S-волну (парциальную волну с l= 0). Амплитуда рассеяния в этом случае равна:

     (11)

и сечение рассеяния не зависит от угла (рассеяние сферически симметрично). При малых энергиях имеет место разложение:

     (12)

  Параметры аи r 0называются соответственно длиной рассеяния и эффективным радиусом рассеяния. Эти величины определяются из опыта и являются важными характеристиками сил, действующих между частицами. Длина рассеяния равна по величине и противоположна по знаку амплитуде рассеяния при k= 0. Полное сечение рассеяния в точке k= 0 равно s 0= 4p a 2.

  Если у частиц имеется с малой энергией связи, то рассеяние таких частиц при kb<< 1 носит резонансный характер (типичный пример - рассеяние нейтронов протонами в состоянии с полным спином J

= 1; в этом состоянии у системы нейтрон - протон имеется уровень, соответствующий связанному состоянию - дейтрону). Сечение рассеяния в этом случае зависит только от энергии связи.

  Если параметр kbневелик, фазы рассеяния могут быть найдены из измеренных на опыте значений сечения и др. величин. Эта процедура называется фазовым анализом. Найденные путём фазового анализа фазы рассеяния сравниваются с предсказаниями теории и позволяют, т. о., получить важную информацию о характере взаимодействия.

  Один из основных приближённых методов теории рассеяния - теория возмущений (метод решения, основанный на разложении в ряд по малому параметру). Если падающая плоская волна, описывающая начальные частицы, слабо возмущается потенциалом взаимодействия, то применимо т. н. борновское приближение (первый член ряда теории возмущений). Амплитуда упругого рассеяния в борновском приближении равна:

     (13)

где q= 2 ksin (J/2), V( r) - потенциал взаимодействия, m = m 1 m 2/( m 1 + m 2) -приведённая масса ( m 1и m 2 -массы частиц).

  Для описания процессов рассеяния при высоких энергиях используются методы .Например, упругое рассеяние электронов (е) протонами (р) в низшем порядке теории возмущений (применимость теории возмущений в данном случае основывается на малости постоянной тонкой структуры a » 1/ 137, характеризующей «силу» электромагнитного взаимодействия) обусловлено обменом фотоном между электроном и протоном ( , рис. 2 ). В выражение для сечения этого процесса входят зарядовый (электрический) и магнитный протона - величины, характеризующие распределение электрического заряда и магнитного момента протона (электромагнитную структуру протона). Информация об этих важнейших характеристиках протона может быть получена, следовательно, непосредственно из измеренных на опыте значений сечения упругого рассеяния электронов протонами. При достаточно высоких энергиях наряду с упругим ер-рассеянием становятся возможными неупругие процессы образования частиц. Если на опыте регистрируются только электроны, то тем самым измеряется сумма сечений всех возможных процессов.

  Лит.:Ландау Л. Д., Лифшиц Е. М., Квантовая механика, 3 изд., М., 1974 (Теоретическая физика, т. 3); Давыдов А. С., Квантовая механика, 2 изд., М., 1973; Гольдбергер М., Ватсон К., Теория столкновений, пер. с англ., М., 1967; Мотт Н., Месс и Г., Теория атомных столкновений, пер. с англ., М., 1951; Ситенко А. Г., Лекции по теории рассеяния, К., 1971.

  С. М. Биленький.

Рис. 2. к ст. Рассеяние микрочастиц.

Рис. 1. к ст. Рассеяние микрочастиц.

Рассеяние света

Рассе'яние све'та,изменение характеристик потока (света) при его взаимодействии с веществом. Этими характеристиками могут быть пространственное распределение интенсивности, частотный спектр, .Часто Р. с. называется только обусловленное пространственной неоднородностью среды изменение направления распространения света, воспринимаемое как несобственное свечение среды.

  Последовательное описание Р. с. возможно в рамках квантовой теории взаимодействия излучения с веществом, основанной на и квантовых представлениях о строении вещества. В этой теории единичный акт Р. с. рассматривается как поглощение частицей вещества падающего с энергией w, импульсом ( ) kи поляризацией m, а затем испускание фотона с энергией w, импульсом k'и поляризацией m '.Здесь  - Планка постоянная, w и w' - частоты фотонов, каждая из величин kи k' - .Если энергия испущенного фотона равна энергии поглощённого (w = w'), Р. с. называется рэлеевским, или упругим. При w ¹ w 'Р. с. сопровождается перераспределением энергии между излучением и веществом и его называют неупругим.

  Во многих случаях оказывается достаточным описание Р. с. в рамках волновой теории излучения (см. , ). С точки зрения этой теории (называемой классической), падающая световая волна возбуждает в частицах среды электрических зарядов («токи»), которые становятся источниками вторичных световых волн. При этом определяющую роль играет между падающей и вторичными волнами (см. ниже).

  Количественной характеристикой Р. с. и при классическом, и при квантовом описании является дифференциальное сечение рассеяния ds ,определяемое как отношение dl,рассеянного в малый элемент телесного угла dW, к величине падающего потока l 0: ds = dl/ l 0 .Полное сечение рассеяния s есть сумма ds по всем dW (сечение измеряют обычно в см 2) .При упругом рассеянии можно считать, что s -размер площадки, «не пропускающей свет» в направлении его первоначального распространения (см. ). При классическом описании Р. с. часто пользуются матрицей рассеяния, связывающей амплитуды падающей и рассеянных по всевозможным направлениям световых волн и позволяющей учесть изменение состояния поляризации рассеянного света. Неполной, но наглядной характеристикой Р. с. служит рассеяния - кривая, графически отображающая различие в интенсивностях света, рассеянного в разных направлениях.

  Вследствие обилия и разнообразия факторов, определяющих Р. с., весьма трудно развить одновременно единый и детальный способ его описания для различных случаев. Поэтому рассматривают Идеализированные ситуации с разной степенью адекватности самому явлению.

  Р. с. отдельным электроном с большой точностью является упругим процессом. Его сечение не зависит от частоты (т. н. томсоновское Р. с.) и равно s = (8p/3) r 2 0= 6,65Ч10 -25 см 2( r 0= e 2/ mc 2- т. н. классический радиус электрона, много меньший длины волны света; еи m -заряд и масса электрона; с - в вакууме). Индикатриса рассеяния неполяризованного света в этом случае такова, что вперёд или назад (под углами 0° и 180°) рассеивается вдвое больше света, чем под углом 90°. Р. с. отдельными электронами - процесс, обычный в астрофизической ; в частности, оно ответственно за многие явления в и коронах др. звёзд.

  Основная особенность Р. с. отдельным атомом - сильная зависимость сечения рассеяния от частоты. Если частота w падающего света мала по сравнению с частотой w 0собственных колебаний атомных электронов (атомной линии поглощения), то s ~ w 4, или l -4 (l -длина волны света). Эта зависимость, найденная на основе представления об атоме как об электрическом , колеблющемся в поле световой волны, называется .Вблизи атомных линий (w » w 0) сечения резко возрастают, достигая в резонансе (w = w 0) очень больших значений s » l 2~ 10 -10 см 2 .Вследствие ряда особенностей резонансного Р. с. оно носит специальное название резонансной флуоресценции. Индикатриса рассеяния неполяризованного света атомами аналогична описанной для свободных электронов. Р. с. отдельными атомами наблюдается в разреженных газах.

  При Р. с. молекулами наряду с рэлеевскими (несмещенными) линиями в спектре рассеяния появляются, в отличие от случая атомарного Р. с., линии неупругого Р. с. (смещенные по частоте). Относит. смещения чw - w'ъ/w ~ 10 -3-10 -5, а интенсивность смещенных линий составляет лишь 10 -3-10 -6интенсивности рэлеевской. О неупругом Р. с. молекулами см. .

 Р. с. мелкими частицами обусловливает широкий класс явлений, которые можно описать на основе теории на диэлектрических частицах. Многие характерные особенности Р. с. частицами удаётся проследить в рамках строгой теории, разработанной для сферических частиц английским учёным А. Лявом (1889) и немецким учёным Г. Ми (1908, теория Ми). Когда радиус шара rмного меньше длины волны света l n в его веществе, Р. с. на нём аналогично нерезонансному Р. с. атомом. Сечение (и интенсивность) Р. с. в этом случае сильно зависит от rи от разности e и e 0вещества шара и окружающей среды: s ~ l n -4 r 6(e - e 0)(Рэлей, 1871). С увеличением rдо r ~l n и более (при условии e > 1) в индикатрисе рассеяния появляются резкие максимумы и минимумы - вблизи т. н. резонансов Ми (2 r= ml n, m= 1, 2, 3,...) сечения сильно возрастают и становятся равными 6p r 2,рассеяние вперёд усиливается, назад - ослабевает; зависимость поляризации света от угла рассеяния значительно усложняется.

  Р. с. большими частицами ( r>> l n ) рассматривают на основе законов с учётом интерференции лучей, отражённых и преломленных на поверхностях частиц. Важная особенность этого случая - периодический (по углу) характер индикатрисы рассеяния и периодическая зависимость сечения от параметра r/l n.Р. с. на крупных частицах обусловливает , , и др. явления, происходящие в , туманах и пр.

  Р. с. средами, состоящими из большого числа частиц, существенно отличается от Р. с. отдельными частицами. Это связано, во-первых, с интерференцией волн, рассеянных отдельными частицами, между собой и с падающей волной. Во-вторых, во многих случаях важны эффекты многократного рассеяния (переизлучения), когда свет, рассеянный одной частицей, вновь рассеивается другими. В-третьих, взаимодействие частиц друг с другом не позволяет считать их движения независимыми.

  Л. И. показал (1907), что принципиально необходимым для Р. с. в сплошной среде является нарушение её оптической однородности, при котором среды не постоянен, а меняется от точки к точке. В безграничной и полностью однородной среде волны, упруго рассеянные отдельными частицами по всем направлениям, не совпадающим с направлением первичной волны, взаимно «гасятся» в результате интерференции. Оптическими неоднородностями (кроме границ среды) являются включения инородных частиц, а при их отсутствии - плотности, и концентрации, которые возникают в силу статистической природы теплового движения частиц.

  Если рассеянной волны однозначно определяется фазой падающей волны, Р. с. называется когерентным, в противном случае - некогерентным. По исторической традиции Р. с. отдельной молекулой (атомом) часто называется когерентным, если оно рэлеевское, и некогерентным, если оно неупруго. Такое деление условно: рэлеевское Р. с. может являться некогерентным процессом так же, как и комбинационное. Строгое решение вопроса о когерентности при Р. с. тесно связано с понятием квантовой когерентности и статистикой излучения. Резкое различие в пространственном распределении когерентно и некогерентно рассеянного света обусловлено тем, что при некогерентном Р. с. вследствие нерегулярного, случайного распределения неоднородностей в среде фазы вторичных волн случайны по отношению друг к другу; поэтому при интерференции не происходит полного взаимного гашения волн, распространяющихся в произвольном направлении.

  Впервые на Р. с. тепловыми флуктуациями (его называют молекулярным Р. с.) указал М. в 1908. Он развил теорию молекулярного Р. с. разреженными газами, в которых положение каждой отдельной частицы можно с хорошей степенью точности считать не зависящим от положений др. частиц, что и является причиной случайности фаз волн, рассеянных каждой частицей. Взаимодействием частиц между собой в ряде случаев можно пренебречь. Это позволяет считать, что интенсивность света, некогерентно рассеянного коллективом частиц, есть простая сумма интенсивностей света, рассеянного отдельными частицами. Суммарная интенсивность пропорциональна плотности газа. В оптических тонких средах (см. ) Р. с. сохраняет многие черты, свойственные Р. с. отдельными молекулами (атомами). [В оптически плотных средах чрезвычайно существенным становится многократное рассеяние (переизлучение)]. Так, в атмосфере Земли сечение рассеяния солнечного света на флуктуациях плотности характеризуется той же зависимостью s ~ l -4, что и нерезонансное Р. с. отдельными частицами. Этим объясняется голубой цвет неба: высокочастотную (голубую) составляющую спектра лучей Солнца атмосфера рассеивает гораздо сильнее, чем низкочастотную (красную). Весьма сложна картина Р. с. при резонансной флуоресценции, когда в объёме l 3находится большое число частиц. В этих условиях коллективные эффекты становятся определяющими; Р. с. может происходить по необычному для газа типу, например приобретая характер металлического отражения от поверхности газа. Полная теория резонансной флуоресценции не разработана.

  Молекулярное Р. с. чистыми, без примесей, твёрдыми и жидкими средами отличается от нерезонансного Р. с. газами вследствие коллективного характера флуктуаций показателя преломления (обусловленных флуктуациями плотности и температуры среды при наличии достаточно сильного взаимодействия частиц друг с другом). Теорию упругого Р. с. жидкостями развил в 1910, исходя из идей Смолуховского, А. .Эта теория основывалась на предположении, что размеры оптических неоднородностей в среде малы по сравнению с длиной волны света. Вблизи критических точек (см. ) интенсивность флуктуаций значительно возрастает и размеры областей неоднородностей становятся сравнимы с длиной волны света, что приводит к резкому усилению Р. с. средой - , осложнённой явлением переизлучения.

  В растворах дополнительной причиной Р. с. являются флуктуации концентрации; на поверхности раздела двух несмешивающихся жидкостей - флуктуации этой поверхности (Л. И. Мандельштам, 1913). Вблизи критических точек (точки осаждения в 1-м случае, точки расслоения - во 2-м) возникают явления, родственные критические опалесценции.

  Движение областей неоднородностей среды приводит к появлению в спектрах Р. с. смещенных по частоте линий. Типичным примером может служить Р. с. на упругих волнах плотности ( ), подробно описанное в ст. .

 Всё сказанное выше относилось к Р. с. сравнительно малой интенсивности. В 60-70-е гг. 20 в. после создания сверхмощных источников оптического излучения узкого спектрального состава ( ) стало возможным изучение рассеяния чрезвычайно сильных световых потоков, которому оказались свойственны характерные отличия. Так, например, при резонансном рассеянии сильного на отдельном атоме вместо рэлеевских линий появляются (в данном случае свет рассеивается атомом, состояние которого уже изменено действием сильного электромагнитного поля). Др. особенность рассеяния сильного света заключается в интенсивном характере т. н. вынужденных процессов в веществе, резко меняющих характеристики Р. с. Подробно об этом см. в ст. и .

 Явление Р. с. чрезвычайно широко используется при самых разнообразных исследованиях в физике, химии, в различных областях техники. Спектры Р. с. позволяют определять молекулярные и атомные характеристики веществ, их упругие, релаксационные и др. постоянные. В ряде случаев эти спектры являются единственным источником информации о запрещенных переходах (см. ) в молекулах. На Р. с. основаны многие методы определения размеров, а иногда и формы мелких частиц, что особенно важно, например, при измерении и при исследовании полимерных растворов (см. , ). Процессы вынужденного Р. с. лежат в основе т. н. активной спектроскопии и широко используются в лазерах с перестраиваемой частотой.

  Лит.:Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Волькештейн М. В., Молекулярная оптика, М. - Л., 1951; Хюлст Г., Рассеяние света малыми частицами, пер. с англ., М., 1961; Фабелинский И. Л., Молекулярное рассеяние света, М., 1965; Пантел Р., Путхов Г., Основы квантовой электроники, пер. с англ., М., 1972.

  С. Г. Пржибельский.

Рассеяния коэффициент

Рассе'яния коэффицие'нтв оптике, безразмерное отношение , рассеиваемого данным телом, к падающему на него потоку излучения. См. также .

Рассеяния показатель

Рассе'яния показа'тельсреды в оптике, величина, обратная расстоянию, на котором в виде параллельного пучка лучей ослабляется за счёт в среде в 10 (десятичный Р. п.) или е(натуральный Р. п.) раз. В общем случае Р. п. существенно зависит от длины волны l (частоты n) рассеиваемого оптического излучения. Его значение для предельного случая единственной n называется монохроматическим Р. п.

Рассеянные звёздные скопления

Рассе'янные звёздные скопле'ния,см. .

Рассеянные элементы

Рассе'янные элеме'нты,группа химических элементов (Rb, Cd, Cs, Sc, Ga, In, Tl, Ge, Hf, V, Se, Te, Re), встречающихся в природе главным образом в виде примеси в различных минералах и извлекаемых попутно из руд др. металлов или полезных ископаемых (углей, солей, фосфоритов и пр.). Различают следующие формы вхождения Р. э. в др. минералы: изоморфное замещение «ведущего» элемента (например, гафний в циркониевых минералах); микроминералы, обнаруживаемые только с помощью микрозондирования (например, теллуриды в пирите); сорбированная примесь, поглощённая поверхностью «землистых» (аморфных) минералов (например, ванадий в монтмориллоните, селен в лимоните); образование металлоорганических соединений (например, в углях); расположение Р. э. в дефектах кристаллических решёток (см. ). Р. э., даже при относительно высоком содержании в земной коре, самостоятельных минералов, как правило, не образуют. Только в определённых случаях Р. э. (Sc, Tl, Ge, V, Se, Te и Cd) могут образовывать свои собственные минералы. Их рассеяние среди др. элементов или возникновение собственных минералов определяется прежде всего соотношением в природных процессах концентраций Р. э. и их широко распространённых геохимических аналогов. Так, например, кадмий, являющийся геохимическим аналогом цинка, в глубинных зонах всегда рассеивается в цинковых минералах, из которых он и извлекается, но в зоне окисления происходит разделение Cd и Zn, последний выносится, а Cd накапливается в форме своих собственных соединений. См. также .

  Лит.:Геохимия редких элементов в изверженных горных породах. [Сб. ст.], М., 1964; Иванов В. В., Геохимия рассеянных элементов, Ga, Ge, Gd, In, Tl в гидротермальных месторождениях, М., 1966.

  В. В. Щербина.

Рассеянный склероз

Рассе'янный склеро'з(sclerosis disseminata), множественный склероз, хроническое прогрессирующее заболевание человека, характеризующееся развитием очагов демиелинизации (распада миелина; см. ) в центральной и периферической нервной системе; относится к группе .Этиология недостаточно выяснена; согласно инфекционно-аллергической теории, инфекционный (вирусный или бактериальный) агент играет роль пускового механизма, приводящего к развитию длительного аутоиммунного процесса (см. ). При Р. с. в веществе головного и спинного мозга образуются различной величины склеротические бляшки. При микроскопическом исследовании в них выявляют распад миелина и разрастание глии. Заболевание, как правило, возникает в молодом возрасте. Ж. М. Шарко описал (1868) классическую триаду симптомов Р. с.: , интенционное дрожание (неритмичные колебания глаз, возникающие при движениях), скандированную речь. Для Р. с. характерны также зрительные (изменения полей цветового зрения и остроты зрения, появление двоения в глазах) и вестибулярные (головокружение) нарушения, расстройства координации, поражение пирамидной системы (спастический нижних конечностей, патологические Бабинского и Россолимо, выпадение брюшных рефлексов и др.), нарушения вибрационной чувствительности и изменения спинномозговой жидкости. Течение заболевания медленное, чаще - с периодическими обострениями; со временем укорачиваются, неврологическая симптоматика прогрессирует.

  Лечение: десенсибилизирующие средства и иммунодепрессанты (хингамин, глюкокортикоиды, циклофосфамид, гистаглобин и др.); переливания крови и кровезаменителей; препараты, нормализующие обмен веществ, витаминный баланс и нейрогуморальные влияния (АТФ, витамины комплекса В, глютаминовая кислота, прозерин, динезин и др.); физиотерапия (электросон, аппликации озокерита, индуктотермия и др.); лечебная физкультура; метод биоэлектрической стимуляции мышц и управления движениями (аппарат «Миотон») и многое др. Ведутся поиски хирургического лечения Р. с.

  Лит.:Демиелинизирующие заболевания нервной системы в эксперименте и клинике, Минск, 1970; Панов А. Г., 3инченко А. П., Диагностика рассеянного склероза и энцефаломиелита, [Л.], 1970; Пенцик А. С., Рассеянный склероз, Рига, 1970.

  В. Б. Гельфанд.

Рассеянных элементов руды

Рассе'янных элеме'нтов ру'ды,природные минеральные образования, содержащие в таких соединениях и концентрациях, при которых целесообразно их извлечение при современном развитии технологии и экономики. Они извлекаются главным образом попутно из руд др. металлов и полезных ископаемых при комплексной их переработке. Основные рассеянные элементы, их геохимические аналоги, минералы-концентраторы и минеральные образования, которые служат важнейшими источниками их промышленного получения, приведены в таблице. Для большинства рассеянных элементов существует несколько типов руд, из которых они могут быть извлечены. Например, в Великобритании германий извлекается из коксующихся углей, в Японии - из германийсодержащих лигнитов, в США - из свинцово-цинковых руд долины Миссисипи, в Бельгии - из собственно германиевых руд месторождения Кипуши (Республика Заир). В СССР производство ванадия основано на попутном его извлечении из титаномагнетитов Урала, в США - из ураноносных карнотитовых песчаников района Амбросия-Лейк в штате Колорадо (см. ), в Перу - из собственно ванадиевых руд в асфальтитах (Минас-Рагра), в Намибии и Замбии - из зоны окисления полиметаллических (деклуазитовые и ванадинитовые руды) месторождений Берг-Аукас, Цумеб, Абенаб и др.

  Получение рассеянных элементов из комплексных руд определяется масштабами добычи основных элементов, существующей потребностью в рассеянных элементах и наличием экономически рентабельной технологии их извлечения. Производство рассеянных элементов в капиталистических странах в 1969-72 составляло (в тыс. т): ванадия 13-16; кадмия 10-15; селена 1-1,2; теллура 0,16-0,18; германия 0,009-0,11; индия 0,005-0,006; таллия 0,0013-0,0014; рения - 0,0004.

  Лит.:Геохимия, минералогия и генетические типы месторождений редких элементов, т. 1-2, М., 1964; Магакьян И. Г., Редкие, рассеянные и редкоземельные элементы, Ep., 1971; Рудные месторождения СССР, т, 1-3, М., 1974.

  Л. И. Гинзбург.

Основные рассеянные элементы и их руды

Рассеянный элемент Распространён-ный геохимический аналог Условия накопления и нахождения Минералы-концентраторы Промышленное получение
Рубидий Rb + Калий К + Пегматиты (поздние стадии) в калиевых и цезиевых минералах Микроклин Попутно из литиевых слюд типа лепидолита, а также поллуцита при переработке их на Li и Cs
Rb-мусковит
Лепидолит
Поллуцит
Грейзены Циннвальдит Попутно из литиевых слюд
Осадочные месторождения калийных солей Сильвин Попутно из калийных солей
Карналлит
Кадмий Cd 2+ Цинк Zn 2+ Полиметаллические месторождения, особенно скарнового типа Сфалерит Попутно из полиметалличес- ких и медно-цинковых колчеданных месторождений
Медно-цинковые колчеданные месторождения Сфалерит
Зона окисления полиметаллических месторождений Гринокит CdS Отавит CdCO3
Галлий Ga 3+ Алюминий Al3 + Нефелиновые сиениты Нефелин Содалит Гакманит Сфалерит Галдит CuGaS 2 В основном попутно при производстве алюминия из бокситов
Полиметаллические и медно-полиметаллические месторождения, залегающие в карбонатных породах
Бокситы Бемит Гидраргиллит Диаспор
Таллий Tl