Длина волны в Р. Л оказывается большей, чем в свободном пространстве:
. (5)
Фазовая скорость распространения волны в Р. равна:
, (5a),
т. е. всегда больше скорости света и зависит от частоты колебаний. Это означает, что в Р. имеет место , вносящая искажения в передаваемые сигналы тем больше, чем шире спектр их частот.
Затухание волны в Р. описывается вещественной частью комплексной постоянной распространения g = b + ia и объясняется в реальных Р. потерями в стенках и в заполняющем Р. диэлектрике. В «идеальных» (без потерь) Р., если w < w гр, электромагнитное поле затухает без потерь энергии (за счёт полного отражения). В Р. можно работать только на одном первом типе волны, выбрав размеры Р. определённым образом (например, для прямоугольного Р. и волны H 10), выбрав величину аиз соотношения a< l < 2 а). Обычно берут а= 0,72 см, что даёт: а= 72 ммна l = 10 см; a= 23 ммна l = 3,2 см(см. табл.).
Совокупность двух классов волн магнитного и электрического типов в каждом Р. образует полную систему волн. Это означает, что в Р. могут распространяться электромагнитные поля только таких структур, которые могут быть представлены как результат суперпозиции воли магнитного и электрического типов.
Для Р. круглых сечений основным уравнением вместо (1) становится с решениями в виде цилиндрических функций. В круглом Р. также можно выбрать диаметр Р. для работы только на одном первом типе волны (см. табл.). Однако не всегда первый тип волны оказывается наиболее удобным. Например, в силу осевой симметрии полей у волн ТМ 01и TE 01в круглом Р. ( рис. 9 , 10 ) эти волны применяют во вращающихся соединениях. На рис. 11 и 12 показаны структуры поля волн TM 11и ТЕ 11в круглом Р. Применение волн с относительно малым l крзатруднительно, т.к. при обеспечении условий распространения для них одновременно в Р. будут распространяться и все предыдущие «ненужные» типы волн.
Критические длины волн Х для прямоугольных и круглых радиоволноводов
Тип волны | Прямоугольный волновод | Круглый волновод | ||||||
TE 10 | TE 20 | TE 10 | TE 11 | TM 01 | TE 21 | TM 11 | TE 01 | |
l кр | 2a | a | 2b | 3,41r | 2,61r | 2,06r | 1,64r | 1,64r |
Волна TE 01в круглом Р. обладает тем исключительным свойством, что потери на стенках Р. непрерывно уменьшаются с укорочением l. Пользуясь этим, можно строить волноводные линии связи в диапазоне миллиметровых волн с ретрансляционными станциями через 50-60 км.По этим линиям можно передавать до 1500 телефонных и 100 телевизионных каналов. Основная трудность заключается в обеспечении необходимой «чистоты» поля волны ТЕ 01по всей линии устранением др. типов волн, возникающих под воздействием различного рода неоднородностей. В Р. с потерями понятие резкой границы пропускания при w гртеряет простой смысл. В Р. с потерями проходят волны (хотя и слабо) «за критической волной» l > l кр, рассчитанной для Р. без потерь.
Для передачи сантиметровых и миллиметровых волн могут служить диэлектрические Р., где поверхностью раздела, направляющей волну, служит внутренняя поверхность диэлектрического стержня. Диэлектрические Р. чувствительны к внешним воздействиям и имеют дополнительные потери, связанные с просачиванием энергии за пределы Р., что затрудняет их практическое применение.
Р. с поверхностной волной представляют собой металлическую ленту или цилиндрический проводник, на которых располагаются ребристая структура или диэлектрическое покрытие ( рис. 13 ). Вдоль такого Р. могут распространяться волны различных типов, например TM 10. Энергия поля сосредоточена в окружающем пространстве: радиус поля (расстояние, на котором поле ещё ощутимо) зависит от ширины ленты и её проводимости и быстро уменьшается с укорочением l. Р. с поверхностной волной обладают меньшим затуханием, чем металлические Р., проще по конструкции и позволяют передавать большие мощности в широком диапазоне частот. Недостатки этих Р. связаны с тем, что поле поверхностной волны окружает Р. снаружи: различные неоднородности (деформации Р., крепления, соединения, окружающие предметы) приводят к излучению, т. е. к потерям энергии. Несмотря на это, Р. с поверхностной волной применяются как направляющие системы и как излучающие элементы в антеннах дециметровых, сантиметровых и миллиметровых волн.
Применяются 3 способа возбуждения поля в Р.: линейным проводником с током (штырём), витком и через отверстие в боковой стенке или торце Р. Штырь располагают параллельно электрическим силовым линиям, плоскость витка - перпендикулярно магнитным силовым линиям. Щель или отверстие прорезают в металлической поверхности по ходу магнитных силовых линий на этой поверхности. При этом для большей связи элементы возбуждения располагают в пучностях электрического или магнитного поля ( рис. 14 ).
Согласование отрезков Р. друг с другом и с нагрузкой осуществляется с помощью т. н. согласующих элементов ( рис. 15 ) в виде комбинаций пассивных штырей, индуктивных или емкостных диафрагм, а также в виде плавных переходов с переменным сечением. Недостатком большинства согласующих устройств является их малая диапазонность: согласование удаётся обеспечить, как правило, в полосе частот 1-2% и только в некоторых случаях около 10-20% от w.
Практическое значение имеет вопрос о передаче по Р. больших мощностей. Р. с размерами сечения, соответствующими распространению волн только первого типа, может пропустить мощность лишь порядка 3-4 Мвт.Если же размеры сечения Р. при заданной длине волн взять большими, то в нём будут распространяться и высшие типы волн.
Лит.:Введенский Б. А., Аренберг А. Г., Радиоволноводы, ч. 1, М. - Л., 1946: Кисунько Г. В., Электродинамика полых систем, Л., 1949; Вайнштейн Л. А., Дифракция электромагнитных и звуковых волн на открытом конце волновода, М., 1953; Казначеев Ю. И., Широкополосная дальняя связь по волноводам, М., 1959; Коган Н. Л., Машковцев Б. М., Цибизов К. Н., Сложные волноводные системы, Л., 1963; Теория линий передачи сверхвысоких частот, пер. с англ., под ред. А. И. Шпунтова, ч. 1-2, М., 1951; Гуревич А. Г., Полые резонаторы и волноводы. Введение в теорию, М., 1952; Левин Л., Современная теория волноводов, пер. с англ., М., 1954; Ширман Я. Д., Радиоволною воды и объемные резонаторы, М., 1959; Вайнштеин Л. А., Электромагнитные волны, М., 1957; Каценеленбаум Б. З., Высокочастотная электродинамика, М., 1966; Лебедев И. В., Техника и приборы СВЧ, 2 изд., т. 1, 1970: Харвей А. Ф., Техника сверхвысоких частот, М., 1968; Фельдштейн А. Л. и др., Справочник по элементам волноводной техники, М., 1967.
И. В. Иванов.
Рис. 12. Структура поля волны ТЕ 11в круглом волноводе.
Рис. Формы поперечного сечения некоторых волноводов (а, б, в, г) и коаксиальной двухпроводной линии (д).
Рис. 14. Способы возбуждения волны ТЕ 10: а - штырём; б - витком; в - отверстием.
Рис. 4. Структура поля волны ТМ 11в прямоугольном волноводе.
Рис. 5. Структура поля волны ТМ 32в прямоугольном волноводе.
Рис. 13. Радиоволновод с поверхностной волной: а - с ребристой поверхностью; б - с диэлектрическим покрытием.
Рис. 8. Структура поля волн ТЕ 20(а) и ТЕ 21(б) в прямоугольном волноводе.
Рис. 6. Структура поля волны ТЕ 10в прямоугольном волноводе.
Рис. 11. Структура поля волны ТМ 11в круглом волноводе.
Рис. 10. Структура поля волны ТМ 11в круглом волноводе.
Рис. 3. Прямоугольный волновод.
Рис. 2. Схема волноводного тракта: 1 - генератор СВЧ; 2 - рупорный переход; 3, 6 - отрезки прямоугольных волноводов; 4 - угловой изгиб; 5 - вращающееся соединение; 7 - рупорная антенна.
Рис. 15. Согласующие элементы: а - реактивный штырь; б - индуктивная диафрагма; в - ёмкостная диафрагма; г - плавный переход с переменным сечением.
Рис. 9. Структура поля волны ТМ 01в круглом волноводе.
Рис. 7. Структура поля волны ТЕ 11в прямоугольном волноводе.
Радиоволны
Радиово'лны(от ) ,электромагнитные волны с длиной волны > 500 мкм(частотой < 6Ч10 12 гц). Р. имеют многообразное применение: , , , , и др. Во всех перечисленных случаях Р. являются средством передачи на расстояние без проводов той или иной информации: речи, телеграфных сигналов, изображения. Р. используются для определения направления и расстояния до различных объектов (радиодальномер), для получения сведений о строении верхних слоев атмосферы, Солнца, планет и т.п.
Табл. 1. - Деление диапазона радиоволн на поддиапазоны
Название поддиапазона | Длина волны, м | Частота колебаний, гц |
Сверхдлинные волны Длинные волны Средние волны Короткие волны Метровые волны Дециметровые волны Сантиметровые волны Миллиметровые волны Субмиллиметровые волны | более 10 4 м10 4-10 3 м10 3-10 2 м10 2-10 м10-1 м1-0,1 м0,1-0,01 м0,01-0,001 10 +3-5Ч10 +5 | менее 3Ч10 43Ч10 4-3Ч10 53Ч10 5-3Ч10 63Ч10 6-3Ч10 73Ч10 7-3Ч10 83Ч10 8-3Ч10 103Ч10 10-3Ч10 113Ч10 11-6Ч10 12 |
Таблица 2
Диапазон радиочастот | ||
наименование диапазона | Гранины диапазонов | |
основной термин | параллельный термин | |
1-й диапазон частот 2-й диапазон частот 3-й диапазон частот 4-й диапазон частот 5-й диапазон частот 6-й диапазон частот 7-й диапазон частот 8-й диапазон частот 9-й диапазон частот 10-й диапазон частот 11-й диапазон частот 12-й диапазон частот | Крайне низкие КНЧ Сверхнизкие СНЧ Инфранизкие ИНЧ Очень низкие ОНЧ Низкие частоты НЧ Средние частоты СЧ Высокие частоты ВЧ Очень высокие ОВЧ Ультравысокие УВЧ Сверхвысокие СВЧ Крайне высокие КВЧ Гипервысокие ГВЧ | 3-30 гц30-300 гц0,3-3 кгц3-30 кгц30-300 кгц0,3-3 Мгц3-30 Мгц30-300 Мгц0,3-3 Ггц3-30 Ггц30-300 Ггц0,3-3 Тгц |
Диапазон радиоволн | ||
наименование диапазона | Гранины диапазонов | |
основной термин | параллельный термин | |
1-й диапазон 2-й диапазон 3-й диапазон 4-й диапазон 5-й диапазон 6-й диапазон 7-й диапазон 8-й диапазон 9-й диапазон 10-й диапазон 11-й диапазон 12-й диапазон | Декамегаметровые Мегаметровые Гектокилометровые Мириаметровые Километровые Гектометровые Декаметровые Метровые Дециметровые Сантиметровые Миллиметровые Децимиллиметровые | 100-10 мм10-1 мм1000-100 км100-10 км10-1 км1-0,1 км100-10 м10-1 м1-0,1 м10-1 см10-1 мм1-0,1 мм |
Примечание. Диапазоны радиочастот включают наибольшую частоту и исключают наименьшую. Диапазоны радиоволн включают наименьшую длину и исключают наибольшую.
В первых опытах передачи сигналов при помощи Р., осуществленных А. С. в 1895-99, использовались Р. с длиной волны от 200 до 500 м(частоты от 1,5Ч10 6до 0,6Ч 10 6 гц). Дальнейшее развитие привело к использованию более широкого спектра электромагнитных волн. Нижняя граница спектра Р., излучаемых радиопередающими устройствами, порядка 10 3-10 4 гц.
В природе существует много естественных источников Р.: звёзды, в том числе , , , планеты. Исследование Р. от внеземных источников позволило расширить наши представления о Вселенной (см. ). Некоторые процессы, происходящие в земной атмосфере, также сопровождаются генерацией Р. Например, Р. возникают при разряде молний (см. ), при возбуждении колебаний в ионосферной плазме. При этих процессах возбуждаются Р. и более низких частот (вплоть до долей герца).
Р. различных частот по-разному распространяются в пределах Земли и в космическом пространстве (см. ) и в связи с этим находят различное применение в радиосвязи и в научных исследованиях. С учётом особенностей распространения, генерации и (отчасти) излучения весь диапазон Р. принято делить на ряд поддиапазонов: , , , , , , , и (табл. 1). Деление Р. на диапазоны в радиосвязи установлено международным (табл. 2).
Лит.см. при ст. .
М. Б. Виноградова.
Радиовысотомер
Радиовысотоме'р,прибор для определения высоты полёта летательного аппарата (самолёта, спутника и т.д.) путём измерения времени прохождения радиоволн между моментами излучения и приёма их прибором после отражения от подстилающей поверхности, от которой отсчитывают высоту полёта, полагая скорость распространения радиоволн известной. Различают Р. с частотной и импульсной модуляцией излучаемых радиоволн.
Первый тип Р. используют в авиации преимущественно при малых высотах полёта (при заходе самолёта на посадку и т.д.). В этом случае Р. излучает непрерывные радиосигналы, частота которых периодически изменяется по заданному закону. Высоту летательного аппарата определяют по показываемой индикатором прибора разности частот излучаемых и отражённых радиосигналов.
Второй тип Р. применяют в авиации (например, при с больших высот) и в космических полётах (например, для подачи команды на включение тормозного двигателя летательного аппарата на заданной его высоте от поверхности планеты). В этом случае Р. излучает короткие импульсы радиосигналов. Высоту летательного аппарата определяют путём измерения времени запаздывания отражённых радиоимпульсов относительно радиоимпульсов, непосредственно поступающих в приёмник Р. из передатчика Р.
Радиогалактики
Радиогала'ктики, , для которых характерно радиоизлучение аномально большой мощности по сравнению с нормальными галактиками (такими, например, как наша Галактика или Большая галактика Андромеды). Р. составляют наиболее многочисленную группу внегалактических радиоисточников и по характеру радиоизлучения примыкают, с одной стороны, к ,а с другой - к нормальным (спиральным) галактикам. Однако не установлено (1975), составляют ли Р. особую группу объектов или это лишь особая стадия эволюции любой галактики. Подавляющее большинство Р. относится к типу гигантских эллиптических галактик, к их числу принадлежат также галактики с особенностями в ядрах: сейфертовские и N-галактики. Примерно для 100 Р. измерено , и, т. о., может быть определено и расстояние. Самый удалённый объект из них - Р. ЗС 295 с красным смещением 0,46. Светимость Р. в радиодиапазоне составляет 10 40-10 45 эрг/сек(для нормальных галактик - 10 37-10 38 эрг/сек).
Радиоизлучающие области обычно имеют довольно сложную структуру; для них характерно наличие протяжённых (прозрачных) и компактных (непрозрачных) областей. Большинство Р. состоит из 2 источников радиоизлучения, удалённых от оптической компоненты галактики на значительное расстояние. Часто область радиоизлучения содержит несколько компонент меньшего размера. Радиоизлучение Р. обычно линейно поляризовано, что свидетельствует об однородности магнитного поля в большом масштабе. Для многих объектов характерна переменность радиоизлучения, относящаяся в основном к компактным областям. У некоторых Р. наряду с переменностью радиоизлучения наблюдаются изменения их блеска в оптическом диапазоне.
Радиоизлучение Р., по-видимому, имеет синхротронную природу, т. е. возникает при движении ультрарелятивистских (движущихся со скоростями, близкими к скорости света) электронов в слабых магнитных полях. В соответствии с наблюдаемым потоком радиоизлучения энергия, приходящаяся на долю релятивистских частиц, оказывается чрезвычайно большой: около 10 52 эргв компактных источниках и 10 57-10 61 эргв протяжённых. Последнее составляет примерно 10 -4от полной энергии галактики. Характер переменности (изменение интенсивности и поляризации с длиной волны и временем) свидетельствует о периодических выбросах плотных облаков релятивистских частиц; эти облака в дальнейшем расширяются и становятся прозрачными. Мощность таких взрывов - около 10 52 эрг.Для поддержания протяжённого источника требуется около 1 взрыва в год в течение примерно 10 8лет (при взрыве обычной сверхновой звезды выделяется около 10 48 эрг).
Самыми трудными являются проблемы эволюции Р., природы источников энергии и перехода её в энергию релятивистских частиц. Гипотезы, предложенные для объяснения явления Р., пока нельзя считать удовлетворительными.
Лит.:Пахольчик А. Г., Радиоастрофизика, пер. с англ., М., 1973; Зельдович Я. Б., Новиков И. Д., Релятивистская астрофизика, М., 1967.
И. В. Госачинский.
Радиогенное тепло
Радиоге'нное тепло'Земли, тепло, выделяющееся при распаде радиоактивных элементов, содержащихся в недрах Земли. Определяющее значение имеют долгоживущие радиоактивные изотопы 40K, 232Th, 235U, 238U, обладающие периодами полураспада 10 9-10 10лет. Непосредственных данных о содержании калия, тория и урана в глубоких недрах Земли нет, и обычно для Земли оно оценивается по содержанию в на основании предполагаемой близости их состава к составу мантии и ядра Земли (см. ).
Радиогеодезические системы
Радиогеодези'ческие систе'мы,комплексы радиотехнических устройств, применяемых при , в геодезических, гидрографических и геофизических работах, а также в воздушной и морской для измерения расстояний между подвижными и неподвижными объектами или пунктами (самолёт, спутник, корабль, точка земной поверхности и т.п.) или для определения их координат. Состоят из радиоприёмных и радиопередающих устройств, устанавливаемых на объекте-носителе или пункте, положение которого подлежит определению, и на опорных объектах или пунктах, координаты которых известны. Координаты носителя определяют путём измерения расстояний (приращения расстояний) или разности (приращения разности) расстояний носителя от опорных пунктов по времени и известной скорости распространения радиоволн (см. , , ).
Радиогеодезия
Радиогеоде'зия,термин, который применяют для обозначения методов и технологических процессов измерения расстояний и определения координат подвижных и неподвижных объектов или пунктов в геодезических работах при помощи радиотехнических устройств ( , и др.).
Радиогеология
Радиогеоло'гия,ядерная геология, отрасль геологии, изучающая закономерности естественных ядерных превращений в веществе Земли и их проявление в геологических процессах. Термин «Р.» был введён В. И. Вернадским в 1937. Р. тесно связана с , и . Она подразделяется на собственно Р., изотопную геологию и абсолютную геохронологию (см. ). Собственно Р. касается всех геологических процессов и явлений, в которых имеют значение процессы радиоактивного распада (см. ). Р. изучает эволюцию и вариации изотопного состава природных элементов. По скорости радиоактивного распада определяется абсолютный возраст минералов и горных пород (см. также ); основываясь на этом, восстанавливают последовательность геологических процессов, протекавших на Земле за время её геологической истории.
В задачу Р. входит также: изучение энергетического баланса процессов радиоактивного распада в земной коре, определяющего в значительной мере Земли; создание научных основ для радиометрических методов поисков и разведки месторождений полезных ископаемых (см. , ); изучение ядерных реакций, протекающих в земной коре и атмосфере под влиянием космического излучения. Это последнее направление Р. имеет общую задачу с космогонией - выявление эволюции атомных ядер в процессе развития Вселенной.
Лит.:Вернадский В. И., О значении радиогеологии для современной геологии, Избр. соч., т. 1, М., 1954; Войткевич Г. В., Проблемы радиогеологии, М., 1961; его же, Радиоактивность в истории Земли, М., 1970; Ларионов В. В., Ядерная геология и геофизика, М., 1963; Чердынцев В. В., Ядерная вулканология, М., 1973.
Г. В. Войткевич.
Радиогидроакустический буй
Радиогидроакусти'ческий буй,морской , на котором установлено радиоэлектронное устройство, предназначенное для обнаружения подводных лодок, движущихся в подводном положении, и определения их местонахождения, а также исследования условий распространения звука в океане, шумов моря и т.п. Р. б. делятся на пассивные - принимающие создаваемые подводными лодками акустические колебания (шумы), и активные - принимающие отражённые от подводных лодок ультразвуковые сигналы, посылаемые буем. Пассивные Р. б. обнаруживают подводную лодку и определяют направление (пеленг) на неё, активные - определяют, кроме того, дистанцию до обнаруженной подводной лодки.
Р. б. ставят с самолётов, вертолётов, противолодочных кораблей партиями по несколько штук, образующими барьерные линии или замкнутые ограждения на направлениях действий подводных лодок, в районах предполагаемого нахождения их.
Р. б., снабженные якорями, закрепляются в местах сброса; не имеющие якорных устройств - после постановки дрейфуют под воздействием ветра, волн и морских течений. Р. б. могут работать в режиме непрерывного действия или по заданной программе, некоторые их типы снабжаются -ответчиком и световым сигнальным устройством, которые облегчают выход самолёта (вертолёта, корабля) на сигналящий буй. Первые образцы Р. б. появились после 2-й мировой войны 1939-45 и получили широкое распространение, особенно с развитием атомных подводных лодок, вооружённых ракетно-ядерным оружием. На базе Р. б. за рубежом создаются автоматизированные системы обнаружения подводных лодок, оповещения и наведения, увеличивающие поисковый потенциал противолодочных сил. Дальность обнаружения подводной лодки с помощью Р. б. зависит от типа гидроакустического устройства буя, состояния водной среды, характеристик подводной лодки-цели и составляет от нескольких сотен мдо нескольких км.Дальность действия радиолинии буй - самолёт может достигать нескольких десятков км.Масса и размеры Р. б. зависят от его назначения и типа носителя.
Лит.:Карлов Л. Б., Шошков Е. И., Гидроакустика в военном деле, М., 1963; Хорбенко И. Г., Звуки в морских глубинах, М., 1962.
С. Л. Барченков.
Радиография
Радиогра'фия(от и ), метод исследования различных объектов (изделий, минералов и др.), использующий воздействие излучения радиоактивного изотопа на фотослой. В Р. применяются внешние источники -специально выпускаемые промышленностью радиоактивные изотопы, помещенные в закрытые металлические ампулы; в (основной разновидности Р.) - внутренние: радиоактивный изотоп вводится в исследуемый объект.
Если с помощью фотоматериала регистрируется ионизирующее излучение, которым просвечивается какой-либо объект, то по фотографическому изображению можно судить о наличии в нём областей с большей или меньшей плотностью, т.к. ионизирующее излучение, проходящее через бездефектные области изделия и области, имеющие скрытые дефекты, ослабляется неравномерно. При этом образуется фотографическое (теневое) изображение скрытых дефектов, по которому устанавливают их форму и размеры. На этом основано применение Р. в качестве «неразрушающего» метода контроля литых, сварных, паяных, кованых и др. изделий и материалов - метод радиоизотопной дефектоскопии. Для целей Р. используются главным образом рентгеновские плёнки. В авторадиографии применяются разнообразные фотоматериалы, в том числе , которые позволяют регистрировать не только суммарный эффект воздействия на фотослой потока ионизирующих частиц (в виде некоторого его почернения), но и воздействие каждой отдельной частицы (в виде цепочки проявленных зёрен, образующих след, или трек, частицы в фотослое). Количество излучения измеряют с помощью характеристической кривой, установленной для данного типа фотоэмульсии и излучения; при этом оптическая плотность фотоматериала измеряется с помощью , в том числе и .Картину распределения оптической плотности получают при сканировании фотографического изображения относительно измерительной щели фотометра. Участкам объекта с большим содержанием радиоактивных атомов соответствуют участки фотографического изображения с большим почернением; на этом основано радиографическое изучение распределения радиоактивного изотопа в твёрдом объекте.