Отдельная серия палеонтологических работ Борисяка была посвящена мастодонтам, носорогам и лошадям из миоценовых фаун Казахстана и Северного Кавказа. Кроме них Борисяк изучал носорогов (эласмотериев), пещерных медведей и ископаемых моржей из более поздних, четвертичных отложений различных районов страны.
   Палеонтологические работы Борисяка представляют собой блестящий анализ ископаемых организмов, проведенный методом, разработанным в свое время В. О. Ковалевским. Эти работы дали новое освещение истории развития наземной жизни на обширном европейско-азиатском материке в третичном периоде – в эпоху расцвета млекопитающих, указав при этом центры эволюции и пути расселения многих групп животных.
   «В Азии, – вспоминал Борисяк, – долгое время было известно очень мало ископаемых остатков позвоночных; частью они встречены были на юге Гималаев, в Сиваликских холмах, частью доставлялись ископаемые зубы из Китая, где путешественники скупали их на базарах: они продаются в Китае в качестве медикаментов. Прошло не более двадцати лет с тех пор, как стали известны местонахождения и в других местах Азии. Так, в Белуджистане было найдено несколько отдельных необыкновенно крупных костей какого-то копытного, которое получило название белуджитерия. А через два года была сделана сенсационная находка, вернее, несколько почти одновременных находок – значительно севернее, в Тургайской области, то есть уже в пределах нашей страны.
   Это было летом 1912 года.
   В Тургайских степях в это время работало несколько отрядов Отдела земельных улучшений. Эти отряды имели задачей выяснение гидрогеологических условий в целях обводнения будущих переселенческих участков. Один из этих отрядов, работавший под начальством горного инженера Матвеева, подобрал на реке Кара-Тургае несколько очень крупных зубов, гигантский позвонок и такую же копытную фалангу. И в то же лето участник другого такого же отряда, студент Горного института Гайлит, несколько западнее Кара-Тургая, на реке Джиланчике, нашел богатые костями слои, в которых он набрал довольно значительное количество остатков носорогов и мастодонтов.
   Все эти остатки были доставлены в Геологический музей Академии наук, который в ближайшее же лето (1913 год) командировал того же Гайлита, проявившего большой интерес к своей находке, в качестве «охотника за ископаемыми» для дальнейших розысков и раскопок в обоих местах.
   Тургайская область занимает часть киргизских степей, населенных кочевыми киргизами. Степь представляет волнистую равнину, с разбросанными по ней солеными и пресными озерами, заросшими камышами, которые населены множеством водоплавающих птиц. Гайлит снарядил караван, нанял киргизов в качестве рабочих вести раскопки и отправился в путь. По дороге он разговорился с киргизами, которые во время кочевок хорошо изучили свои степи и знали интересные особенности всех их уголков. Киргизы рассказали ему, что они видели скопления костей более крупных, чем на Джиланчике, к югу от этой реки, на берегу большого соленого озера Челкар. Там была большая битва великанов, говорили они, и кости их теперь лежат разбросанные по берегам этого озера.
   Гайлит увлекся рассказами киргизов и повернул экспедицию на Челкар.
   Это было, конечно, большим проступком с его стороны – изменить намеченное задание, но он не мог противостоять желанию подобрать и «кости великанов».
   На Челкаре действительно оказалось нечто в высшей степени интересное.
   Кости в полтора и более метров длины, цельные и в обломках, так увлекли нашего охотника, что он провел здесь все время, пока не иссякли все данные ему средства. Кости были очень хрупкими и с ними было много возни. Приходилось каждую обделывать особым глиняным кожухом. Для этого мягкую глину, которую брали тут же на склоне, смешивали с травой (для прочности) и толстым слоем накладывали на кость, по мере того, как ее освобождали от глинистого песчаника, в котором она находилась, пока, наконец, вся кость не представляла толстую цилиндрическую или округлую (смотря по форме) болванку. Караван вез доски для ящиков, так как в степи их негде было достать: по форме костей делались ящики, и кости запаковывались в них, в сено и солому.
   Об экспедиции не было никаких сведений все лето, так как поблизости от нее не было никаких почтовых учреждений. Наконец, Гайлит вернулся и с торжеством заявил, что он привез целого мамонта. Велико было разочарование, вызванное этим рассказом: его посылали для сбора совершенно новой, неизвестной до того фауны, а вместо нее он привез давно и всем известного мамонта, остатков которого и без того много в наших музеях.
   Но вот пришли и ящики. И хотя «мамонт» и не представлял особого интереса, все же надо было посмотреть, что это за кости. Раскупорили один из самых крупных длинных ящиков, сняли крышку, но вынимать кости не пришлось: глиняная култышка по дороге растрескалась и грозила совсем рассыпаться вместе с костью. Предстояло препарировать тут же в ящике: понемногу осторожно снимать глиняную корку и осторожно склеивать и уплотнять (пропитывать шеллаком) обнаженную часть кости, – работа исключительно кропотливая, чисто мозаичная. С первых же шагов препарировки обнаружились такие признаки кости, которые позволили с уверенностью сказать, что это не мамонт. Это было какое-то совершенно новое гигантское животное.
   Разочарование сменилось острым интересом, который удесятерил внимание и осторожность при препарировке.
   На этой работе – препарировке скелета индрикотерия, этого нового гигантского животного, родственного упомянутому выше белуджитерию, – создался наш кадр опытных препараторов. Высящийся ныне в геологическом музее скелет индрикотерия (5  мвысоты) с его, как из мозаики, склеенными костями, тем не менее сохранившими правильную естественную свою форму, навсегда останется памятником этой гигантской работы – школы…»
   Таинственному зверю – вымершему халикотерию, очень своеобразному непарнопалому копытному из третичных отложений Центрального Казахстана, была посвящена специальная монография Борисяка.
   Хотя халикотерий и был отнесен к непарнопалым, вместо копыт он имел когти и еще ряд особенностей в строении скелета, которые сильно отличали эту группу от всех других известных палеонтологам представителей копытных. Например, халикотерий имел очень длинную шею, столь же сильно удлиненные передние конечности, а задние конечности наоборот были у него короткие и массивные. Особенно сильно развитыми когтями были при этом снабжены передние конечности халикотерия.
   Борисяк тщательно восстановил все особенности вымершего зверя.
   В итоге он пришел к выводу, что халикотерий зверь умел вставать на задние конечности, передними при этом опираясь о ствол дерева, подобно тому, как это делают козы, когда объедают листья кустарников и невысоких деревьев. Коготь второго пальца на передней конечности у халикотерия представлял собой как бы специальный мощный «крючок», позволявший животному крепко цепляться за ствол дерева.
   Борисяк выполнил ряд крупных работ по ископаемым пластинчатожаберным и головоногим моллюскам. Как отметил в свое время академик Ю. А. Орлов, биологическая основа этих работ Борисяка настолько глубоко и широко разработана, что их итогом явилось несколько самостоятельных зоологических работ, в том числе весьма обстоятельная монография «Введение в изучение ископаемых пелиципод (пластинчатожаберных)», поддержанная соответствующим изучением современных пластинчатожаберных моллюсков.
   В 1929 году Борисяка избрали действительным членом Академии наук СССР.
   В следующем году он возглавил только что созданный Палеозоологический институт. Борисяк был его руководителем до самой кончины, сумев собрать в стенах института лучшие на то время палеонтологические силы – академика П. П. Сушкина, И. А. Ефремова, Ю. А. Орлова, К. К. Флерова. Он организовал многочисленные экспедиции, которые заставили заговорить многие толщи, прежде считавшиеся немыми. На богатом материале, собранном экспедициями института, Борисяк установил новую для СССР и Азии олигоценовую, нижнемиоценовую, среднемиоценовую и сарматскую фауны ископаемых млекопитающих.
   Тяжелые условия военных лет обострили болезнь Борисяка.
   25 февраля 1944 года ученый скончался.
   В работе «Основные проблемы эволюционной палеонтологии», вышедшей посмертно в 1947 году, Борисяк выделил три основных проблемы эволюционной палеонтологии: проблему взаимоотношения организма и среды, проблему филогенеза и проблему онтогенеза, то есть исторического и индивидуального развития, и формообразования или видообразования.
   Все эти направления остаются актуальными и в наши дни.

Петр Леонидович Капица

   Выдающийся физик-экспериментатор.
   Родился 26 июня 1894 года в семье военного инженера генерала Л. П. Капицы, строителя Кронштадтских укреплений. В 1905 году поступил в Кронштадтскую гимназию, из которой за неуспеваемость был переведен в реальное училище. Выпускники реальных училищ не имели права поступать в университеты, поэтому в 1912 году Капица поступил в Петербургский политехнический институт.
   В те годы Политехнический институт располагал всего одной физической кафедрой, заведовал которой профессор В. В. Скобельцын. Только в октябре 1913 года в институте появилась еще одна кафедра, основанная Иоффе. Когда в 1916 году, отслужив в армии, Капица вернулся в институт, Иоффе обратил внимание на талантливого студента. В 1918 году, по окончании Капицей Политехнического института, Иоффе оставил его при своей кафедре. Иоффе нравилось, с какой фантазией его ученик подходит к экспериментам. Даже метод приготовления волластоновских нитей Капица придумал сам. Тонкие, толщиной менее микрона, кварцевые нити для физических приборов протягивались не через фильеры, как рекомендовалось учебниками; Капица просто обмакивал в расплавленный кварц стрелу и выпускал в воздух. Пролетев какое-то расстояние, стрела падала на подостланное бархатное полотно, вытягивая за собой нить.
   Тогда же Капица предложил оригинальную модель рентгеновского спектроскопа, а чуть позже (совместно с Н. Н. Семеновым) метод определения магнитного момента атома, который в 1922 году был осуществлен в опытах физиков Штерна и Герлаха.
   В 1921 году по рекомендации Иоффе (уже академика) Капица был направлен в научную командировку в Великобританию, где начал самостоятельные исследования в Кавендишской лаборатории под руководством Э. Резерфорда.
   Говорят, вначале знаменитый английский физик колебался.
   «У меня уже работает тридцать стажеров», – якобы сказал он Капице. «30 и 31 различаются примерно на три процента, – ответил Капица. – Поскольку вы всегда предостерегаете против рабской точности измерений, такая трехпроцентная разница вовсе даже не будет вами замечена».
   Ответ Резерфорду понравился.
   «…К людям он относился исключительно заботливо, особенно к своим ученикам, – вспоминал Капица. – Приехав работать к нему в лабораторию, я сразу был поражен этой заботливостью. Резерфорд не позволял работать дольше шести часов вечера в лаборатории, а по выходным дням не позволял работать совсем. Я протестовал, но он сказал: „Совершенно достаточно работать до шести часов вечера, остальное время вам надо думать. Плохи люди, которые слишком много работают и слишком мало думают“.
   Резерфорд руководил своими сотрудниками как отец. Он любил анекдот, юмор, особенно в часы послеобеденного отдыха, когда по неукоснительной английской традиции, полагалось пить портвейн.
   «…Как-то раз речь зашла о Тунгусском метеорите.
   Вопрос обсуждался всесторонне.
   Мы тут же примерно вычислили энергию и размер метеорита из тех данных, которые у нас были. Кто-то из нас задал вопрос: «Какая вероятность для такого метеорита упасть в лондонском Сити, т. е. там, где помещаются все банки Лондона?» Мы вычислили вероятность, она оказалась очень маленькой. Тут же находились экономисты. Был задан и такой вопрос: «Какое впечатление произвело бы на английское государство, если бы был уничтожен Сити – банковский аппарат Лондона, а вся промышленность осталась бы?» В этой дискуссии каждый выдвигал свое предположение.
   Говорили часа два.
   Резерфорд принимал самое живейшее участие».
   В 1923 году Капице была присуждена степень доктора философии Кембриджского университета. Одновременно он получил престижную стипендию Максвелла, которая пришлась ему очень кстати. С 1924 по 1932 год Капица выполнял обязанности заместителя директора Кавендишской лаборатории, а с 1930 по 1934 год был директором лаборатории им. Монда при Королевском научном обществе в Кембридже. В 1929 году был избран членом Лондонского королевского общества.
   В 1923 году, поместив камеру Вильсона в сильное магнитное поле, Капица впервые наблюдал искривление траекторий альфа-частиц. Именно в этих исследованиях он впервые столкнулся с необходимостью создания сверхсильных магнитных полей. Он показал, что применение электромагнитов с железными сердечниками для этой цели вполне бессмысленно и нужно переходить к специальным катушкам, пропуская через них большой электрический ток. Основная трудность, возникающая при этом, состояла в перегреве катушек. Чтобы этого не происходило, Капица предложил создавать кратковременные магнитные поля пропусканием очень большого тока через катушки, – тогда они просто не успевали нагреваться.
   В 1924 году Капица предложил новый метод получения импульсивных сверхсильных полей напряженностью до 500 000 эрстед, а в 1928 году установил закон линейного возрастания электрического сопротивления ряда металлов от напряженности магнитного поля, так называемый «закон Капицы».
   Обладая колоссальной физической интуицией, Капица умел избегать неперспективных путей, какими бы соблазнительными они ни казались.
   «Когда в 30-е годы я получил очень сильные магнитные поля, в 10 раз сильнее тех, которые получали до меня, – вспоминал Капица в статье „Будущее науки“, – ряд ученых советовал мне провести опыты по исследованию влияния сильного магнитного поля на скорость света. Настойчивее всех со мной говорил об этом Эйнштейн. Он сказал: „Я не верю, что Бог создал Вселенную такой, что в ней скорость света ни от чего не зависит“. Эйнштейн любил в таких случаях ссылаться на Бога, когда более разумного довода не было. Из сделанных уже в этом направлении опытов было известно, что если бы я осуществил такой опыт с моими более сильными полями, то все же эффект был бы очень маленький, только второго порядка. При этом, конечно, истинную величину эффекта, поскольку явление было бы новое, предвидеть было нельзя. В то же время опыт обещал быть исключительно сложным, так как до этого проводились подобные эксперименты с полями до 20 тысяч эрстед, и они показали, что даже при очень чувствительном методе измерения магнитное поле заметно не влияет на скорость света.
   Другим человеком, настаивавшим на этом эксперименте и даже предлагавшим финансовую поддержку, был Оливер Лодж. Он также обращался ко мне с советом осуществить этот исключительно трудный и тонкий опыт.
   И все же я отказался.
   Почему?
   Поясню это следующим поучительным примером, который, может быть, многим неизвестен.
   Как вы помните, закон сохранения вещества был экспериментально открыт Ломоносовым в 1756 году и несколько позже Лавуазье. В начале нашего века Ландольт проверил его с большой точностью. Он также поместил вещество в запаянных сосудах и точно взвесил его до и после реакции и показал, что вес остался неизменным с точностью не меньше, чем до десятого знака. Если взять энергию, которая высвобождается при химической реакции и, согласно уравнению из теории относительности, выведенному Эйнштейном, рассчитать изменение в весе вещества, то окажется, что если бы Ландольт провел свой опыт с точностью на два-три порядка больше, то он смог бы заметить изменение веса в прореагировавшем веществе. Таким образом, мы знаем теперь, что Ландольт очень близко подошел к открытию одного из самых фундаментальных законов природы. Но предположим, что Ландольт затратил бы еще больше сил на этот опыт, проработал бы еще лет пять и поднял бы точность на два-три порядка и заметил бы это изменение в весе; большинство ученых ему все же не поверили бы. Известно, что один опыт, сделанный с предельной точностью, всегда неубедителен, и, чтобы его проверить, надо, чтобы нашелся еще один экспериментатор, готовый затратить на него тоже лет десять усиленной работы. Жизнь подсказывает, что пока решение задачи известными методами лежит на пределе точности эксперимента, убедительным оно может быть, лишь когда сама природа подскажет новый метод решения. В данном случае так и было: закон Эйнштейна был довольно просто проверен Астоном, когда он изобрел и разработал новый точный метод определения массы радиоактивных изотопов по отклонению ионного пучка. Поэтому мы должны ждать и в описанном мною случае, когда сама природа предоставит нам новые методические возможности изучать влияние магнитного поля на скорость света, и, вероятно, тогда появятся простые и убедительные эксперименты для изучения этого явления. Вот почему я отказывался от проведения этих сложных опытов».
   Во втором браке Капица был женат на дочери известного кораблестроителя академика Крылова, с которой познакомился в Париже в 1925 году. Когда в 1934 году, Капица, как обычно, приехал в Советский Союз, чтобы повидать мать, родителей жены и друзей, совершенно неожиданно он был лишен возможности вернуться в Кембридж.
   «Когда Капица приехал из Англии, а возвратиться назад не смог, – вспоминал С. Л. Берия, сын всесильного шефа НКВД, – он прямо заявил Молотову: „Я не хочу здесь работать“. Молотов удивился: „Почему?“ Капица объяснил так: „У меня нет такой лаборатории, как в Англии“. – „Мы ее купим“, – ответил Молотов.
   И купили.
   Такое же оборудование и здание точно такое же построили».
   Действительно, по решению Советского правительства оборудование для лаборатории Капицы было закуплено у Лондонского Королевского общества, точнее, из лаборатории им. Монда в Кембридже. Сохранились свидетельства того, что когда представители Общества обратились к Резерфорду по поводу продажи оборудования Мондской лаборатории, он сердито ответил: «К сожалению, я должен согласиться. Эти машины не могут работать без Капицы, а Капица не может работать без них».
   Вопрос был решен, тем не менее, Капица еще долгое время не мог продолжать полноценную научную работу.
   Единственным зарубежным ученым с которым он в то время переписывался был его учитель Резерфорд. Не реже, чем два раза в месяц Резерфорд писал Капице длинные письма, рассказывая о жизни Кембриджа, о своих собственных научных успехах и о научных достижениях своей школы, давал советы и просто по-человечески подбадривал.
   «…Мне хочется дать небольшой совет, – писал он в письме, датированном 21 ноября 1935 года, – хотя, может быть, он и не нужен. Я думаю, что для Вас самое важное – начать работать по устройству Вашей лаборатории как можно скорее, и постарайтесь научить ваших помощников быть полезными. Я думаю, что многие из Ваших неприятностей отпадут, когда Вы снова будете работать, и я также уверен, что Ваши отношения с властями улучшатся, как только они увидят, что Вы работаете ревностно над тем, чтобы пустить в ход Ваше предприятие… Возможно, что Вы скажете, что я не понимаю ситуации, но я уверен, что Ваше счастье в будущем зависит от того, как упорно Вы будете работать в лаборатории. Слишком много самоанализа плохо для каждого».
   «…Этот семестр, – пишет Резерфорд в другом письме (от 15 мая 1936 года), – я был более занят, чем когда-либо. Но Вы знаете, мой характер очень улучшился в последние годы, и мне кажется, что никто не пострадал от него за последние несколько недель. Начните научную работу, даже если она не будет мирового значения, начните как можно скорее, и Вы сразу почувствуете себя счастливее. Чем труднее работа, тем меньше времени остается на неприятности. Вы же знаете, что некоторое количество блох хорошо для собаки, но я думаю, что Вы чувствуете, что у Вас их больше, чем нужно».
   В 1935 году Капица возобновил начатые еще в Англии работы в области физики низких температур – в специально созданном для него Институте физических проблем.
   «…Институт был основан постановлением правительства от 28 декабря 1934 года и назван Институтом физических проблем, – вспоминал Капица. – Это несколько необычное название должно отразить собой то, что институт не будет заниматься какой-либо определенной областью знания, а будет, вообще говоря, институтом, изучающим различные научные проблемы, круг которых определится тем персоналом, теми кадрами ученых, которые в нем будут работать. Таким образом, этот институт предназначается для чистой, а не прикладной научной работы. Я пользуюсь не особенно популярным термином „чистая наука“, так как не знаю, чем заменить это слово. Иногда говорят – теоретическая наука, но теоретической является каждая наука. По существу pure science или reine Wissenshaft – это вполне установившееся понятие. Между прикладной и чистой наукой имеется только одно различие: в прикладной науке научные проблемы идут из жизни, в то время как чистые науки сами ведут к прикладным результатам, потому что никакое научное знание не может остаться неприложимым к жизни, – оно так или иначе найдет свое применение и даст практические результаты, хотя и трудно предвидеть, когда и как это произойдет».
   Капица не уставал подчеркивать указанную особенность своего института.
   Он не раз говорил, что нельзя приравнивать научную работу к любой другой, основанной на планировании. «Сам Ньютон, например, не мог бы по заданному плану открыть закон тяготения, поскольку это произошло стихийно, на него нашло наитие, когда он увидел знаменитое падающее яблоко, – писал Капица. – Очевидно, что нельзя запланировать момент, когда ученый увидит падающее яблоко и как это на него подействует. Самое ценное в науке и что составляет основу большой науки не может планироваться, поскольку оно достигается творческим процессом, успех которого определяется талантом ученого».
   В докладной записке, поданной в конце 30-х в Наркомфин, Капица прямо спрашивал:
   «Сколько можно отпустить средств И. Ньютону под его работу по вопросу всемирного тяготения? Неужели, товарищ нарком, когда вы смотрите на картину Рембрандта, Вас интересует, сколько Рембрандт заплатил за кисти и холст? Зачем же, когда вы рассматриваете научную работу, вас интересует, во сколько обошлись приборы или сколько материалов на это истрачено? Если научная работа дала значительные результаты, то ценность ее совершенно несоизмерима с материальными затратами».
   При создании института Капица попросил возглавить теоретический отдел немецкого физика Макса Борна, который в это время бежал из фашистской Германии, однако Борн не принял предложения. Тогда в этот отдел Капица пригласил молодого Льва Ландау.
   «С этого месяца ко мне идет работать тов. Л. Д. Ландау, – писал Капица в феврале 1937 года Председателю Совнаркома СССР Молотову, – доктор физики, один из самых талантливых физиков-теоретиков у нас в Союзе. Цель его привлечения – занятие всеми теоретическими работами, которые связаны с экспериментальной работой нашего института. Опыт показывает, что совместная работа экспериментальных работников с теоретиками представляет собой лучшее средство, чтобы теория не была оторвана от эксперимента, и в то же время экспериментальные данные получали должное теоретическое обобщение, а у всех научных сотрудников воспитывался широкий научный кругозор».
   Не может не вызывать восхищения личное мужество Капицы.
   Когда был арестован Ландау, Капица написал на имя Л. П. Берия следующее заявление:
   «Прошу освободить из-под стражи арестованного профессора физики Льва Давидовича Ландау под мое личное поручительство. Ручаюсь перед НКВД в том, что Ландау не будет вести какой-либо контрреволюционной деятельности против советской власти в моем институте и я приму все зависящие от меня меры к тому, чтобы он и вне института никакой контрреволюционной работы не вел. В случае если я замечу со стороны Ландау какие-либо высказывания, направленные во вред советской власти, то немедленно сообщу об этом органам НКВД».
   Поручительство Капицы спасло молодого физика.
   Продолжая свои работы, Капица в 1934 году разработал оригинальную установку для сжижения гелия. Из-за своих необычных, даже аномальных свойств жидкий гелий всегда представлял собой привлекательный объект для исследований. В построенной Капицей установке удалось избавиться от необходимости предварительно охлаждать гелий жидким водородом. Вместо этого гелий охлаждался, совершая работу в специальном расширительном детандере. Особенность детандера состояла в том, что смазку в нем осуществлял сам гелий.
   Турбодетандер Капицы заставил пересмотреть принципы создания холодильных циклов, используемых для сжижения и разделения газов, что сразу существенно изменило развитие мировой техники получения кислорода.
   «…По существу, как ученый, я мог бы здесь остановиться, опубликовать свои результаты, – вспоминал Капица, – и ждать, пока техническая мысль достаточно созреет, чтобы их охватить и воплотить в жизнь. Сегодня я знаю, что этим творческим исследованием я предначертал всю ту работу, которую делал сам последние четыре года уже как инженер и которую, как я вначале предполагал, должна была бы делать наша промышленность. На этой теоретической работе я имел бы право остановиться, если бы сам не был инженером, если бы меня, не скрою этого, не разобрал задор инженера. Мне говорят, что те идеи, которые я выдвигаю, как ученый, нереальны. Я решил сделать еще шаг вперед. За полтора-два года я построил в институте машину для получения жидкого воздуха на этих новых принципах. Общие теоретические положения, которые были высказаны, оправдались».