После короткого переходного процесса самостоятельный газовый разряд становится стационарным. Обычно такой разряд осуществляют в закрытом изолирующем сосуде (стеклянном или керамическом). Ток в газе течёт между двумя электродами: отрицательным катодом и положительным анодом.
Одним из основных типов газового разряда, формирующимся, как правило, при низком давлении и малом токе (участок в на рис. 3 ), является .Главные четыре области разрядного пространства, характерные для тлеющего разряда, это: 1- катодное тёмное пространство; 2 -тлеющее свечение; 3 -фарадеево тёмное пространство; 4 -положительный столб. Области 1- 3находятся вблизи катода и образуют катодную часть разряда, в которой происходит резкое падение потенциала ( ) ,связанное с большой концентрацией положительных ионов на границе областей 1- 2.В области 2электроны, ускоренные в области 1, производят интенсивную ударную ионизацию. Тлеющее свечение обусловлено ионов и электронов в нейтральные атомы или молекулы. Для положительного столба разряда вследствие постоянной и большой концентрации электронов характерны незначительное падение потенциала в нём, свечение, вызываемое возвращением возбуждённых молекул (атомов) газа в основное состояние (состояние с наинизшей возможной энергией), и большая электропроводность.
Стационарность в положительном столбе объясняется взаимной компенсацией процессов образования и потерь заряженных частиц. Образование таких частиц происходит при ионизации атомов и молекул в результате столкновений с ними электронов. К потерям заряженных частиц приводит к стенке сосуда, ограничивающего разрядный объём, и следующая за этим рекомбинация. Диффузионные потоки, направленные не к стенке, а вдоль разрядного тока, часто ведут к образованию в положительном столбе своеобразных «слоев» (обычно движущихся).
При увеличении разрядного тока обычный тлеющий разряд становится аномальным ( рис. 3 ) и начинается стягивание (контракция) положительного столба. Столб отрывается от стенок сосуда, в нём начинает происходить дополнительный процесс потери заряженных частиц (рекомбинация в объёме). Предпосылкой этого является высокая плотность заряженных частиц. При дальнейшем повышении разрядного тока газ нагревается настолько, что становится возможной его термическая ионизация. Столкновения между атомами или молекулами в этом случае столь сильны, что происходит отщепление электронов. Такой разряд называется .С возрастанием тока электропроводность столба повышается, вольтамперная характеристика дугового разряда приобретает падающий характер ( рис. 3 ). Следует отметить, что хотя он может «гореть» в широком диапазоне давлений газа и иных условий, в большинстве случаев дуговой разряд наблюдается при давлении порядка атмосферного.
Во всех случаях особую важность представляет участок перехода между столбом разряда и электродами, причём ситуация у катода сложнее, чем у анода. При тлеющем разряде непрерывная связь между катодом и положительным столбом обеспечивается за счёт сильного катодного падения. В самостоятельном дуговом разряде в результате сильного локального нагрева катода появляются т. н. катодные пятна. В них обычно происходит или более сложная эмиссия электронов из облака испаряющегося материала катода. Процесс эмиссии из катода дугового разряда в настоящее время (1978) ещё не до конца понят и интенсивно исследуется.
Все рассмотренные выше Э. р. в г. происходят под действием постоянного электрического напряжения. Однако газовые разряды могут протекать и под действием переменного электрического напряжения. Такие разряды имеют стационарный характер, если частота переменного напряжения достаточно высока (или, наоборот, настолько низка, что полупериод переменного напряжения во много раз больше времени установления разряда, так что каждый электрод просто попеременно служит катодом и анодом). Типичным примером может служить высокочастотный (ВЧ) Э. р. в г. ВЧ-разряд может «гореть» даже при отсутствии электродов ( ) .Переменное электрическое поле создаёт в определённом объёме плазму и сообщает электронам энергию, достаточную для того, чтобы производимая ими ионизация восполняла потери заряженных частиц вследствие диффузии и рекомбинации. Внешний вид и характеристики ВЧ-разрядов зависят от рода газа, его давления, частоты переменного поля и подводимой мощности. Элементарные процессы на поверхности твёрдого тела (металла или изолятора разрядной камеры) играют определённую роль только в процессе «поджига» разряда. Стационарный ВЧ-разряд подобен положительному столбу тлеющего разряда.
Кроме стационарных разрядов, основные характеристики которых не зависят от времени, существуют нестационарные (импульсные) Э. р. в г. Они возникают по большей части в сильно неоднородных или переменных во времени полях, например у заострённых и искривленных поверхностей проводников и электродов. Величина напряжённости поля и степень его неоднородности вблизи таких тел столь велики, что происходит ударная ионизация электронами молекул газа. Два важных типа нестационарного разряда - и .
При коронном разряде ионизация не приводит к пробою, потому что сильная неоднородность электрического поля, обусловливающая её, существует только в непосредственной близости от проводов и остриёв. Коронный разряд представляет собой многократно повторяющийся процесс поджига, который распространяется на ограниченное расстояние от проводника - до области, где напряжённость поля уже недостаточна для поддержания разряда. Искровой разряд, в отличие от коронного, приводит к пробою. Этот Э. р. в г. имеет вид прерывистых ярких зигзагообразных разветвляющихся, заполненных ионизованным газом (плазмой), нитей-каналов, которые пронизывают промежуток между электродами и исчезают, сменяясь новыми. Искровой разряд сопровождается выделением большого количества тепла и ярким свечением. Он проходит следующие стадии: резкое умножение числа электронов в сильно неоднородном поле близ проводника (электрода) в результате последовательных актов ионизации, начинаемых немногими, случайно возникшими свободными электронами; образование электронных лавин; переход лавин в стримеры под действием пространственного заряда, когда плотность заряженных частиц в головной части каждой лавины превысит некоторую критическую. Совместное действие пространственного заряда, ионизующих электронов и фотонов в «головке» стримера приводит к увеличению скорости развития разряда. Примером естественного искрового разряда является ,длина которой может достигать нескольких км,а максимальная сила тока - нескольких сотен тысяч ампер.
К настоящему времени (1970-е гг.) все виды Э. р. в г. исследуются и применяются во многих областях науки и техники. Тлеющий, дуговой и импульсные разряды используются при возбуждении . ,в которых основным рабочим процессом служит дуговой или ВЧ-разряд, являются важными устройствами в ряде областей техники, в частности при получении особо чистых полупроводников и металлов. Мощные плазматроны используются в качестве реакторов в .На применении искрового разряда основаны прецизионные методы .При фокусировке лазерного светового излучения происходит пробой воздуха в фокусе и возникает безэлектродный разряд (подобный ВЧ-разряду и искре), называется лазерной искрой. Мощные, сильноточные разряды в водороде служили первыми шагами на пути к .
В системе естественных наук изучение Э. р. в г. занимает место в физике плазмы. При Э. р. в г. образуется низкотемпературная плазма, для которой характерна малая степень ионизации. В отличие от высокотемпературной (полностью ионизованной) плазмы, в низкотемпературной плазме атомы или молекулы нейтрального газа играют важную роль. Электроны, ионы и нейтральные частицы «мягко» взаимодействуют. Вследствие этого может возникнуть термодинамически неравновесная ситуация, при которой электроны, ионы и нейтральный газ имеют разные температуры. Эта ситуация ещё более усложняется, если в балансе энергии Э. р. в г. нельзя пренебречь световым излучением (например, в сильноточных дуговых разрядах). В таких случаях низкотемпературную плазму необходимо описывать с помощью кинетической теории плазмы.
Лит.:Энгель А., Штенбек М., Физика и техника электрического разряда в газах, пер. с нем., т. 1-2, М. - Л., 1935-1936; Грановский В. Л., Электрический ток в газе. Установившийся ток, М., 1971; Капцов Н. А., Электроника, 2 изд., М., 1956; Мик Дж. М., Крэгс Дж., Электрический пробой в газах, пер. с англ., М., 1960; Браун С., Элементарные процессы в плазме газового разряда, [пер. с англ.], М., 1961; Физика и техника низкотемпературной плазмы, под ред. С. В. Дресвина, М., 1972; Райзер Ю. П., Лазерная искра и распространение разрядов, М., 1974.
М. Штеенбек, Л. Ротхардт (ГДР).
Рис. 3. Вольамперная характеристика разряда: аб - несамостоятельного лавинного; бвг - тлеющего; гд - дугового.
Рис. 1. Вольтамперная характеристика тихого разряда.
Рис. 2. Кривые Пашена для различных газов. По оси абсцисс отложены произведения p Ч d в мм рт. ст. Ч мм, по оси ординат - напряжение пробоя U 3в вольтах.
Электрический ракетный двигатель
Электри'ческий раке'тный дви'гатель(ЭРД), (РД), в котором в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки космического летательного аппарата (обычно солнечные или аккумуляторные батареи). Достоинство ЭРД - в их высоком удельном импульсе (удельной тяге) благодаря большой скорости истечения (РТ), достигающей 10-100 км/сек.По удельному импульсу ЭРД многократно превосходят ,у которых скорость истечения РТ не превышает 4,5 км/ сек.По принципу действия ЭРД подразделяются на электротермические, электростатические (ионные, коллоидные) и электромагнитные (плазменные).
В электротермических РД электрическая энергия используется для нагрева РТ с целью обращения его в газ с температурой 1000-5000 К; газ, истекая из реактивного сопла (аналогичного соплу химического РД), создаёт тягу. В качестве РТ используются вещества с малой молекулярной массой (например, водород, аммиак, гидразин), нагреваемые при помощи поверхностных нагревателей ( рис. 1 ), дугового разряда ( рис. 2 ) или (в экспериментальных ЭРД) высокочастотного электромагнитного поля. Удельный импульс электротермического РД составляет 1,5-10 ( кн· сек) /кг,плотность тяги (отношение тяги к поперечному сечению реактивной струи) 0,3-3 Мн/м 2 ,время работы от нескольких чдо нескольких сотен ч.
В электростатическом (ионном) РД вначале производится ионизация РТ, после чего ионы и электроны раздельно ускоряются в электростатическом поле (при помощи системы электродов), а затем вновь перемешиваются для нейтрализации объёмного заряда и, истекая, создают тягу ( рис. 3 ). Различают электростатические РД с и объёмной ионизацией (электронным ударом); в качестве РТ в первых используется легко ионизируемый цезий, во вторых - любые вещества с большой атомной массой (например, висмут). Вместо ионов в электростатических РД могут ускоряться заряженные (например, за счёт контактной разности потенциалов при отрыве капли от поверхности электрода) микроскопические капли. Такие ЭРД называются коллоидными. Значение ускоряющего потенциала составляет для них около 10-20 кв(для ионных РД - 2-7 кв) при плотности тока в несколько ма/см 2 .Удельный импульс электростатических РД 15-100 ( кн· сек) /кг,плотность тяги 30-50 н/м 2 ,время работы - 1 год и более.
В электромагнитном РД рабочим телом является плазма любого вещества, ускоряемая за счёт силы Ампера в скрещенных электрическом и магнитном полях. Различают ЭРД с внешним и собственным магнитным полем. К первым относятся классические Е-Н ускорители плазмы и т. н. холловские ЭРД с замкнутым дрейфом электронов; во-вторых, магнитное поле создаётся током, протекающим в ускоряемой плазме; они подразделяются на импульсные и квазистационарные ЭРД. Рабочий цикл импульсного ЭРД соответствует периоду электрического пробоя РТ (обычно фторопласта), при котором создаётся плазма; начальный потенциал пробоя - несколько кв,удельный импульс 40-100 ( кн· сек) /кг,плотность тяги 10 -9-10 -8 н/м 2 ,число циклов ЭРД достигает 1 млн. В квазистационарном ЭРД с целью создания сильного магнитного поля через РТ пропускается ток силой в десятки каи напряжением в десятки в.Удельный импульс составляет 30-50 ( кн· сек) /кг,плотность тяги несколько кн/м 2 ,время работы - десятки ч.О типах плазменных ЭРД и методах создания плазмы в них см. в ст. .
Ограниченное применение ЭРД связано с необходимостью большого расхода электроэнергии (10-100 квтна 1 нтяги). Из-за наличия бортовой энергоустановки (и др. вспомогательных систем), а также из-за малой плотности тяги аппарат с ЭРД имеет малое ускорение. Поэтому ЭРД могут быть использованы только в космических летательных аппаратах (КЛА), совершающих полёт либо в условиях слабых гравитационных полей, либо на околопланетных орбитах. Они применяются для ориентации, коррекции орбит КЛА и др. операций, не требующих больших затрат энергии. Электростатические, плазменные холловские и др. ЭРД рассматриваются как перспективные в качестве основных двигателей КЛА. Из-за малой отбрасываемой массы РТ время непрерывной работы таких ЭРД будет измеряться месяцами и годами; их использование вместо существующих химических РД позволит увеличить массу полезного груза КЛА.
Идея использования электрической энергии для получения тяги выдвигалась ещё К. Э. Циолковским и другими пионерами космонавтики. В 1916-17 Р. Годдард (США) подтвердил опытами реальность этой идеи. В 1929-33 В. П. Глушко (СССР) создал экспериментальный ЭРД. В 1964 в СССР на КЛА типа «Зонд» испытаны плазменные импульсные РД, в 1966-71 на КЛА «Янтарь» - ионные РД, в 1972 на КЛА «Метеор» - плазменные квазистационарные РД. Различные типы ЭРД испытаны начиная с 1964 в США: в баллистическом, а затем в космическом полёте (на аппаратах АТС, СЕРТ-2 и др.). Работы в этой области ведутся также в Великобритании, Франции, ФРГ, Японии.
Лит.:Корлисс У. Р., Ракетные двигатели для космических полетов, пер. с англ., М., 1962; Штулингер Э., Ионные двигатели для космических полетов, пер. с англ.. М., 1966; Гильзин К. А., Электрические межпланетные корабли, 2 изд., М., 1970; Гуров А. Ф., Севрук Д. Д., Сурнов Д. Н., Конструкция и расчет на прочность космических электроракетных двигателей, М., 1970; Фаворский О. Н., Фишгойт В, В., Янтовский Е. И., Основы теории космических электрореактивных двигательных установок, М., 1970; Гришин С. Д., Лесков Л. В., Козлов Н. П., Электрические ракетные двигатели, М., 1975.
Ю. М. Трушин.
Рис. 3. Схема электростатического (ионного) двигателя: 1 - подвод рабочего тела; 2 - ионизатор; 3 - пучок ионов; 4 - фокусирующий электрод; 5 - ускоряющий электрод; 6 - замедляющий электрод; 7 - нейтрализатор; 8 - основной источник энергии; 9 - вспомогательный источник энергии.
Рис. 1. Схема электротермического двигателя с поверхностным нагревателем: 1 - подвод рабочего тела; 2 - камера нагрева и сопло (вольфрам); 3 - нагревающий элемент (вольфрамовая проволока): 4 - опора нагревающего элемента. Рис. 2. Схема электротермического двигателя с нагревом при помощи дугового разряда: 1 - подвод рабочего тела; 2 - катод (вольфрам); 3 - анод (вольфрам); 4 - сопло (вольфрам); 5 - резьбовая втулка.
Электрический сом
Электри'ческий сом(Malapterurus electricus), рыба подотряда сомовидных. Длина тела 20-65 см,иногда до 1 м.Спинного плавника нет, есть жировой; брюшные плавники на середине тела, грудные не имеют колючек. 3 пары усиков. Глаза маленькие, светятся в темноте. Жаберная щель очень узкая, нёбные зубы отсутствуют. Есть .Э. с. малоподвижен, всеяден. Условия размножения плохо изучены. Обитает в Ниле и некоторых других реках тропической Африки. Разводится в аквариумах. Мясо Э. с. употребляют в пищу.
Лит.:Жизнь животных, т. 4, ч. 1, М., 1971.
Рис. к ст. Электрический сом.
Электрический стул
Электри'ческий стул,специально оборудованное кресло для приведения в исполнение приговора о смертной казни путём использования электрического тока высокого напряжения. Применяется в 24 штатах США, а также на Филиппинах. В США казнь на Э. с. введена в 1889 как якобы «наиболее человечный и лёгкий способ казни». Впервые применена 6 августа 1890 в Обернской тюрьме штата Нью-Йорк. Утверждения о безболезненности и мгновенности наступления смерти, а тем самым и «гуманности» этого вида казни не соответствуют действительности.
Электрический ток
Электри'ческий ток,упорядоченное (направленное) движение электрически заряженных частиц или заряженных макроскопических тел. За направление тока принимают направление движения положительно заряженных частиц; если ток создаётся отрицательно заряженными частицами (например, электронами), то направление тока считают противоположным направлению движения частиц.
Различают Э. т. проводимости, связанный с движением заряженных частиц относительно той или иной среды (т. е. внутри макроскопических тел), и -движение макроскопических заряженных тел как целого (например, заряженных капель дождя).
О наличии Э. т. в проводниках можно судить по тем действиям, которые он производит: нагреванию проводников, изменению их химического состава, созданию магнитного поля. Магнитное действие тока проявляется у всех без исключения проводников; в не происходит выделения теплоты, а химическое действие тока наблюдается преимущественно в .Магнитное поле порождается не только током проводимости или конвекционным током, но и переменным электрическим полем в диэлектриках и вакууме. Величину, пропорциональную скорости изменения электрического поля во времени, Дж. К. назвал .Ток смещения входит в на равных правах с током, обусловленным движением зарядов. Поэтому полный Э. т., равный сумме тока проводимости и тока смещения, может быть определён как величина, от которой зависит интенсивность магнитного поля.
Количественно Э. т. характеризуется скалярной величиной - 1и векторной величиной - j.При равномерном распределении плотности тока по сечению проводника сила тока
где q o-заряд частицы, n -концентрация частиц (число частиц в единице объёма), -средняя скорость направленного движения частиц, S- площадь поперечного сечения проводника.
Для возникновения и существования Э. т. необходимо наличие свободных заряженных частиц (т. е. положительно или отрицательно заряженных частиц, не связанных в единую электрически нейтральную систему) и силы, создающей и поддерживающей их упорядоченное движение. Обычно силой, вызывающей такое движение, является сила со стороны электрического поля внутри проводника, которое определяется на концах проводника. Если напряжение не меняется во времени, то в проводнике устанавливается ,если меняется, - .
Важнейшей характеристикой проводника является зависимость силы тока от напряжения - .Она имеет простейший вид для металлических проводников и электролитов: сила тока прямо пропорциональна напряжению ( ) .
В зависимости от способности веществ проводить Э. т.они делятся на , и .В проводниках имеется очень много свободных заряженных частиц, а в диэлектриках - очень мало. Поэтому сила тока в диэлектриках крайне мала даже при больших напряжениях, и они служат хорошими .Промежуточную группу составляют полупроводники.
В металлах свободными заряженными частицами - носителями тока являются электроны проводимости, концентрация которых практически не зависит от температуры и составляет 10 22-10 23 см -3 .Их совокупность можно рассматривать как «электронный газ». Электронный газ в металлах находится в состоянии вырождения (см. ) ,т. е. в нём отчётливо проявляются квантовые свойства. Квантовая теория металлов (см. ) объясняет зависимость электрического сопротивления металлов от температуры (линейное увеличение с ростом температуры) и прямую пропорциональность между силой тока и напряжением (см. ).
В электролитах Э. т. обусловлен направленным движением положительных и отрицательных ионов. Ионы образуются в электролитах в результате .С ростом температуры число молекул растворённого вещества, распадающихся на ионы, увеличивается и сопротивление электролитов падает. При прохождении тока через электролит ионы подходят к электродам и нейтрализуются. Масса выделившегося на электродах вещества определяется законами электролиза Фарадея.
Газы из нейтральных молекул являются диэлектриками. Э. т. проводят лишь ионизованные газы - .Носителями тока в плазме служат положительные и отрицательные ионы (как в электролитах) и свободные электроны (как в металлах). Ионы и свободные электроны образуются в газе в результате сильного нагревания или внешних воздействий ( , ,при соударениях быстрых электронов с нейтральными атомами или молекулами и т. д.; см. ) .
Э.т. в электровакуумных приборах (электронных лампах, электроннолучевых трубках и т. д.) создаётся потоками электронов, испускаемых нагретым электродом - катодом (см. ) .Электроны ускоряются электрическим полем и достигают другого электрода - анода.
В полупроводниках носителями тока являются электроны и .
Лит.:Тамм И. Е., Основы теории электричества, 9 изд., М., 1976, гл. 3, 6; Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики), гл. 6, 14-16, 18.
Г. Я. Мякишев.
Электрический угорь
Электри'ческий у'горь(Electrophorus electricus), рыба семейства Electrophoridae отряда карпообразных. Обитает в пресных водах Центральной и Южной Америки.
Тело голое, длиной до 3 м.Весит до 40 кг.Вдоль боков расположены .Спинных и брюшных плавников нет. Анальное отверстие на горле; анальный плавник служит органом движения. Питается Э. у. мелкой рыбой. Размножение не изучено. Мясо Э. у. употребляют в пищу.
Лит.:Жизнь животных, т. 4, ч. 1, М., 1971.
Рис. к ст. Электрический угорь.
Электрический фильтр (в газоочистке)
Электри'ческий фильтр,электрофильтр (в газоочистке), аппарат для удаления из промышленных газов взвешенных жидких или твёрдых частиц путём ионизации этих частиц при прохождении газа через область и последующего осаждения на электродах. Э. ф. в большинстве случаев состоит из двух частей: собственно Э. ф. - осадительной камеры с коронирующими и осадительными электродами - и источника напряжения. В Э. ф. зоны ионизации и осаждения могут быть совмещены или отделены одна от другой. Работают Э. ф. только на постоянном электрическом токе высокого напряжения (40-70 кв) ;коронирующие электроды всегда подключены к отрицательному полюсу источника тока. По состоянию газовой среды Э. ф. делятся на мокрые (газы насыщены влагой до точки росы) и сухие. По способу удаления частиц Э. ф. подразделяются на периодические и непрерывные. Работают Э. ф. как при атмосферном давлении, так и при давлении выше и ниже атмосферного; температура газов может достигать 500°С и более; степень очистки газов - до 99,9%. Э. ф. широко применяются для тонкой очистки дымовых газов тепловых электростанций, в чёрной и цветной металлургии и т.д.
Электрический фильтр (электрич. устройство)
Электри'ческий фильтр,электрическое устройство, в котором из поданных на его вход электрических колебаний выделяются (пропускаются на выход) составляющие, расположенные в заданной области частот, и не пропускаются все остальные составляющие. Э. ф. используются в системах ,радиоустройствах, устройствах автоматики, телемеханики, радиоизмерительной техники и т. д. - везде, где передаются электрические сигналы при наличии других (мешающих) сигналов и шумов, отличающихся от первых по частотному составу; они применяются также в для сглаживания пульсаций выпрямленного тока. Область частот, в которой лежат составляющие, пропускаемые (задерживаемые) Э. ф., называют полосой пропускания (полосой задерживания). Фильтрующие свойства Э. ф. количественно определяются относительной величиной вносимого им затухания в составляющие спектра электрических колебаний: чем больше различие затуханий в полосе задерживания и полосе пропускания, тем сильнее выражены его фильтрующие свойства. По виду кривой зависимости затухания от частоты (по взаимному расположению полос пропускания и задерживания) различают Э. ф.: нижних частот (ФНЧ), пропускающие колебания с частотами не выше некоторой граничной