Распределение радиоактивных атомов в микрообъектах (клетки растений и животных, зёрна металлов и др.) изучают с помощью микроскопа по распределению треков частиц или отдельных проявленных зёрен фотоэмульсии. Точность определения местонахождения изотопов в исследуемых объектах зависит от вида излучения, его энергии, толщины образца, толщины фотослоя, расстояния между образцом и фотоэмульсией и от некоторых др. факторов. Кроме того, различные варианты Р., в зависимости от целей исследования, применяются, например, для регистрации отдельных частиц, измерения количества радиоактивных атомов в отдельных участках объекта, регистрации доз ионизирующего излучения (см. ).

  Лит.:Радиография, [пер. с англ.], М., 1952; Коробков В. И., Метод макроавторадиографии, М., 1967; Брук Б. И., Авторадиографическое исследование металлов, применяемых в судостроении, Л., 1966; Роджерс Э., Авторадиография, пер. с англ., М., 1972. См. также лит. при статьях и .

  В. И. Коробков.

Радиодальномер

Радиодальноме'р,устройство для измерения расстояний по скорости и времени прохождения радиоволн вдоль измеряемой линии и обратно после их отражения от конечной точки этой линии. Различают Р. с пассивным и активным отражением, а по виду излучаемых радиосигналов - с импульсным и непрерывным излучением.

  В Р. с пассивным отражением на вход приёмника попадают два сигнала - прямой, непосредственно с радиопередатчика, и запаздывающий (относительно прямого), после отражения его от объекта, расстояние до которого определяется. В импульсных Р., где излучаемый сигнал представляет собой короткие радиоимпульсы, индикатор измеряет запаздывание t отражённого импульса относительно прямого; измеряемое таким Р. расстояние , где u -скорость распространения радиоволн. В Р. с непрерывным излучением используются радиосигналы с периодически изменяющейся частотой, индикатор измеряет разность частот Qмежду прямыми и отражёнными колебаниями; измеряемое расстояние , где Т -период модулирующих колебаний, D f- диапазон частот модуляции. Пассивное отражение используется в , в .

 В Р. с активным отражением применяются две станции - ведущая и ведомая, располагаемые на концах измеряемой линии. Радиосигналы могут быть импульсные и непрерывные - на одной несущей частоте или с модулированной несущей частотой и т.д. Радиосигналы, принимаемые ведомой станцией, преобразуются и ретранслируются. При использовании непрерывных колебаний измерение расстояний производится фазовым методом. Если сигнал выбран с одной несущей частотой f, то для определения расстояния волны, принятые ведомой станцией с одной частотой колебаний, можно трансформировать в волны с другой частотой колебаний, жестко связанной с частотой исходных колебаний (например, в отношении 2/ 3, 3/ 2и т.д.), и их излучать. Для определения расстояния при этом необходимо индикатором на ведущей станции измерить разность фаз j излучаемых и принимаемых волн после обратной трансформации их частоты; измеряемое расстояние будет равно

 Наибольшая точность измерения расстояний (около 3Ч10 -6от измеряемого расстояния) достигнута в фазовых Р., использующих модулированные радиосигналы в УКВ диапазоне радиоволн с измерением расстояния по сдвигу фаз модулирующих колебаний. Ведущая и ведомая станции в них излучают волны с модулированными по частоте или амплитуде колебаниями с несущей частотой соответственно f Aи f B, причём f A- f B = f пр, где f пр- промежуточная частота в приёмниках станций. Разность частот модулирующих колебаний обеих станций FA- F B = D Fвыбирают низкой (порядка 1000 гц). Приёмники станций не имеют отдельных , а для преобразования в смесителе несущей частоты в промежуточную используются колебания, наводимые с собственного радиопередатчика. На выходе усилителя промежуточной частоты приёмников получают колебания промежуточной частоты, модулированные по амплитуде синусоидальными колебаниями низкой частоты D F. На ведомой станции после детектирования эти колебания преобразуются в импульсы или в модулированные ими колебания поднесущей частоты и затем полученным сигналом дополнительно модулируют радиопередатчик. На выходе приёмника ведущей станции в результате образуются два низкочастотных сигнала, разность фаз между которыми измеряется индикатором; измеряемое расстояние ,где l А= u/ F A- длина волны модулирующих колебаний ведущей станции. Для получения высокой точности измерения выбирают l А<< D

, и поэтому возникает неоднозначность в измерениях, которую разрешают использованием нескольких модулирующих колебаний на различных частотах. Р. с активным отражением применяют в навигации, геодезии, в военном деле.

  Лит.:Пащенков В. З., Радио- и светодальномеры, М., 1972.

  Н. Л. Гилль.

Радиодефектоскопия

Радиодефектоскопи'я,см. в ст. .

Радиодом

Радиодо'м,в СССР художественно-промышленное предприятие, осуществляющее , всех видов и жанров, тиражирование фонограмм на магнитной ленте, хранение и реставрацию уникальных звукозаписей. В составе Р. - редакции, студии, аппаратные, монтажные, фонотека и др. службы, обеспечивающие создание, запись, контроль, усиление радиопрограмм и передачу их радиовещательным станциям, узлам проводного вещания и др. В СССР на 1 января 1975 действовало 177 Р. Центр всесоюзного радиовещания и производства звукозаписей - Государственный в Москве.

Радиозащитные средства

Радиозащи'тные сре'дства,радиопротекторы, химические соединения, применяемые для защиты биологических объектов - микроорганизмов, растений, животных и человека от ; вводятся в среду или в организм до или во время облучения. К эффективным Р. с. относятся вещества, содержащие сульфгидрильные (тиоловые) группы (-SH), например цистеин, а также меркаптоампны, индолилалкиламины и др. Р. с. обычно уменьшают все проявления последствий облучения, т. е. его летальное и нелетальное действие, в том числе генетическое. Р. с. оказывают действие, понижая внутриклеточное или внутритканевое напряжение кислорода или увеличивая содержание эндогенных тиолов, что сопровождается уменьшением окислительно-восстановительного потенциала. Величину действия Р. с. выражают в виде фактора уменьшения дозы (ФУД), равного отношению доз излучений, вызывающих одинаковый эффект в присутствии Р, с. и в их отсутствии. ФУД зависит от условий облучения и физических свойств излучений: при облучении в условиях он значительно меньше, чем при облучении в присутствии кислорода (см. ), а при действии излучений с высокой линейной потерей энергии (ЛПЭ) (a-частицы, нейтроны, тяжёлые ионы) меньше, чем при действии излучений с низкой ЛПЭ (рентгеновские и g-лучи). Защитное действие Р. с. зависит также от особенностей биологического объекта. Так, некоторые Р. с. могут защищать микроорганизмы и клетки в культуре и не защищать млекопитающих. См. также , .

  Лит.:Бак З. М., Химическая защита от ионизирующей радиации, пер. с англ., М., 1968; Романцев Е. Ф., Радиация и химическая защита, [2 изд.], М., 1968; Граевский Э. Я., Сульфгидрильные группы и радиочувствительность, М., 1969; Сумаруков Г. В., Окислительное равновесие и радиочувствительность организмов, М., 1970.

  В. И. Корогодин.

Радиозвёзды

Радиозвёзды,источники космического радиоизлучения, связанные со звёздами нашей Галактики. Типичной нормальной Р. является Солнце. Все звёзды излучают в радиодиапазоне, однако это излучение обычно имеет малую мощность и из-за удалённости звёзд наблюдать его крайне затруднительно. Удаётся регистрировать лишь радиоизлучение, возникающее, например, при вспышках красных карликов и новых звёзд, а также в двойных и рентгеновских звёздах. Особую группу объектов звёздной природы, излучающих радиоволны, составляют .В 50-х гг. 20 в. Р. называли все дискретные источники космического радиоизлучения.

Радиозонд

Радиозо'нд,аэрологический прибор, измеряющий давление, температуру и влажность воздуха и автоматически передающий по радио на Землю значения этих метеорологических элементов с разных высот во время подъёма в атмосфере. Р. состоит из приёмников - чувствительных элементов (датчиков), преобразователей, превращающих малые перемещения чувствительных элементов в электрические величины, кодового устройства и лёгкого коротковолнового передатчика. Поднимается Р. на на высоту до 30-40 км.При подъёме Р. автоматически посылает кодированные сигналы, соответствующие показаниям прибора. Сигналы принимаются радиоприёмником в месте выпуска. Дальность действия Р. около 150-200 км.Существуют аэростатные Р., которые могут измерять также скорость и направление ветра. Р. широко применяется при вертикальном .Первый Р. был сконструирован советским учёным П. А. Молчановым в 1930.

Радиоизлучение Солнца

Радиоизлуче'ние Со'лнца,электромагнитное излучение солнечной атмосферы в диапазоне волн от долей ммдо нескольких км.Р. С. было обнаружено в середине 30-х гг. 20 в., когда выяснилось существование помех радиоприёму, интенсивности которых согласовывались с изменениями солнечной активности. В 1942 наряду с этим Р. С. - т. н. радиоизлучением активного Солнца - было зарегистрировано также радиоизлучение спокойного Солнца в дециметровом диапазоне волн. Систематические исследования Р. С. начались в 1946-47.

  На волнах приблизительно от 1 ммдо десятков мР. С. исследуется с помощью , расположенных на земной поверхности, а на более длинных и более коротких волнах - с космических аппаратов. Р. С. на волнах длиннее нескольких кмпрактически полностью поглощается в межпланетном газе и недоступно наблюдениям.

  Радиоизлучение спокойного Солнца почти не меняется со временем и связано с тепловым излучением электронов в электрическом поле ионов невозмущённой атмосферы Солнца. Коротковолновое Р. С. (1-3 мм) исходит из фотосферы Солнца, радиоизлучение в сантиметровом диапазоне - от хромосферы, а в дециметровом и метровом диапазонах - из солнечной короны, простирающейся на большие расстояния от видимого диска Солнца и непрерывно переходящей в межпланетный газ. Факт возникновения метрового радиоизлучения спокойного Солнца в солнечной короне был впервые установлен в СССР при наблюдениях полного солнечного затмения в 1947. При этом было обнаружено, что температура солнечной короны составляет около 10 6К.

  Медленно меняющееся Р. С. связано прежде всего с активными областями в атмосфере Солнца над солнечными пятнами, а также с флоккулами. Излучение также носит тепловой характер, однако, кроме тормозного механизма излучения, здесь, по-видимому, играет роль и магнитотормозной механизм, т. е. излучение частично возникает вследствие искривления траекторий электронов магнитными полями солнечных пятен. Этот вид Р. С. преобладает в диапазоне волн 5-20 сми согласуется по времени с видимой в оптическом диапазоне волн активностью Солнца, в частности с площадью солнечных пятен. Такое Р. С. часто бывает сильно поляризованным по кругу, что свидетельствует о наличии сильных (до нескольких тыс. эрстед) магнитных полей в области возникновения радиоизлучения.

  Всплески Р. С. весьма разнообразны, иногда превышают по своей мощности тепловое радиоизлучение спокойного Солнца в миллионы раз. Этот вид Р. С. преобладает в метровом диапазоне волн, хотя т. н. микроволновые всплески зарегистрированы даже в миллиметровом диапазоне волн. При вспышках на Солнце в районах солнечных пятен возникают релятивистские частицы, движение которых сквозь солнечную атмосферу приводит к сильному радиоизлучению. Радиоизлучение связано либо с магнито-тормозным механизмом, либо с возбуждением различных волн в солнечной плазме с последующим преобразованием плазменных волн в электромагнитные. Кроме того, зарегистрированы малые квазипериодические флуктуации Р. С. с периодами в сотни и тысячи секунд весьма малой амплитуды. Природа этих флуктуаций ещё (1975) не выяснена.

  Результаты наблюдений Р. С. используются при построении модели атмосферы Солнца, при изучении механизма воздействия Солнца на атмосферу Земли. Исследованием Солнца методами радиолокации занимается .

  Лит.:Железняков В. В., Радиоизлучение Солнца и планет, М., 1964.

  Ю. Н. Парийский.

Радиоизмерения

Радиоизмере'ния, электрических, магнитных и электромагнитных величин и их отношений, характеризующих работу радиотехнических устройств в диапазоне частот от инфразвуковых до сверхвысоких. Методы Р. возникли и развивались одновременно с зарождением и совершенствованием и и основываются на методах измерений электрических величин. Р. необходимы при разработке, производстве и эксплуатации аппаратуры , , , средств , технической диагностики и вычислительной техники, при изготовлении электронных приборов и элементов; методы Р. используются при исследованиях в физике, химии, биологии, медицине, геологии и др. областях науки.

  Особенность Р. - в многочисленности и широких пределах значений измеряемых величин (например, от 10 -8до 10 3 впо напряжению, от 10 -16до 10 8 втпо мощности, от 10 -4до 10 12 гцпо частоте). Во многих случаях для измерения параметров радиотехнических устройств используют косвенные методы Р., что вызывает необходимость применения не только измерительных, но и вспомогательных приборов - источников напряжения и тока различной частоты, работающих в режимах непрерывной генерации или с различными видами (эти приборы обычно также относят к радиоизмерительным приборам - РИП).

  Выделяют следующие важнейшие сферы применения методов Р.: измерение параметров электро- и радиоэлементов ( , , , , ); определение режимов работы полупроводниковых и электровакуумных элементов, приборов и устройств (по току, напряжению, мощности); определение вида и характера изменения радиосигналов (формы и спектра импульсных сигналов, глубины модуляции, манипуляции, девиации непрерывных сигналов); изучение характеристик электронных и радиотехнических устройств (в т. ч. зависимостей амплитуды выходных сигналов от частоты и времени, выходной мощности от нагрузки, величины коэффициента стоячей волны, формы диаграммы направленности излучения антенн); градуировка и калибровка РИП, радиотехнических блоков, устройств и систем (измерительных генераторов, ламповых вольтметров, ваттметров, радиоприёмников и передатчиков, радиолокационных станций и т.д.); измерение ряда электрофизических параметров материалов и веществ.

  Р. производятся в лабораторных, производственных и полевых условиях. РИП, используемые при лабораторных Р., отличаются высокой точностью и стабильностью параметров; наряду со стрелочным отсчётом и ручным регулированием в лабораторных РИП применяют цифровой отсчёт измеряемых величин.

  В производственных условиях Р. служат главным образом для контроля параметров и характеристик выпускаемых изделий. Получили применение технологические радиоизмерительные установки с автоматической регистрацией результатов измерений, а в ряде случаев и с передачей их для дальнейшей обработки на ЭВМ. Разрабатываются комплексные методы Р., воплощаемые в т. н. (ИИС), значительно (в сотни раз) увеличивающих производительность труда при измерениях, в службах управления и т.д. Радиоизмерительные информационные системы отличаются от др. ИИС тем, что, кроме коммутирующих, регистрирующих и вычислительных устройств, в их состав входят устройства, обеспечивающие генерирование и передачу сигналов (имитирующих реальные) на исследуемый объект.

  В полевых условиях Р. используются для оперативного контроля и измерения (с ограниченной точностью) параметров различных радиотехнических устройств или окружающей среды, в частности уровня шумов, интенсивности излучения и т.д. С этой целью применяют главным образом переносные РИП.

  Основные требования, предъявляемые к РИП: малая погрешность, незначительное влияние на объект измерений, высокая надёжность и степень готовности к работе, удобство эксплуатации и ремонта и т.п. В 60-х гг. в связи с бурным развитием радиоэлектроники потребовалось резко увеличить быстродействие и частотные пределы измерений, ввести цифровой отсчёт, снизить до минимума число ручных регулировок, максимально автоматизировать процесс измерений с представлением результатов в цифровом коде на ЭВМ. В начале 70-х гг. парк радиоизмерительной аппаратуры общего назначения в СССР и за рубежом насчитывал свыше 1000 типов различных приборов, которые можно классифицировать в соответствии с их назначением.

  В группу измерителей напряжения входят электронные постоянного и переменного тока, селективные, фазочувствительные и импульсные вольтметры, а также универсальные вольтметры и измерители отношения электрических напряжений. В группу приборов для измерения мощности входят собственно , для измерения мощности, измерительные термисторные, термоэлектрические и болометрические преобразователи, .

 Измерения параметров элементов и цепей с сосредоточенными постоянными производят , , , , , и др. приборами. При измерении параметров элементов и трактов с распределёнными постоянными пользуются , приборами для измерения коэффициента стоячей волны и коэффициента отражения, комплексного коэффициента передачи, полного сопротивления и проводимости и т.п.

  Измерения частоты производят с помощью , , , а также и эталонов, для которых получена наивысшая воспроизводимость физической величины, составляющая, например, для водородных генераторов (1-5)Ч10 -14. В эту группу приборов входят также частот, , и синхронизаторы частот радиосигналов.

  Измерения сдвига фаз и группового времени задержки производят с помощью фазометров и измерителей времени прохождения сигналов на различных частотах. Получили применение приборы для наблюдения и исследования формы и спектра сигналов. В эту группу приборов входят , модулометры, девиометры, и гармоник, .К этой же группе относятся приборы для измерения амплитудно-частотных, фазочастотных и корреляционных характеристик, а также измерители коэффициента радиоустройств.

  Особую группу РИП, развитию которых в современной уделяется всё большее внимание, составляют приборы для импульсных измерений (измерители временных интервалов, длительности импульсов, их фронта и спада, счётчики импульсов, амплитудные анализаторы импульсов и т.п.). В 70-х гг. появились также приборы для голографических измерений и измерений параметров устройств, работающих при низких температурах.

  Важное значение для Р. имеют РИП, осуществляющие приём, усиление и генерирование радиосигналов: измерительные приёмники, усилители переменного и постоянного тока, широкополосные, селективные и универсальные усилители, приборы и установки для антенных измерений, измерительные генераторы, генераторы шумов, генераторы сигналов специальной формы (прямоугольной, пилообразной и т.п., с заполнением колебаниями несущей частоты и без заполнения), генераторы качающейся частоты (свип-генераторы) и многие др.

  Для нужд производства и служб эксплуатации выпускают приборы для измерения параметров полупроводниковых диодов, транзисторов и интегральных микросхем, а также рассчитанные на массовые измерения ИИС, для которых важны не только точность измерения, но и высокая производительность. Для быстрого измерения параметров и характеристик электронных приборов применяют характериографы.

  Для подключения РИП к измеряемым объектам используется вспомогательная аппаратура (в виде функциональных узлов): модули коаксиальных, полосковых и волноводных трактов, согласующие, переходные и симметрирующие трансформаторы, коаксиально-волноводные и полосковые переходы, механические и электрические переключатели коаксиальных и волноводных трактов, аттенюаторы, направленные ответвители, фазовращатели, детекторные преобразователи, ферритовые циркуляторы и вентили, фильтры, нагрузки, короткозамыкатели, соединительные элементы и пр. Практически все эти элементы применяются в 3 модификациях: волноводные, коаксиальные и полосковые.

  В сочетании с различными преобразователями РИП применяют также для определения методами Р. неэлектрических величин (линейных размеров, температуры, давления и т.д.). См. также и .

  Лит.:Момот Е. Г., Радиотехнические измерения, М. - Л., 1957; Измерения в электронике. Справочник, ред.-сост. Б. А. Доброхотов, т. 1-2, М. - Л., 1965; Мирекни Г. Я., Радиоэлектронные измерения, М., 1969; Кушнир Ф. В., Савенко В. Г., Верник С. М., Измерения в технике связи, М., 1970; Валитов Р. А., Сретенский В, Н., Радиотехнические измерения, М., 1970; Шкурин Г. П., Справочник по электро- и электронно-измерительным приборам, М., 1972.

  Е. Г. Билык.

Радиоизотопная диагностика

Радиоизото'пная диагно'стика,раздел ,предмет изучения которого - использование радиоактивных изотопов и меченных ими соединений для распознавания заболеваний. Становление современной Р. д. обусловлено открытием искусственной радиоактивности (1934), определившим возможности получения (изотопов или их соединений), которые позволяют при введении их в организм (in vivo) или в биологические среды организма (in vitro) изучить состояние органов и систем в норме и патологии. Регистрация кинетики (во времени и пространстве) радиоактивных препаратов осуществляется методами .Специальная аппаратура даёт возможность представить радиодиагностическую информацию в виде цифровых величин, графического изображения и картины пространственного распределения препарата в органах и системах (сцинтиграммы).

  В основе методов Р. д. лежат следующие принципы: 1) оценка степени разведения радиоактивного препарата в жидких средах организма (определение объёма циркулирующей крови, водного обмена, обмена калия, натрия и др.); 2) определение изменения (во времени) уровня радиоактивности в органах и системах организма или очаге поражения (изучение центральной и периферической гемодинамики, гепатография, ренография, радиопневмография, определение внутритиреоидного этапа йодного обмена, изучение динамики относительного уровня фосфорного обмена в очаге поражения и др.); 3) визуализация распределения введённого в организм радиоактивного препарата (методы скенирования и гаммасцинтиграфии органов и систем: головного мозга, щитовидной железы, лёгких, печени, почек, костного мозга, костей, лимфатической системы и др.); 4) определение выведения радиоактивных препаратов из организма или их перераспределения в его биологических средах (определение желудочно-кишечного кровотечения, белково-связанного йода в крови, всасывания нейтральных жиров и др.); 5) взаимодействие «in vitro» меченых соединений с составными частями биологических сред организма (без введения радиоактивных препаратов в организм), в частности взаимодействие по типу «антиген-антитело» (определение тироксинсвязывающей способности сыворотки, концентрации различных гормонов в крови и др.).

  В развитии Р. д. можно выделить 2 этапа. Первый этап связан с разработкой методик исследования; изысканием радиоактивных препаратов, наиболее адекватно отражающих состояние органов и систем (Na 131l, 131Ч - гиппуран, 75Se - метионин и др.), создающих минимальную лучевую нагрузку на организм обследуемого (препараты, меченные 99MTc, 111IIn и др.); изготовлением специальной радиодиагностической аппаратуры (скеннеры, гамма-камеры, многоканальные радиометры и др.). Второй этап характеризуется профилизацией Р. д. соответственно потребностям различных клинических дисциплин - нейрохирургии, онкологии, эндокринологии, кардиологии, нефрологии и др., что привело к созданию лабораторий Р. д. во многих профилированных научно-исследовательских центрах и в лечебно-профилактических учреждениях. Методы Р. д. - часть современного комплексного обследования больных. См. также .

  Лит.:Фатеева М. Н., Очерки радиоизотопной диагностики, М., 1960; Зедгенидзе Г. А., Зубовский Г. А., Клиническая радиоизотопная диагностика, М., 1968; Quimby Е., Feitelberg S., Silver S., Radioactive isotopes in clinical practice, Phil.; 1959; Medical radioisotope scintigraphy, 1972; International atomic energy agency, v. 1-2, Vienna, 1973.