f ви задерживающие колебания с частотами выше f в ,верхних частот (ФВЧ), в которых, наоборот, пропускаются колебания с частотами выше некоторой f н и подавляются колебания ниже этой границы; полосно-пропускающие (ППФ), или полосовые, выделяющие колебания только в конечном интервале частот от f вдо f н ,полосно-задерживающие (ПЗФ), иначе режекторные фильтры, обратные ППФ по своим частотным характеристикам.

  Конструкция Э. ф., технология их изготовления, а также принцип действия определяются прежде всего рабочим диапазоном частот и требуемым видом частотной характеристики. В диапазоне от единиц кгцдо десятков Мгц(в отдельных случаях - до единиц Ггц) получили распространение LC-фильтры ( рис. 1 , а, б, г) ,содержащие дискретные элементы - катушки индуктивности и электрические конденсаторы; в диапазоне от долей гцдо сотен кгцнаиболее часто используют пассивные или активные RC-фильтры ( рис. 1 , б), выполненные на основе резисторов и конденсаторов (активный, кроме того, содержит ) .Действие LC-и RC-фильтров основано на использовании зависимости (ёмкостного и индуктивного) от частоты переменного тока. Для фильтрации сигналов, частота которых составляет доли гц,служат электротепловые фильтры (ЭТФ), конструктивно представляющие собой стержень с источником тепла и термоэлектрическим преобразователем; введение в ЭТФ усилителей с позволяет реализовать электротепловые ФВЧ и ППФ. Известны также электромеханические фильтры, выполненные на основе дисковых, цилиндрических, пластинчатых, гантельных и камертонных . В таких Э ф используется явление механического резонанса; применяются в диапазоне от нескольких кгцдо 1 Мгц. Высокими фильтрующими свойствами обладают пьезоэлектрические ППФ и ПЗФ, материалом для изготовления которых служит или (см. также ). Таковы, например, пьезокварцевые фильтры на дискретных элементах - кварцевых резонаторах в сочетании с катушками индуктивности и конденсаторами; монолитные многорезонаторные пьезокварцевые фильтры. Связь между резонаторами в последних осуществляется посредством акустических волн - объёмных (для фильтров, применяемых в диапазоне частот от нескольких Мгцдо десятков Мгц) либо поверхностных (в диапазоне от нескольких Мгцдо 1-2 Ггц) .Особую группу Э. ф. составляют цифровые фильтры ( рис. 2 ), часто выполняемые на интегральных схемах.В сверхвысоких частот техникеЭ. ф. реализуют на основе отрезков линий передачи ( коаксиальных кабелей, ,металлических и др.), являющихся по существу распределёнными .В диапазоне 100 Мгц -10 Ггцприменяют гребенчатые, шпилечные, встречно-стержневые, ступенчатые и др. Э. ф. из полосковых резонаторов ( рис. 3 ). В диапазоне от нескольких Ггцдо нескольких десятков Ггцраспространены волноводные Э. ф., представляющие собой волноводную секцию с повышенной критической частотой (волноводный ФВЧ), либо секцию, содержащую резонансные диафрагмы или (волноводный ППФ).

  Лит.:Белецкий А. Ф., Теоретические основы электропроводной связи, ч. 3, М., 1959; его же. Основы теории линейных электрических цепей, М., 1967; Знаменский А. Е., Теплюк И. Н., Активные RC-фильтры, М., 1970; Алексеев Л. В., Знаменский А. Е., Лоткова Е. Д., Электрические фильтры метрового и дециметрового диапазонов, М., 1976,

  А. Е. Знаменский.

Рис. 3. Электрические фильтры - гребенчатый (а) и шпилечный (б): ШР - штепсельный разъём; Р - резонаторы; ПК - подстроечные конденсаторы; К - корпус (со снятой крышкой).

Рис. 2. Структурная схема и временные диаграммы цифрового фильтра: УД - устройство дискретизации, преобразующее аналоговый сигнал x(t)в последовательность импульсов (решётчатую функцию) x*(t); АЦП - аналогово-цифровой преобразователь, с помощью которого мгновенные значения аналогового сигнала заменяются ближайшими дискретными уровнями Х(n Ч Т), где n = 0, 1, 2..., T- период следования импульсов; ВУ - вычислительное устройство, преобразующее последовательность чисел (уровней) Х(nТ)в выходную функцию Y(nТ); ЦАП - цифро-аналоговый преобразователь, в котором Y(nT)преобразуется в выходной аналоговый сигнал y(t).

Рис. 1. Принципиальные схемы некоторых электрических фильтров на катушках индуктивности, конденсаторах и резисторах - нижних частот (а), верхних частот (б), полосно-пропускающего (в), полосно-задерживающего (г) и их частотные характеристики (соответственно д, е, ж, з): L1, L2,..., Ln - катушки индуктивности; C1, С2 ,...,Сп - конденсаторы; R1, R2, Rn - резисторы; f - частота; fн, fв - граничные частоты.

Электрических сигналов усилитель

Электрических сигналов усили'тель,устройство, предназначенное для повышения мощности электрических .Поскольку усиливаемые электрические сигналы представляют собой изменения (колебания) напряжения или тока во времени, то Э. с. у. по существу является .Э. с. у. подразделяются на усилители низкой или высокой частоты, , и т. д. К Э. с. у. относятся также измерительные усилители (ИУ), которые входят в состав различной измерительной аппаратуры - электронных , , ,приборов, выполненных на основе , идр. ИУ позволяют повысить чувствительность и точность при измерениях электрических и неэлектрических величин. Основное требование, предъявляемое к ИУ, - постоянство коэффициента усиления, достигаемое посредством глубокой отрицательной .Кроме того, в ряде приборов (например, вольтметрах, осциллографах) ИУ должен обеспечивать их нормальную работу в широком диапазоне частот, иногда от 0 до нескольких Ггц.

  Лит.см. при ст. .

  Г. В. Войшвилло.

Электрическое взрывание

Электри'ческое взрыва'ние,осуществляется посредством ,включенных в электровзрывную сеть. Предложено в России П. Л. Шиллингом (1812) для взрывания пороховых зарядов при помощи разработанных им угольных запалов, которые в 1839 были заменены электровоспламенителями с металлическим мостиком накаливания. В 1840 для Э. в. были созданы гальванические батареи, в 1843 - первая взрывная машинка (магнитоэлектрическая).

  При Э. в. электродетонаторы соединяются между собой и с источником тока посредством проводов. В зависимости от условий взрывных работ применяют схемы последовательного, параллельного или смешанного соединения.

  Э. в. широко применяется в горном деле, строительстве и военно-инженерных работах. Современные средства и приборы для Э. в. обеспечивают безопасность Э. в. в условиях блуждающих токов, статического электричества, вблизи электролиний высокого напряжения, радиопередатчиков и радаров. Конденсаторные позволяют инициировать электровзрывные сети с числом электродетонаторов до 1500.

  Лит.:Лурье А. И., Электрическое взрывание зарядов, 2 изд., М., 1963.

Электрическое напряжение

Электри'ческое напряже'ние( U) между двумя точками электрической цепи или электрического поля, равно работе электрического поля по перемещению единичного положит, заряда из одной точки в другую. В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд; в этом случае Э. н. между двумя точками совпадает с между ними.

  Если поле непотенциально, то напряжение зависит от того пути, по которому перемещается заряд между точками. Непотенциальные силы, называются сторонними, действуют внутри любого источника (генератора, аккумулятора, гальванического элемента и др.). Под напряжением на зажимах источника тока всегда понимают работу электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника; в этом случае Э. н. равно разности потенциалов на зажимах источника и определяется Ома законом: U= IR-E,где I- сила тока, R -внутреннее сопротивление источника, а E- его электродвижущая сила (эдс). При разомкнутой цепи ( I =0) напряжение по модулю равно эдс источника. Поэтому эдс источника часто определяют как Э. н. на его зажимах при разомкнутой цепи.

  В случае Э .н. обычно характеризуется действующим (эффективным) значением, которое представляет собой среднеквадратичное за период значение напряжения. Напряжение на зажимах источника переменного тока или катушки индуктивности измеряется работой электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника или катушки. Вихревое (непотенциальное) электрическое поле на этом пути практически отсутствует, и напряжение равно разности потенциалов. Э. н. обычно измеряют .Единица Э. н. в Международной системе единиц - .

  Лит.:Тамм И. Е., Основы теории электричества, 9 изд., М., 1976, гл. 3 и 6; Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики), гл. 3, 7, 21.

  Г. Я. Мякишев.

Электрическое отопление

Электри'ческое отопле'ние,вид ,при котором обогрев помещений и поддержание в них заданной температуры обеспечиваются электрическими отопительными приборами, преобразующими электрическую энергию в тепловую. Наиболее распространены отопительные приборы, нагревательным элементом которых служит проводник с большим электрическим сопротивлением: открытый, непосредственно соприкасающийся с нагреваемым воздухом (например, в электрокаминах и рефлекторах), или закрытый, помещенный внутри электронагревателя обычно трубчатого типа и передающий тепло на поверхность отопительного прибора (радиатора) через циркулирующий в нём теплоноситель (например, жидкое масло). Приборы с закрытым нагревательным элементом исключают возможность ожогов и пригорания пыли.

  В современном строительстве находят применение отопительные приборы, в которых электрический ток нагревает теплоаккумулирующий материал; последний, в свою очередь, отдаёт тепло отапливаемому помещению. Такие приборы обычно потребляют электроэнергию в те часы суток, когда уменьшается её расход на другие нужды. В качестве теплоаккумуляционных отопительных приборов используют также строительные конструкции (например, железобетонные панели перекрытий), прокладывая в них электронагревательные кабели. В некоторых случаях для Э. о. применяют изделия из токопроводящей резины, токопроводящие обои и т. п.

  Существенное преимущество Э. о. перед другими видами отопления - простота и надёжность автоматического регулирования температуры, что позволяет более экономно расходовать электроэнергию. Однако стоимость электроэнергии ещё достаточно высока, поэтому Э. о. в СССР широкого распространения не получило.

  Лит.:Отопление и вентиляция, 3 изд., ч. 1, М., 1975; Ливчак И. Ф., Квартирное отопление, М., 1977.

  И. Ф. Ливчак.

Электрическое поле

Электри'ческое по'ле,частная форма проявления (наряду с магнитным полем) ,определяющая действие на электрический заряд силы, не зависящей от скорости его движения. Представление об Э. п. было введено в науку М. в 30-х гг. 19 в. Согласно Фарадею, каждый покоящийся заряд создаёт в окружающем пространстве Э. п. Поле одного заряда действует на другой заряд, и наоборот; так осуществляется взаимодействие зарядов (концепция близкодействия). Основная количественная характеристика Э. п. - Е,которая определяется как отношение силы F,действующей на заряд, к величине заряда q, Е = F/q. Э.п. в среде наряду с напряжённостью характеризуется вектором электрической индукции (см. электрическая и магнитная). Распределение Э. п. в пространстве наглядно изображается с помощью напряжённости Э. п. Силовые линии потенциального Э. п., порождаемого электрическими зарядами, начинаются на положительных зарядах и оканчиваются на отрицательных. Силовые линии вихревого Э. п., порождаемого переменным магнитным полем, замкнуты.

  Напряжённость Э. п. удовлетворяет принципу суперпозиции, согласно которому в данной точке пространства напряжённость поля Е,создаваемого несколькими зарядами, равна сумме напряжённостей полей ( E 1 , E 2 , E 2 ,...) отдельных зарядов: Е = E 1+ E 2+ E 3+... Суперпозиция полей вытекает из линейности .

  Лит.:Тамм И. Е., Основы теории электричества, 9 изд., М., 1976, гл. 1, 6; Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики), гл. 2, 13.

  Г. Я. Мякишев.

Электрическое поле атмосферы

Электри'ческое по'ле атмосфе'ры,стационарное электрическое поле, создаваемое в атмосфере, собственным зарядом Земли и зарядами, индуцированными в атмосфере. Характеристики Э. п. а. - напряжённость поля и его потенциал - зависят также от распределения ,а следовательно, от метеорологических факторов: туманов, облаков, осадков, метелей, запыления и ионизации атмосферы, вулканических извержений и т. д. Поэтому Э. п. а. в разных точках атмосферы различно и испытывает значительные изменения во времени. Вблизи земной поверхности напряжённость Э. п. а. зависит от формы рельефа - она усиливается около выступающих элементов ландшафта, строений, высотных мачт и ослабевает во впадинах рельефа, на улицах городов и т. д. См. .

  Лит.:Имянитов И, М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965; Имянитов И. М., Чубарина Е. В., Шварц Я. М., Электричество облаков, Л., 1971; Чалмерс Дж. А., Атмосферное электричество, пер. с англ., Л., 1974.

  И. М. Имянитов.

Электрическое поле Земли

Электри'ческое по'ле Земли',естественное электрическое поле Земли как планеты, которое наблюдается в твёрдом теле Земли, в морях, в атмосфере и магнитосфере. Э. п. 3. обусловлено сложным комплексом геофизических явлений. Распределение потенциала поля несёт в себе определённую информацию о строении Земли, о процессах, протекающих в нижних слоях атмосферы, в ионосфере, магнитосфере, а также в ближнем межпланетном пространстве и на Солнце.

  Методика измерения Э. п. 3. определяется той средой, в которой наблюдается поле. Наиболее универсальный способ - определение разности потенциалов при помощи разнесённых в пространстве электродов. Этот способ применяется при регистрации земных токов (см. ) ,при измерении с летательных аппаратов электрического поля атмосферы, а с космических аппаратов - магнитосферы и космического пространства (при этом расстояние между электродами должно превышать в космической плазме, т. е. составлять сотни метров).

  Существование электрического поля в атмосфере Земли связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности Земли и в воздухе; электрических разрядов в атмосфере и т. д. Многие атмосферные процессы: конвекция образование облаков, осадки и другие - приводят к частичному разделению разноимённых зарядов и возникновению атмосферных электрических полей (см. ) .Относительно атмосферы поверхность Земли заряжена отрицательно.

  Существование электрического поля атмосферы приводит к возникновению токов, разряжающих электрический «конденсатор» атмосфера - Земля. В обмене зарядами между поверхностью Земли и атмосферой значительную роль играют осадки. В среднем осадки приносят положительных зарядов в 1,1-1,4 раза больше, чем отрицательных. Утечка зарядов из атмосферы восполняется также за счёт токов, связанных с молниями и отеканием зарядов с остроконечных предметов (острий). Баланс электрических зарядов, приносимых на земную поверхность площадью 1 км 2за год, можно характеризовать следующими данными:

  Ток проводимости          + 60 к/(км 2·год)

  Токи осадков                  + 20       »         

  Разряды молний           – 20       »        

  Токи с остриёв              – 100     »        

  __________________________

  Всего        – 40 к/(км 2·год)

  На значительной части земной поверхности - над океанами - токи с остриёв исключаются, и здесь будет положительный баланс. Существование статического отрицательного заряда на поверхности Земли (около 5,7Ч10 5 к) говорит о том, что эти токи в среднем сбалансированы.

 Электрические поля в ионосфере обусловлены процессами, протекающими как в верхних слоях атмосферы, так и в магнитосфере. Приливные движения воздушный масс, ветры, турбулентность - всё это является источником генерации электрического поля в ионосфере благодаря эффекту гидромагнитного динамо (см. ) Примером может служить солнечно-суточная электрическая токовая система, которая вызывает на поверхности Земли суточные вариации магнитного поля. Величина напряжённости электрического поля в ионосфере зависит от местоположения точки наблюдения, времени суток, общего состояния магнитосферы и ионосферы, от активности Солнца. Она колеблется от нескольких единиц до десятков мв/ м,а в высокоширотной ионосфере достигает ста и более мв/м.При этом сила тока доходит до сотен тысяч ампер. Из-за высокой электропроводности плазмы ионосферы и магнитосферы вдоль силовых линий магнитного поля Земли электрического поля ионосферы переносятся в магнитосферу, а магнитосферные поля в ионосферу.

 Одним из непосредственных источников электрического поля в магнитосфере является .При обтекании магнитосферы солнечным ветром возникает эдс Е= vґ b ^, где b ^ -нормальная компонента магнитного поля на поверхности магнитосферы, v -средняя скорость частиц солнечного ветра.

  Эта эдс вызывает электрические токи, замыкающиеся обратными токами, текущими поперёк хвоста магнитосферы (см. ) .Последние порождаются положительными пространственными зарядами на утренней стороне хвоста магнитосферы и отрицательными - на его вечерней стороне. Величина напряженности электрического поля поперёк хвоста магнитосферы достигает 1 мв/ м.Разность потенциалов поперёк полярной шапки составляет 20-100 кв.

  Ещё один механизм возбуждения эдс в магнитосфере связан с коллапсом противоположно направленных силовых линий магнитного поля в хвостовой части магнитосферы; освобождающаяся при этом энергия вызывает бурное перемещение магнитосферной плазмы к Земле. При этом электроны дрейфуют вокруг Земли к утренней стороне, протоны - к вечерней. Разность потенциалов между центрами эквивалентных объемных зарядов достигает десятков киловольт. Это поле противоположно по направлению полю хвостовой части магнитосферы.

  С дрейфом частиц непосредственно связано существование магнитосферного кольцевого тока вокруг Земли. В периоды и электрические поля и токи в магнитосфере и ионосфере испытывают значительные изменения.

  Магнитогидродинамические волны, генерируемые в магнитосфере, распространяются по естественным волноводным каналам вдоль силовых линии магнитного поля Земли. Попадая в ионосферу, они преобразуются в электромагнитные волны, которые частично доходят до поверхности Земли, а частично распространяются в ионосферном волноводе и затухают, На поверхности Земли эти волны регистрируются в зависимости от частоты колебаний либо как магнитные пульсации (10 -2-10 гц), либо как очень низкочастотные волны (колебания с частотой 10 2-10 4 гц).

  Переменное магнитное поле Земли, источники которого локализованы в ионосфере и магнитосфере, индуцирует электрическое поле в земной коре. Напряжённость электрического поля в приповерхностном слое коры колеблется в зависимости от места и электрического сопротивления пород в пределах от нескольких единиц до нескольких сотен мв/ км,а во время магнитных бурь усиливается до единиц и даже десятков в/ км.Взаимосвязанные переменные магнитное и электрическое поля Земли используют для электромагнитного зондирования в разведочной геофизике, а также для глубинного зондирования Земли.

  Определённый вклад в Э. н. З. вносит контактная разность потенциалов между породами различной электропроводности (термоэлектрический, электрохимический, пьезоэлектрический эффекты). Особую роль при этом могут играть вулканические и сейсмические процессы.

  Электрические поля в морях индуцируются переменным магнитным полем Земли, а также возникают при движении проводящей морской воды (морских волн и течений) в магнитном поле. Плотность электрических токов в морях достигает 10 -6 а/м 2 .Эти токи могут быть использованы как естественные источники переменного магнитного поля для магнитовариационного зондирования на шельфе и в море.

  Вопрос об электрическом заряде Земли как источнике электрического поля в межпланетном пространстве окончательно не решён. Считается, что Земля как планета электрически нейтральна. Однако эта гипотеза требует своего экспериментального подтверждения. Первые измерения показали, что напряженность электрического поля в околоземном межпланетном пространстве колеблется в пределах от десятых долей до нескольких десятков мв/ м.

  Лит.:Тихонов А. Н. Об определении электрических характеристик глубоких слоев земной коры, «Докл. АН СССР», 1950, т. 73, № 2; Тверской П. Н., Курс метеорологии, Л., 1962; Акасофу С. И., Чепмен С., Солнечно-земная физика, пер. с англ., ч. 2, М., 1975.

  Ю. П. Сизов.

Электрическое смещение

Электри'ческое смеще'ние,то же, что вектор электрической индукции (см. электрическая и магнитная). Термин имеет историческое происхождение (введён Дж. К. ) ,в современной физической литературе не применяется.

Электрическое сопротивление

Электри'ческое сопротивле'ние

  1) величина, характеризующая противодействие электрической цепи (или её участка) ,измеряется в . Э. с. обусловлено передачей или преобразованием электрической энергии в другие виды: при необратимом преобразовании электрической энергии (преимущественно в тепловую) Э. с. называется ; Э. с., обусловленное передачей энергии электрическому или магнитному полю (и обратно), называется .

 При Э с цепи (обозначается R) в соответствии с равно отношению приложенного к ней напряжения Uк силе протекающего тока I(при отсутствии в цепи других источников тока или эдс).

  При (синусоидальном) Э. с. цепи равно , где r- активное сопротивление, а x-реактивное сопротивление цепи, определяемое наличием в цепи и (см. , ) ;величина Zназывается полным электрическим сопротивлением.

  Активное сопротивление элемента электрической цепи зависит как от формы элемента и его размеров, так и от материала, из которого он изготовлен. Для однородного по составу элемента в виде бруска, пластины, трубки или проволоки при постоянном его сечении Sи длине l, , где r - удельное сопротивление, характеризующее материал элемента; измеряется в ом· м, ом· смили .По удельному сопротивлению все вещества делятся на проводники (см. , ) ,полупроводники (см. , ) ,изоляторы (см. , ) .При очень низких температурах Э. с. некоторых металлов и сплавов падает до нуля (см. , ) .Часто вместо удельного сопротивления, особенно при рассмотрении физической природы Э. с., вводят величину, обратную удельному Э. с.,- .

 2) Термин «Э. с.» в обиходе часто употребляют применительно к или какому-либо другому элементу, присоединяемому к электрической цепи, например для ограничения или регулирования силы тока в ней (см. , , ) .

  Лит.см. при ст. .

Электричество

Электри'чество,совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Взаимодействие осуществляется с помощью (в случае неподвижных электрических зарядов - электростатического поля; см. ) .Движущиеся заряды ( ) наряду с электрическим возбуждают и магнитное поле, т. е. порождают электромагнитное поле, посредством которого осуществляется