшей энергии Ферми. Свойства Э. п. удобно описывать в терминах кинетической теории газов, пользуясь понятиями длины свободного пробега, частоты столкновений и т. п. В полупроводниках, где число Э. п. относительно мало, газ Э. п. хорошо описывается классической .В металлах Э. п. образуют вырожденную .

Электрон (физич.)

Электро'н(символ е - , e), первая элементарная частица, открытая в физике; материальный носитель наименьшей массы и наименьшего электрического заряда в природе. Э. - составная часть ;их число в нейтральном атоме равно атомному номеру, т. е. числу протонов в ядре.

  Современные значения заряда (e) и массы ( me) Э .равны:

e= - 4,803242(14)Ч10 -10ед. СГСЭ = - 1,6021892(46)Ч10 -19 ,

m e= 0,9109534(47)Ч10 -27 г =0,5110034(14) Мэв/с 2 ,

где с - скорость света в вакууме (в скобках после числовых значений величин указаны средние квадратичные ошибки в последних значащих цифрах). Э .равен 1/ 2(в единицах ) ,и, следовательно, Э. подчиняются .Магнитный момент Э. - m = 1,0011596567(35) m 0, где m 0- Бора. Э. - стабильная частица и относится к классу .

 Установление существования Э. было подготовлено трудами многих выдающихся исследователей; в 1897 Э. был открыт Дж. Дж. .Название «Э.» [первоначально предложенное английским учёным Дж. Стони (1891) для заряда одновалентного иона] происходит от греческого слова йlektron, что означает янтарь. Электрический заряд Э. условились считать отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектризованного янтаря (см. ) . Э. - позитрон (e +) открыта в 1932.

  Э. участвует в электромагнитных, слабых и гравитационных взаимодействиях и проявляет многообразие свойств в зависимости от типа взаимодействий. В классической электродинамике Э. ведёт себя как частица, движение которой подчиняется .Понятие «размер Э.» не удаётся сформулировать непротиворечиво, хотя величину r 0= е 2/ т е с 2~10 -13 смпринято называть классическим радиусом Э. Причину этих затруднений удалось понять в рамках квантовой механики. Согласно гипотезе де (1924), Э. (как и все другие материальные микрообъекты) обладает не только корпускулярными, но и волновыми свойствами (см. , ) .Де-бройлевская длина волны Э. равна ,где u -скорость движения Э. В соответствии с этим Э., подобно свету, могут испытывать интерференцию и дифракцию. Волновые свойства Э. были экспериментально обнаружены в 1927 американскими физиками К. и Л. и независимо английским физиком Дж. П. (см. ).

 Движение Э. подчиняется уравнениям квантовой механики: для нерелятивистских явлений и -для релятивистских. Опираясь на эти уравнения, можно показать, что все оптические, электрические, магнитные, химические и механические свойства веществ объясняются особенностями движения Э. в атомах. Наличие спина существенным образом влияет на характер движения Э. в атоме. В частности, только учёт спина Э. в рамках квантовой механики позволил объяснить Д. И. Менделеева, а также природу атомов в молекулах.

  Э. - член единого обширного семейства элементарных частиц, и ему в полной мере присуще одно из основных свойств элементарных частиц - их взаимопревращаемость. Э. может рождаться в различных реакциях, самыми известными из которых являются распад отрицательно заряженного (m -) на электрон, электронное ( ) и мюонное (n m):

,

  а также нейтрона на протон, электрон и электронное антинейтрино:

.

  Последняя реакция является источником b-лучей при радиоактивном распаде ядер. Оба процесса - частные случаи .Примером электромагнитных процессов, в происходят превращения Э., может служить аннигиляция электрона и позитрона на два g-кванта

e -+ e +® 2g.

  С 60-х гг. интенсивно изучаются процессы рождения сильно взаимодействующих частиц (адронов) при столкновении электронов с позитронами, например рождение пары :

e -+е +® p -+ p + .

 В конце 1974 в аналогичной реакции открыта новая элементарная частица, т. н. J//y-частица (см. , ) .

 Релятивистская квантовая теория Э. ( ) -самая разработанная область квантовой теории поля, в которой достигнуто удивительное согласие с экспериментом. Так, вычисленное значение магнитного момента Э.

(где a » 1/137,036 - ) с огромной точностью совпадает с его экспериментальным значением. Однако теорию Э. нельзя считать законченной, поскольку ей присущи внутренние логические противоречия (см. ) .

  Лит.:Милликен P., Электроны (+ и -), протоны, фотоны, нейтроны и космические лучи, пер. с англ., М. - Л., 1939; Андерсон Д., Открытие электрона, пер. с англ., М., 1968; Томсон Г. П., Семидесятилетний электрон, пер. с англ., «Успехи физических наук», 1968, т. 94, в. 2.

  Л. И. Пономарев.

Электронаркоз

Электронарко'з(от и ) электроанестезия, способ общего обезболивания путём воздействия электрическим током на головной мозг. Наркотизирующее действие электрического тока, подаваемого импульсами, впервые испытал на себе французский учёный С. Ледюк в 1902. При современном Э. применяют импульсный (с частотой от 100 Гцдо 6 кгц) ,синусоидальный и т. н. интерференционный токи; сила тока - от 10 до 200 лот. При любой методике Э. электроды накладывают на лобную и затылочную области головы. Наркотизирующий эффект обусловлен снижением активности воспринимающих боль корковых и подкорковых структур головного мозга. Побочные эффекты электрического воздействия (мышечный спазм, нарушения кровообращения и дыхания) затрудняли практическое применение метода. Развитие обусловило возможность использования Э. (его преимущество - быстрота достижения обезболивания и выхода из состояния наркоза, отсутствие токсического действия, портативность аппаратуры) в качестве компонента современного комбинированного наркоза. Специалисты, изучающие проблемы Э., с 1966 объединены в Международное общество электросна и электроанестезии.

  Лит.:Электронаркоз в хирургии, Таш., 1966.

  В. В. Сигаев.

Электронвольт

Электронво'льт,внесистемная единица энергии, равная энергии, приобретаемой частицей, несущей один элементарный заряд (заряд электрона) при перемещении в ускоряющем электрическое поле между двумя точками с разностью потенциалов 1 в.Обозначения: русское - эв,международное - eV.

  1 эв =1,60219Ч10 -19 дж.Применяются кратные единицы килоэлектронвольт ( кэв,keV), равный 10 3 эв,мегаэлектронвольт ( Мэв,MeV), равный 10 6 эв.Часто в эввыражают массу элементарных частиц, что основано на уравнении Эйнштейна Е = mc 2 ,связывающем массу частицы тс её полной энергией Е; с - .Энергия, соответствующая одной ,равна (931,5016 ± 0,0026) Мэв.

Электроника

Электро'ника,наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств, в которых это взаимодействие используется для преобразования электромагнитной энергии, в основном для передачи, обработки и хранения информации. Наиболее характерные виды таких преобразований - генерирование, усиление и приём электромагнитных колебаний с частотой до 10 12 гц,а также инфракрасного, видимого, ультрафиолетового и рентгеновского излучений (10 12-10 20 гц) .Преобразование до столь высоких частот возможно благодаря исключительно малой инерционности электрона - наименьшей из ныне известных заряженных частиц. В Э. исследуются взаимодействия электронов как с макрополями в рабочем пространстве электронного прибора, так и с микрополями внутри атома, молекулы или кристаллической решётки.

  Э. опирается на многие разделы физики - электродинамику, классическую и квантовую механику, физику твёрдого тела, оптику, термодинамику, а также на химию, металлургию, кристаллографию и другие науки. Используя результаты этих и ряда других областей знаний, Э., с одной стороны, ставит перед другими науками новые задачи, чем стимулирует их дальнейшее развитие, с другой - создаёт новые электронные приборы и устройства и тем самым вооружает науки качественно новыми средствами и методами исследования. Практические задачи Э.: разработка электронных приборов и устройств, выполняющих различные функции в системах преобразования и передачи информации, в системах управления, в вычислительной технике, а также в энергетических устройствах; разработка научных основ технологии производства электронных приборов и технологии, использующей электронные и ионные процессы и приборы для различных областей науки и техники.

  Э. играет ведущую роль в научно-технической революции. Внедрение электронных приборов в различные сферы человеческой деятельности в значительной мере (зачастую решающей) способствует успешной разработке сложнейших научно-технических проблем, повышению производительности физического и умственного труда, улучшению экономических показателей производства. На основе достижений Э. развивается промышленность, выпускающая электронную аппаратуру для различных видов связи, автоматики, телевидения, радиолокации, вычислительной техники, систем управления технологическими процессами, приборостроения, а также аппаратуру светотехники, инфракрасной техники, рентгенотехники и др.

  Историческая справка.Э. зародилась в начале 20 в. после создания основ электродинамики (1856-73), исследования свойств (1882-1901), (1887-1905), (1895-97), открытия электрона (Дж. Дж. ,1897), создания электронной теории (1892-1909). Развитие Э. началось с изобретения лампового (Дж. А. ,1904), трёхэлектродной лампы - (Л. де ,1906); использования триода для генерирования электрических колебаний (немецкий инженер А. Мейснер, 1913); разработки мощных генераторных ламп с водяным охлаждением (М. А. ,1919-25) для радиопередатчиков, используемых в системах дальней радиосвязи и радиовещания. Вакуумные (экспериментальный образец создал А. Г. ,1888; промышленные образцы - немецкие учёные Ю. Эльстер и Г. Хейтель, 1910); -однокаскадные (П. В. ,1928) и многокаскадные (Л. А. ,1930) - позволили создать звуковое кино, послужили основой для разработки : (идея предложена в 1925 А. А. ) , (С. И. и независимо от него В. К. ,1931-32), (П. В. Тимофеев, П. В. ,1933), (двухсторонняя мишень для такой трубки была предложена советским учёным Г. В. Брауде в 1939; впервые суперортикон описан американскими учёными А. Розе, П. Веймером и Х. Лоу в 1946) и др. Создание многорезонаторного (Н. Ф. Алексеев и Д. Е. ,под руководством М. А. Бонч-Бруевича, 1936-37), отражательного (Н. Д. и другие и независимо от них советский инженер В. Ф. Коваленко, 1940) послужило основой для развития радиолокации в сантиметровом диапазоне волн; пролётные клистроны (идея предложена в 1932 Д. А. ,развита в 1935 советским физиком А. Н. Арсеньевой и немецким физиком О. Хайлем, реализована в 1938 американскими физиками Р. и 3. Варианами и др.) и (американский учёный Р. Компфнер, 1943) обеспечили дальнейшее развитие систем радиорелейной связи, ускорителей элементарных частиц и способствовали созданию систем космической связи. Одновременно с разработкой вакуумных электронных приборов создавались и совершенствовались газоразрядные приборы ( ) ,например ,используемые главным образом для преобразования переменного тока в постоянный в мощных промышленных установках; для формирования мощных импульсов электрического тока в устройствах импульсной техники; .

 Использование кристаллических полупроводников в качестве для радиоприёмных устройств (1900-05), создание купроксных и селеновых выпрямителей тока и фотоэлементов (1920-1926), изобретение кристадина (О. В. ,1922), изобретение (У. ,У. ,Дж. ,1948) определили становление и развитие .Разработка полупроводниковых структур (конец 50 - начало 60-х гг.) и методов интеграции многих элементарных приборов (транзисторов, диодов, конденсаторов, резисторов) на одной монокристаллической полупроводниковой пластине привело к созданию нового направления в Э. - (см. также ) .Основные разработки в области интегральной Э. направлены на создание -микроминиатюрных электронных устройств (усилителей, преобразователей, ЭВМ, электронных запоминающих устройств и т. п.), состоящих из сотен и тысяч электронных приборов, размещаемых на одном полупроводниковом кристалле площадью в несколько мм 2 .Микроэлектроника открыла новые возможности для решения таких проблем, как автоматизация управления технологическими процессами, переработка информации, совершенствование вычислительной техники и др., выдвигаемых развитием современного общественного производства. Создание квантовых генераторов (Н. Г. ,А. М. и независимо от них Ч. ,1955) - приборов -определило качественно новые возможности Э., связанные с использованием источников мощного когерентного излучения оптического диапазона ( ) и построением сверхточных .

 Советские учёные внесли крупный вклад в развитие Э. Фундаментальные исследования в области физики и технологии электронных приборов выполнили М. А. Бонч-Бруевич, Л. И. ,Н. Д. ,С. А. ,А. А. Чернышев, М. М. Богословский и многие др.; по проблемам возбуждения и преобразования электрических колебаний, излучения, распространения и приёма радиоволн, их взаимодействия с носителями тока в вакууме, газах и твёрдых телах - Б. А. ,В. Д. ,А. Л. ,А. А. ,М. В. и др.; в области физики полупроводников - А. Ф. ;люминесценции и по другим разделам физической оптики - С. И. ;квантовой теории рассеяния света излучения, фотоэффекта в металлах - И. Е. и многие др.

  Области, основные разделы и направления электроники.Э. включает в себя 3 области исследований: вакуумную Э., твердотельную Э., квантовую Э. Каждая область подразделяется на ряд разделов и ряд направлений. Раздел объединяет комплексы однородных физико-химических явлений и процессов, которые имеют фундаментальное значение для разработки многих классов электронных приборов данной области. Направление охватывает методы конструирования и расчётов электронных приборов, родственных по принципам действия или по выполняемым ими функциям, а также способы изготовления этих приборов.

  Вакуумная Э. содержит следующие разделы: 1) эмиссионная Э., охватывающая вопросы термо-, фотоэмиссии, , ,исследования катодов и антиэмиссионных покрытий; 2) формирование потоков электронов и потоков ионов, управление этими потоками; 3) формирование электромагнитных полей с помощью ,систем резонаторов, ,устройств ввода и вывода энергии; 4) электронная люминесценция ( ) ;5) физика и техника высокого вакуума (его получение, сохранение и контроль); 6) теплофизические процессы (испарение в вакууме, формоизменение деталей при циклическом нагреве, разрушение поверхности металлов при импульсном нагреве, отвод тепла от элементов приборов); 7) поверхностные явления (образование плёнок на электродах и изоляторах, неоднородностей на поверхностях электрода); 8) технология обработки поверхностей, в том числе электронная, ионная и лазерная обработка; 9) газовые среды - раздел, включающий вопросы получения и поддержания оптимального состава и давления газа в газоразрядных приборах. Основные направления вакуумной Э. охватывают вопросы создания (ЭВП) следующих видов: электронных ламп (триодов, тетродов, пентодов и т. д.); ЭВП СВЧ (магнетронов, клистронов и т. д.), электроннолучевых приборов (кинескопов, осциллографических трубок и т. д.); фотоэлектронных приборов (фотоэлементов, фотоэлектронных умножителей), рентгеновских трубок; газоразрядных приборов (мощных преобразователей тока, источников света, индикаторов).

  Разделы и направления твердотельной Э. в основном связаны с полупроводниковой Э. Фундаментальные разделы последней охватывают следующие вопросы: 1) изучение свойств полупроводниковых материалов, влияние примесей на эти свойства; 2) создание в кристалле областей с различной проводимостью методами эпитаксиального выращивания (см. ) , , (имплантации), воздействием радиации на полупроводниковые структуры; 3) нанесение диэлектрических и металлических плёнок на полупроводниковые материалы, разработка технологии создания плёнок с необходимыми свойствами и конфигурацией; 4) исследование физических и химических процессов на поверхности полупроводников; 5) разработку способов и средств получения и измерения элементов приборов микронных и субмикронных размеров. Основные направления полупроводниковой Э. связаны с разработкой и изготовлением различных видов ;полупроводниковых диодов (выпрямительных, смесительных, параметрических, стабилитронов), усилительных и генераторных диодов (туннельных, лавинно-пролётных, диодов Ганна), транзисторов (биполярных и униполярных), тиристоров, оптоэлектронных приборов (светоизлучающих диодов, фотодиодов, фототранзисторов, оптронов, светодиодных и фотодиодных матриц), интегральных схем. К направлениям твердотельной Э. относятся также диэлектрическая электроника, изучающая электронные процессы в диэлектриках (в частности, в тонких диэлектрических плёнках) и их использование, например для создания диэлектрических диодов, конденсаторов; магнитоэлектроника, использующая магнитные свойства вещества для управления потоками электромагнитной энергии с помощью ферритовых вентилей, циркуляторов, фазовращателей и т. д. и для создания запоминающих устройств, в том числе на магнитных доменах; акустоэлектроника и пьезоэлектроника, рассматривающие вопросы распространения поверхностных и объёмных акустических волн и создаваемых ими переменных электрических полей в кристаллических материалах и взаимодействия этих полей с электронами в приборах с полупроводниково-пьезоэлектрической структурой (кварцевых стабилизаторах частоты, пьезоэлектрических фильтрах, ультразвуковых линиях задержки, акустоэлектронных усилителях и т. д.); криоэлектроника, исследующая изменения свойств твёрдого тела при глубоком охлаждении для построения малошумящих усилителей и генераторов СВЧ, сверхбыстродействующих вычислительных и запоминающих устройств; разработка и изготовление резисторов.

  Наиболее важные направления квантовой Э. - создание лазеров и .На основе приборов квантовой Э. строятся устройства для точного измерения расстояний ( ) ,квантовые стандарты частоты, квантовые гироскопы, системы оптической ,дальней космической связи, радиоастрономии. Энергетическое воздействие лазерного концентрированного излучения на вещество используется в промышленной технологии. Лазеры находят различное применение в биологии и медицине.

  Э. находится в стадии интенсивного развития; для неё характерно появление новых областей и создание новых направлений в уже существующих областях.

  Технология электронных приборов.Конструирование и изготовление электронных приборов базируются на использовании сочетания разнообразных свойств материалов и физико-химических процессов. Поэтому необходимо глубоко понимать используемые процессы и их влияние на свойства приборов, уметь точно управлять этими процессами. Исключительная важность физико-химических исследований и разработка научных основ технологии в Э. обусловлены, во-первых, зависимостью свойств электронных приборок от наличия примесей в материалах и веществ, сорбированных на поверхностях рабочих элементов приборов, а также от состава газа и степени разряжения среды, окружающей эти элементы; во-вторых, - зависимостью надёжности и долговечности электронных приборов от степени стабильности применяемых исходных материалов и управляемости технологии. Достижения технологии нередко дают толчок развитию новых направлений в Э. Общие для всех направлений Э. особенности технологии состоят в исключительно высоких (по сравнению с другими отраслями техники) требованиях, предъявляемых в электронной промышленности к свойствам используемых исходных материалов; степени защиты изделий от загрязнения в процессе производства; геометрической точности изготовления электронных приборов. С выполнением первого из этих требований связано создание многих материалов, обладающих сверхвысокими чистотой и совершенством структуры, с заранее заданными физико-химическими свойствами - специальных сплавов монокристаллов, керамики, стекол и др. Создание таких материалов и исследование их свойств составляют предмет специальной научно-технической дисциплины - электронного материаловедения. Одной из самых острых проблем технологии, связанных с выполнением второго требования, является борьба за уменьшение запылённости газовой среды, в которой проходят наиболее важные технологические процессы. В ряде случаев допустимая запылённость - не свыше трёх пылинок размером менее 1 мкмв 1 м 3 .О жёсткости требований к геометрической точности изготовления электронных приборов свидетельствуют, например, следующие цифры: в ряде случаев относительная погрешность размеров не должна превышать 0,001%; абсолютная точность размеров и взаимного расположения элементов интегральных схем достигает сотых долей мкм.Это требует создания новых, более совершенных методов обработки материалов, новых средств и методов контроля. Характерным для технологии в Э. является необходимость широкого использования новейших методов и средств: электроннолучевой, ультразвуковой и лазерной обработки и сварки, фотолитографии, электронной и рентгеновской литографии, электроискровой обработки, ионной имплантации, плазмохимии, молекулярной эпитаксии, электронной микроскопии, вакуумных установок, обеспечивающих давление остаточных газов до 10 -13 мм рт. ст.Сложность многих технологических процессов требует исключения субъективного влияния человека на процесс, что обусловливает актуальность проблемы автоматизации производства электронных приборов с применением ЭВМ наряду с общими задачами повышения производительности труда. Эти и другие специфические особенности технологии в Э. привели к необходимости создания нового направления в машиностроении - электронного машиностроения.

  Перспективы развития Э.Одна из основных проблем, стоящих перед Э., связана с требованием увеличения количества обрабатываемой информации вычислительными и управляющими электронными системами с одновременным уменьшением их габаритов и потребляемой энергии. Эта проблема решается путём создания полупроводниковых интегральных схем, обеспечивающих время переключения до 10 -11 сек;увеличения степени интеграции на одном кристалле до миллиона транзисторов размером 1-2 мкм;использования в интегральных схемах устройств оптической связи и оптоэлектронных преобразователей (см. ) , ;разработки запоминающих устройств ёмкостью несколько мегабит на одном кристалле; применения лазерной и электроннолучевой коммутации; расширения функциональных возможностей интегральных схем (например, переход от микропроцессора к микроЭВМ на одном кристалле); перехода от двумерной (планарной) технологии интегральных схем к трёхмерной (объёмной) и использования сочетания различных свойств твёрдого тела в одном устройстве; разработки и реализации принципов и средств