) .Длительное прохождение тока требует подачи реагирующего вещества из объёма раствора к поверхности электрода и отвода продуктов реакции, что достигается благодаря диффузии; необходимо также учитывать миграцию заряженных частиц под действием электрического поля. Подача вещества ускоряется при размешивании жидкости, т. е. при конвективной диффузии. Ток вызывает концентрационную поляризацию (см. ) .Помимо стадий переноса заряда и диффузионных стадий суммарный процесс может включать чисто химические и другие стадии, например возникновение зародышей и включение разрядившихся атомов в кристаллическую решётку, выделение пузырьков газа и т. д. Накопление промежуточных продуктов на поверхности электрода сверх их равновесной концентрации, как и замедленность процессов диффузии и стадий разряда, приводит к поляризации электрода и перенапряжению. Если при практически используемых плотностях тока перенапряжение пренебрежимо мало, то это свидетельствует об обратимости процесса, степень которой в целом тем выше, чем больше ток обмена между исходными веществами и конечными продуктами реакции при равновесном потенциале. Обратимость многостадийного процесса предполагает обратимость всех его стадий. Часто необратимость процесса определяется медленностью одной из стадий, которая и определяет скорость процесса в целом. Для выяснения механизма электрохимических процессов применяются разнообразные формы электрических измерений: определение зависимости потенциала от плотности постоянного тока, измерение полного электрического сопротивления, определение зависимости потенциала или тока от времени при различно запрограммированном изменении во времени второй переменной, а также нелинейные методы. Одновременно исследуются состояние поверхности электрода (с использованием оптических методов), пограничное натяжение и др.

  Электрохимическая кинетика лежит в основе современной теории коррозии металлов; в растворах электролитов коррозия является результатом одновременного протекания двух или более электрохимических процессов. Для развития электрохимической кинетики большое значение имело создание точных и удобных экспериментальных методов исследования механизма электродных процессов, в особенности полярографического метода, предложенного Я. (см. ) .

  Практическое значение Э.Электрохимические методы широко используются в различных отраслях промышленности. В химической промышленности это электролиз - важнейший метод производства хлора и щелочей, многочисленных окислителей, получение фтора и фторорганических соединений. Возрастающее значение приобретает самых различных химических соединений. На электрохимических методах основано получение алюминия, магния, натрия, лития, бериллия, тантала, титана, цинка, рафинирование меди (см. ) .Водород получают электролизом воды в относительно ограниченных масштабах, однако по мере использования запасов природного топлива и увеличения производства электроэнергии значение этого метода получения водорода будет возрастать. В различных отраслях техники применяются защитные и декоративные гальванические покрытия, а также гальванические покрытия с заданными оптическими, механическими и магнитными свойствами. Анодное растворение металлов успешно заменяет механическую обработку твёрдых и сверхтвёрдых металлов и сплавов. В технике всё шире применяются электрохимические преобразователи информации (см. ) .Большое значение имеет скорейшее решение проблемы .Быстро растущий спрос на автономные источники электроэнергии для техники, освоения космоса и бытовых применений стимулирует поиски новых электрохимических систем повышенной удельной мощности, энергоёмкости и сохранности. Всё более широкое распространение получают различные , .

 Понимание важнейших биологических процессов, например усвоения и использования энергии пищи, распространения нервного импульса, восприятия зрительного образа, невозможно без учёта электрохимических звеньев, связанных в первую очередь с функционированием (см. . , ) .Решение этих проблем ставит перед теоретической Э. новые задачи, а в будущем должно оказать существенное влияние и на медицинскую практику.

  Лит.:Итоги науки и техники. Сер. Электрохимия, в. 1-13, М., 1966-78; Скорчеллетти В. В., Теоретическая электрохимия, 4 изд., Л., 1974; Прикладная электрохимия, 3 изд., Л., 1974; Дамаскин Б. Б., Петрий О. А., Введение в электрохимическую кинетику, М., 1975; Антропов Л. И., Теоретическая электрохимия, 3 изд., М., 1975; Прикладная электрохимия, 2 изд., М., 1975; Корыта И., Дворжак И., Богачкова В., Электрохимия, М., 1977; Левич В. Г., Физико-химическая гидродинамика, 2 изд., М., 1959; The encyclopedia of electrochemistry, N. Y. - L [19641; Encyclopedia of electrochemistry of the elements, v. 1-, N. Y., 1973.

  А. Н. Фрумкин.

«Электрохимия»

«Электрохи'мия»,ежемесячный журнал, орган Отделения общей и технической химии АН СССР. Издаётся в Москве с 1965. Основан А. Н. .Публикует оригинальные статьи, обзоры, краткие сообщения и рефераты депонированных в ВИНИТИ статей по кинетике электродных процессов, электросинтезу, термодинамике растворов и другим разделам электрохимии. Помещает также рецензии на книги и отчёты о симпозиумах и конференциях. Тираж (1978) около 2500 экз.

Электрохирургия

Электрохирурги'я(от и ) ,методы хирургического лечения при помощи воздействия на ткани током высокой частоты (сотни тыс. колебаний в сек) с резким повышением температуры в точке контакта активного электрода с тканями. Различают электротомию -разделение и иссечение тканей, и электрокоагуляцию (см. ) -прижигание (свёртывание белковых веществ) тканей. Рассечение тканей при помощи электроножа не сопровождается кровотечением, т. к. происходит свёртывание крови по ходу разреза. Методы Э. применяют при операциях на головном мозге (бескровное операционное поле позволяет выполнить хирургическое вмешательство под контролем зрения), а также в глазной хирургии, при удалении кожных опухолей, в стоматологии и в других областях медицины.

Электроход

Электрохо'д,самоходное судно, у которого электрический привод движителей получает энергию от собственной электростанции, аккумуляторных батарей или внешней электрической сети. По типу первичных двигателей (турбина, дизель) различают турбо-Э. и дизель-Э. Основное преимущество Э. заключается в способности электродвигателей плавно изменять скорость вращения гребного вала и быстро менять направление его вращения, что улучшает манёвренность Э. Использование в качестве главных энергетических установок высокооборотных двигателей внутреннего сгорания, работающих в постоянном режиме, снижает эксплуатационные износы. Кроме того, использование электродвигателей и электрогенераторов позволяет размещать их наиболее рационально и независимо и отказаться от громоздких редукторов. Однако большие потери электрической энергии при передаче (10-15%), относительная сложность и дороговизна энергетической установки в целом и повышенные затраты труда на ремонт и эксплуатацию относительно других энергетических систем препятствуют распространению Э. Число Э. в общем количестве судов (с регистровой вместимостью более 100 т) мирового гражданского морского флота составляет около 1,8% (в основном суда ледового плавания, буксирные суда, паромы). Развитие судовых ядерных энергетических установок открывает широкие возможности развития Э.

Электрошлаковая печь

Электрошла'ковая печь,агрегат для проведения .Э. п. имеют механизмы для подачи расходуемого электрода в шлаковую ванну, поддон, на котором установлен кристаллизатор для формирования слитка, или механизмы для перемещения кристаллизатора (и слитка с поддоном) во время плавки ( рис. 1 ). Э. п. питаются переменным током промышленной или пониженной частоты или (редко) постоянным током. Мощность печного трансформатора достигает 5-10 Мва.

 Типичная Э. п. - агрегат периодического действия; имеются «мини-печи» непрерывного действия. Различают одно- и трёхфазные, моно- и бифилярные, одно- и многоэлектродные, одно- и многопозиционные, специализированные и универсальные (многоцелевые) Э. п. Шлак, предварительно расплавленный во флюсоплавильной электропечи с графитовой футеровкой и графитовым электродом, заливают в кристаллизатор сифонным способом или сверху, включают электрический ток и начинают подавать расходуемый электрод в шлаковую ванну. Процесс ведётся в автоматическом режиме по программатору. После наплавления слитка заданной длины подпитывают его головную часть, выключают ток, сливают из кристаллизатора жидкий шлак, затем поднимают кристаллизатор и раздевают слиток, снимают огарок электрода и устанавливают в электрододержатель новый расходуемый электрод - печь готова к следующей плавке. Удельный расход электроэнергии на Э. п. 1000-1500 квт· ч/т,расход флюса до 5% массы слитка, расход воды на охлаждение кристаллизатора, поддона, электрододержателя, токоведущих частей до 500 м 2 /ч.

 Первые в мире промышленные Э. п. были спроектированы и изготовлены институтом электросварки им. Е. О. Патона АН УССР; в 1958 Э. п. введены в эксплуатацию на заводе «Днепроспецсталь» и Новокраматорском машиностроительном заводе. Современная однофазная четырёхэлектродная бифилярная Э. п. для выплавки листовых слитков массой до 40 т(толщиной 500 мм,шириной 2500 мми высотой более 4 м) имеет 2 печных трансформатора мощностью по 3500 ква,работает по схеме встречного движения электродов и подвижного короткого уширенного в верхней части кристаллизатора, снабжена системами продувки шлаковой и металлической ванн газовыми смесями, вторичного охлаждения и обогрева донной части слитка ( рис. 2 ). Время выплавки 40-тонного слитка до 16 ч.Производительность Э. п. G( кг/ч) подсчитывается по эмпирической формуле G = D, где D -сторона квадрата (блюминговый слиток), широкая грань (слябинговый слиток), диаметр круглого слитка сплошного сечения или наружный диаметр полого слитка ( мм) .В СССР действуют Э. п. многих типов в специализированных цехах металлургических заводов (масса сортового слитка до 8 т,листового до 20-40 т) и заводов тяжёлого машиностроения (кузнечные слитки до 200 т) .Вслед за СССР Э. п. были построены в Великобритании, ФРГ, США и Японии. По советской лицензии Э. п. сооружены и эксплуатируются во Франции, Японии, Швеции, НРБ, ПНР, СРР, СФРЮ и других странах. В СССР, США и ФРГ создаются автоматизированные системы управления (АСУ) работой Э. п.

  Лит.:Электрошлаковые печи, К., 1976.

  Б. И. Медовар.

Рис. 2. Электрошлаковая печь для выплавки листовых слитков: 1 - трансформаторы; 2 - расходуемые электроды: 3 - кристаллизатор; 4 - слитки.

Рис. 1. Схемы конструкций электрошлаковых печей: а - с неподвижными слитком и кристаллизатором и опускающимся по мере оплавления электродом; б - с неподвижным кристаллизатором и опускающимися по ходу плавки слитком и электродом: в - с неподвижным слитком, поднимающимся по ходу плавки кристаллизатором и опускающимся электродом.

Электрошлаковая сварка

Электрошла'ковая сва'рка,шлаковая электросварка; см. .

Электрошлаковый переплав

Электрошла'ковый перепла'вэлектрометаллургический процесс, при котором металл (расходуемый электрод) переплавляется в ванне электропроводного синтетического шлака под действием тепла, выделяющегося в шлаке при прохождении через него электрического тока. Э. п., существенно повышающий качество металлов и сплавов, разработан в начале 50-х гг. 20 в. в институте электросварки им. Е. О. Патона АН УССР на основе электрошлакового сварочного процесса (см. ) .Расходуемый электрод представляет собой отливку, прокатное изделие или поковку из металла, полученный в мартеновской, дуговой, вакуумноиндукционной печах или кислородном конвертере. В процессе Э .п. температура шлака, состоящего из CaF2, CaO, SiO 2, Al 2O 3и других компонентов, превышает 2500°С. Капли жидкого электродного металла проходят через слой шлака и образуют под ним слой металла, из которого при последовательном затвердевании в водоохлаждаемом кристаллизаторе формируется слиток ( рис. ).

  По мере оплавления расходуемый электрод подаётся в шлаковый слой, непрерывно восполняя объём кристаллизующегося металла. Шлак является рафинирующей средой. Электрошлаковое рафинирование металла происходит в плёнке жидкого металла на оплавляющемся конце электрода, при прохождении капель металла через шлаковую ванну и на поверхности раздела шлаковой и металлической ванн.

  Изменяя состав шлака и температурный режим процесса, осуществляют избирательное рафинирование металла. В результате Э. п. содержание серы снижается в 2-5 раз, кислорода и неметаллических включений в 1,5-2,5 раза. Слиток характеризуется плотной направленной микроструктурой, свободен от дефектов литейного и усадочного происхождения. Химическая и структурная однородность слитка обусловливает изотропность физических и механических свойств металла в литом и деформированном виде. Способом Э. п. получают слитки массой от десятков гдо 200 тпрактически любой нужной формы, определяемой формой кристаллизатора. Наряду с передельными (для прокатки сортовых профилей, труб и листа) и кузнечными (для ковки, прессования и штамповки) слитками производят фасонные отливки (коленчатые валы, корпуса запорной арматуры, сосуды давления, зубчатые колёса и др.). Э. п. применяется в чёрной металлургии (шарикоподшипниковые, конструкционные, нержавеющие, инструментальные стали, жаропрочные сплавы), цветной металлургии (хромистая бронза, никелемедные сплавы), тяжёлом машиностроении (теплоустойчивые, высокопрочные штамповые, валковые стали). Процесс запатентован и используется по советской лицензии во многих странах.

  Лит:Электрошлаковый переплав, М., 1963; Латаш Ю. В., Медовар Б. И., Электрошлаковый переплав, М., 1970.

  Б. И. Медовар.

Схема электрошлакового переплава с одним (а) и двумя (б) расходуемыми электродами: 1 - расходуемый электрод; 2 - шлаковая ванна; 3 - металлическая ванна; 4 - слиток.

Электроэнергетика

Электроэнерге'тика,ведущая составляющая часть ,обеспечивающая хозяйства страны на основе рационального производства и распределения электроэнергии. Э. имеет важное значение в хозяйстве любой промышленно развитой страны, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электроэнергии является одновременность её генерирования и потребления.

  Основная часть электроэнергии вырабатывается крупными :тепловыми (ТЭС), гидравлическими (ГЭС), атомными (АЭС). Электростанции, объединённые между собой и с потребителями высоковольтными (ЛЭП), образуют .

 В Советском Союзе вопросы развития Э. всегда были в числе основных вопросов развития народного хозяйства. Советская Э. занимает передовые позиции в мире.

  Электрификация страны базируется, с одной стороны, на научных достижениях, с другой - на успехах промышленности. В начале 20-х гг. 20 в. в плане были четко сформулированы две ведущие тенденции Э.: концентрация производства электроэнергии путём сооружения крупных районных электростанций и централизация распределения электроэнергии. Становление Э. определялось, с одной стороны, созданием электростанций и топливной базы для них, сооружением линий электропередачи и разработкой электрической аппаратуры и энергетического оборудования, с другой - развитием теоретических основ электротехники - необходимого условия для научного обоснования энергетического строительства. В этих целях были осуществлены важные исследования в области техники высоких напряжении, теории устойчивости электрических систем, разработаны методы расчёта мощных генераторов, трансформаторов и других электрических машин, электропривода, электрических аппаратов; создана электротехнология, внедрено автоматизированное управление электрическими системами, использованы методы физического и математического моделирования при расчёте и изучении электроэнергетических систем.

  В СССР основные научные исследования в области Э. проводятся в Государственном научно-исследовательском энергетическом институте им. Г. М. Кржижановского (ЭНИН, Москва), НИИ Энергосеть-проект (Москва), Всесоюзном электротехническом институте им. В. И. Ленина (ВЭИ, Москва), Всесоюзном НИИ постоянного тока (НИИПТ, Ленинград), Всесоюзном НИИ источников тока (ВНИИТ, Москва), Всесоюзном НИИ электромашиностроения (Ленинград), Сибирском энергетическом институте СО АН СССР (Иркутск), институте электродинамики АН УССР (Киев), многих вузах (Московском энергетическом институте, Ленинградском политехническом и электротехническом институтах) и др. Существенный вклад в развитие Э. внесли советские учёные Г. М. Кржижановский, А. В. Винтер, Р. Э. Классон, В. Ф. Миткевич, М. П. Костенко, Л. Р. Нейман, М. А. Шателен, А. А. Горев, П. С. Жданов, С. А. Лебедев, К. А. Круг, Г. Н. Петров и др., а также И. А. Глебов, Д. Г. Жимерин, Н. С. Лидоренко, М. В. Костенко, В. И. Попков, В. М. Тучкевич и многие другие.

  На базе научных достижений Э. созданы и ,которые производят практически все основные виды электротехнического и энергетического оборудования: котло- и турбоагрегаты, электродвигатели и электромашинные генераторы, трансформаторы, электрические аппараты, средства автоматики и защиты, оборудование для ЛЭП. Значительно возрос уровень проектирования энергетических объектов и эксплуатации электроэнергетических систем, разработаны методы достижения совместной устойчивой работы электрических сетей большой протяжённости. Принцип концентрации реализован при сооружении тепловых электростанций единичной мощностью до 3 Гвт(Криворожская ГРЭС-2 и др.), гидроэлектростанций мощностью 4-6 Гвт(Братская, Красноярская и др.), атомных электростанций мощностью 4 Гвт(Ленинградская) и др.

  Развитие Э. предусматривает оптимальное соотношение между мощностью тепловых и гидроэлектрических станций. В СССР на долю ТЭС приходится свыше 80% всей производимой электроэнергии. В европейских районах страны ГЭС всё больше используют в качестве манёвренных и резервных источников электроэнергии, позволяющих покрывать пики электрической нагрузки в течение суток и обеспечивающих устойчивую работу электроэнергетических хозяйства страны. В Сибири и Средней Азии осуществляется и предусматривается сооружение мощных каскадов ГЭС, важная задача которых - комплексное использование водных ресурсов в целях удовлетворения нужд как Э., так и водного транспорта, водоснабжения, ирригации, рыбного хозяйства. Особенность электроэнергетики СССР - комбинированное производство электроэнергии и тепла на .Более 1/ 3общей потребности в тепле удовлетворяется за счёт теплофикации, что позволяет существенно улучшить санитарное состояние воздушного бассейна городов, получить значительную экономию топлива. Создание материальной базы Э. идёт, с одной стороны, в направлении строительства АЭС, ТЭЦ, работающих на органическом топливе, манёвренных ТЭС и ГЭС, а также гидроаккумулирующих установок в Европейской части страны, и, с другой стороны,- по пути расширения строительства ТЭС и ГЭС в восточных районах, где для производства электроэнергии выгодно использовать дешёвые гидроресурсы и угли Северного Казахстана и Сибири. Наряду с этим проводятся исследования и промышленные эксперименты в области новых методов получения электроэнергии (реакторы на быстрых нейтронах, магнитогидродинамические генераторы и др.). Развитие принципа централизации электроснабжения логически привело вначале к образованию районных, затем 9 объединённых электроэнергетических систем и впоследствии к формированию Единой электроэнергетической системы (ЕЭЭС) Европейской части СССР, а затем всей страны, как важнейшей основы планомерной электрификации. С 1976 ЕЭЭС СССР работает совместно с электроэнергетическими системами стран - членов СЭВ. К середине 70-х гг. она имела общую установленную мощность (в пределах СССР) более 150 Гвтпри общей мощности электростанций СССР около 220 Гвт.

 Для централизации электроснабжения потребовалось строительство новых высоковольтных (напряжением 35 кви выше) линий электропередачи. Их протяжённость возросла со 167 тыс. кмв 1960 почти до 600 тыс. кмв 1975. Централизация производства электроэнергии в 1976 составила 97% от общего производства. Получили развитие также автономные электрические системы, как правило, - специального назначения (например, космические, судовые и др.). Э. занимает ведущее место в энергетике страны, является материальной основой роста обществ. производительности труда. Производство электроэнергии к 1977 превысило 1 триллион квт· ч(см. ) .

 Постоянное повышение доли электроэнергии в конечном потреблении энергии (с 5-6% в 1960 до 15-18% в 1975) является важной тенденцией развития Э. Так, за 20 лет (начало 50-х - начало 70-х гг.) уровень потребления подведённой электроэнергии по всем группам процессов (силовым, высокотемпературным и др.) повысился на 350 млрд. квт· ч,прирост полезного потребления электроэнергии составил 200 млн. Гкал,что обеспечило экономический эффект в 12-13 млрд. руб. К 1977 в СССР завершена экономически обоснованная электрификация силовых стационарных процессов. Возросло использование электроэнергии в промышленности на технологические нужды (в т. ч. особенно в станкостроении, с.-х. машиностроении, электротехнической и химической промышленности и в цветной металлургии), на ж.-д. транспорте (доля перевозок по электрифицированным железным дорогам составила около 50%); на нужды городского и трубопроводного транспорта, с.-х. производства, быта.

  В зарубежных социалистических странах развитие Э. характеризуется увеличением объёмов производства Э. нарастающими темпами ( см. табл. 3 в ст. ) .Производство электроэнергии на душу населения в год в 1975 составило от 1,9 тыс. квт· ч(ВНР) до 5 тыс. квт· ч(ГДР).

  Электроэнергетические системы стран - членов СЭВ объединены электрическими связями и образуют объединённую электроэнергетическую систему с общим оперативно-диспетчерским центром управления. Такое объединение даёт определённые преимущества в повышении надёжности и манёвренности электроснабжения, позволяет более эффективно использовать энергетические ресурсы. В странах СЭВ созданы развитая электротехническая промышленность и энергетическое машиностроение, на базе которых развивается социалистическая интеграция производства. В 1974 в странах СЭВ выпущено электродвигателей переменного тока (единичной мощностью более 0,25 квт) на общую мощность около 25 Гвт.Наряду с этим совершенствуется и расширяется производство электрогенераторов, электротехнического оборудования, средств автоматики и т. п.

  В капиталистических и развивающихся странах развитие Э. происходит далеко не одинаково. Так, в основных капиталистических странах производство электроэнергии хотя и растет, но замедленными темпами; разрыв в уровнях развития Э. основных капиталистических и развивающихся стран крайне велик. На долю США, стран Западной Европы и Японии приходится около 2/ 3мирового производства электроэнергии, а без социалистических стран их доля повышается примерно до 4/ 5. В развивающихся же странах, где проживает почти 3/ 4всего населения земного шара, производится немногим более 15% мирового потребления электроэнергии. В США использование электроэнергии составляет в промышленности около 40%, в коммунально-бытовом секторе - до 40-50% Это объясняется преобладанием малоэтажной застройки и тёплым климатом. По этим же причинам существенно ограничено централизованное теплоснабжение и увеличен расход электроэнергии на кондиционирование, крое обычно сочетается с отоплением. В странах Западной Европы доля электроэнергии, используемой для нужд коммунально-бытового сектора, достаточно высока - до 30%, что объясняется также сравнительно слабо развитым централизованным теплоснабжением. Характерная особенность Э. капиталистических стран - начало массового строительства АЭС, широкое внедрение высокоманёвренного оборудования (газотурбинных и гидроаккумулирующих установок, паротурбинных блоков, работающих на докритических параметрах пара, и т. п.).

  Состояние Э. в различных странах характеризуется расходом электроэнергии на душу населения, который в значительной мере определяется спецификой энергетических ресурсов страны, электроёмкостью промышленности, уровнем развития производства. Так, в 1975 наиболее высокий уровень производства электроэнергии на душу населения был в Норвегии - 19,8 тыс.