С. А. Краснова, Л. Г. Макарова, К. М. Капустин, В.С. Тундалева
Гормоны-убийцы
Введение
Термином «гормон» (от греч. hormao – «побуждать») называют химические вещества различной структуры, которые синтезируются и секретируются железами внутренней секреции или отдельными тканями и клетками в кровеносное русло или лимфатические сосуды, оказывая избирательное воздействие на органы.
Изучением процессов биосинтеза, секреции, механизма действия гормонов, а также причин и симптомов нарушения нормального функционирования эндокринных желез занимается соответствующая область медицины – эндокринология (от греч. endon – «внутри», krino – «выделять», logos – «учение»). Традиционно к эндокринной системе относили гипофиз, эпифиз, щитовидную и околощитовидные железы, вилочковую железу (или тимус), надпочечники, гонады, островки Лангерганса поджелудочной железы.
Однако в дальнейшем было экспериментально доказано, что гормонпродуцирующей функцией обладают также почки, вырабатывающие ренин и эритропоэтин, сердце (предсердный натрийуретический фактор), эндокринные клетки желудочно-кишечного тракта (секретин, гастрин, холецистокинин) и далее жировая ткань (лептин), а такие гормоны, как ангиотензин II и III, образуются непосредственно в крови.
Эндокринология – относительно молодая и бурно развивающаяся отрасль. И это неудивительно: сложно отметить такую область медицины, которая так или иначе не была бы связана с гормональным статусом пациентов.
Связано это и с дисфункцией самих желез внутренней секреции, и с осложнениями, вызванными различными диагностическими вмешательствами, и с риском развития и прогрессирования некоторых заболеваний при определенном гормональном фоне, и, конечно, с появлением огромного числа гормональных лекарственных средств.
Постоянное пополнение списка гормональных препаратов вызвано интенсивным изучением и расширением представления о синтезе, метаболизме и механизмах действия тех или иных гормонов. На сегодняшний день не существует такой области медицины, которая не рассматривала гормонотерапию как один из вариантов лечения больных.
В медицине широко применяются как истинные гормоны, так и их синтетические аналоги, вещества с гормоноподобным действием и вещества, являющиеся антагонистами гормонов.
Их используют с целью заместительной (при недостаточной продукции) и супрессивной (для подавления избыточной выработки) терапии, при хронических воспалительных процессах и болезнях, связанных с нарушением обмена веществ, в лечении неотложных состояний и в качестве контрацептивов.
Итак, ключевым и основополагающим понятием в эндокринологии является гормон – высокоактивное биологическое вещество, чрезвычайно избирательно воздействующее на органы и ткани и способное менять их деятельность далее в ничтожно малых концентрациях.
Так, в многочисленных исследованиях и экспериментах доподлинно установлено, что физиологическая концентрация различных гормонов в крови составляет всего от 106до 1012моль/л.
Для всех гормонов характерно наличие следующих трех характеристик:
1) наличие специализированной железы или клетки, вырабатывающей данный гормон;
2) выделение гормона в кровь и транспортировка к органу-«мишени»;
3) способность специфически воздействовать на ткани и органы-«мишени» при незначительных концентрациях в крови.
С помощью выделения и действия различных гормонов эндокринная система наряду с нервной обеспечивает существование организма посредством тонкой и четкой регуляции и координации работы внутренних органов и тканей, а также всех видов обмена.
Многообразие их функций молено представить четырьмя основными точками приложения: рост, поддержание гомеостаза (т. е. постоянства внутренней среды), репродукция и развитие организма, энергетический обмен.
Разнообразные факторы, такие как разнообразная химическая структура, расположение объектов, синтезирующих и выделяющих гормоны, органы– «мишени», влияние на виды обмена в организме делают проблематичным создание единой классификации. В зависимости от химической структуры все гормоны подразделяются на:
1) стероиды – эстриол, эстрадиол, тестостерон, дигидротестостерон, прогестерон, кортизол, альдостерон, дигидроэпиандростерон и др.;
2) белки – пролактин, инсулин, гормон роста, плацентарный лактоген;
3) гликопротеины – лютеинизирующий гормон, хорионический гонадотропин, фолликулостимулирующий гормон, тиреотропный гормон;
4) пептиды – гипоталамические либерины и статины, ангиотензин II, окситоцин, адренокортикотропный гормон, вазопрессин, yS-2-эндорфин, энкефалины, панкреатический полипептид и др.;
5) дериваты аминокислот – гистамин, серотонин, адреналин, норадреналин, ацетилхолин, мелатонин, дофамин, у-аминомасляная кислота, ацетилсеротонин и др.;
6) дериваты жирных кислот – лейкотриены, тромбоксаны, простагландины, простациклин, являющиеся продуктами метаболизма арахидоновой кислоты (некоторые специалисты определяют их как тканевые гормоны).
Существуют также классификации по принципу регуляции секреции на гипофиззависимые и гипофизнезависимые; по функциям – на анаболические и катаболические; по влиянию на виды обмена – регулирующие углеводный обмен, водно-электролитный баланс и т. д.; по системно-анатомическому принципу (с учетом желез, где синтезируются те или иные гормоны).
Механизм действия гормонов – чрезвычайно сложный процесс, во многом изученный не полностью.
Тем не менее установлено, что после выделения гормона железой он попадает в кровеносное русло, где немедленно связывается с альбуминами и другими специфическими переносчиками, только 5 % секретируемого гормона остается в крови в несвязанном состоянии. Именно эта фракция и является биологически активной.
С кровотоком гормон доставляется ко всем органам и тканям и контактирует с ними. Однако его специфическое действие начинается после соединения с чувствительными только к этому гормону рецепторами.
Известно, что рецепторы к гормонам, имеющим пептидную, белковую и аминокислотную структуры, расположены на поверхности клеток, а рецепторы к гормонам – дериватам жирных кислот и стероидам находятся внутри клетки (в цитоплазме или на мембране ядра).
Специфическое избирательное восприятие гормонального сигнала объясняется высочайшим сродством и чувствительностью рецепторов и гормонов. Процесс узнавания, соединения и взаимодействия гормона с рецептором зачастую сравнивают с замком и ключом.
Число этих специфических рецепторов в клетках-«мишенях» непостоянно и колеблется в пределах от 500 до 30000. Из них в физиологических условиях только небольшая часть (5–6 %) занята гормоном, остальные лее молекулы, по-видимому, обеспечивают восприятие гормонального сигнала в случаях, когда концентрация гормона остается очень низкой.
После соединения гормона с рецептором в клетке запускается целый каскад биохимических реакций, воздействующих на синтетический аппарат клетки и приводящих в конечном итоге к перестройке ее работы: усилению или прекращению выработки различных веществ, изменению проницаемости каналов в мембранах и т. д.
В дальнейшем гормон, уже оказавший свое действие на клетку, подвергается воздействию ее ферментных систем, после чего превращается в другое биологически активное вещество, используется для синтеза других органических соединений или выделяется из организма в форме неактивных метаболитов. Важная роль в этих процессах принадлежит печени и почкам. Особого внимания заслуживает механизм регуляции выработки гормонов. В координации деятельности желез внутренней секреции принимают участие и нервные импульсы от коры головного мозга, и метаболические факторы (например, глюкоза специфически влияет на скорость и объем секреции инсулина и глюкагона), и, разумеется, сами гормоны.
Их участие в регуляции хорошо иллюстрируют понятия обратной связи и гипоталамо-гипофизарной системы.
Гипоталамо-гипофизарная система подразумевает разделение всех гормонпродуцирующих элементов на три иерархических уровня:
1) гипоталамус, вырабатывающий либерины (стимуляторы секреции гормонов железами низшего уровня) и статины («подавители» секреции этих гормонов): их сравнивают с двумя взаимообратными рычагами управления гипофизом;
2) гипофиз, продуцирующий гормоны, тропные («адресованные») к тем или иным органам (например, тиреотропный, гонадотропный гормоны и т. д.);
3) остальные железы и клетки, вырабатывающие гормоны, непосредственно влияющие на биохимические процессы в тканях и органах (тироксин, паратгормон, тестостерон и др.).
Принцип обратной связи предполагает воздействие гормонов нижележащего звена гипоталамо-гипофизарной системы на объекты высших звеньев, приводящее к угнетению секреции стимулирующих гормонов, и наоборот: снижение концентрации в крови гормонов низшего уровня приводит к усиленной продукции стимулирующих гормонов гипоталамусом и гипофизом.
Таким образом, эндокринная система имеет очень сложную организацию, определяющую большое разнообразие механизмов нарушения ее функций. В их основе лежат:
1) недостаточное выделение гормона железой;
2) избыточное выделение гормона железой;
3) секреция аномального гормона;
4) нечувствительность к действию гормона;
5) нарушения транспорта и метаболизма гормонов;
6) сочетанные нарушения.
Любое из указанных условий может привести к тяжелым, порой необратимым нарушениям обмена веществ.
Часть І
Глава 1
История создания гормональных препаратов
Гормональные препараты занимают одно из важнейших мест в медицине при лечении самых разных заболеваний, а также часто применяются в качестве средств контрацепции и в спортивной практике (например, для наращивания мышечной массы, хотя в большинстве случаев их использование в спорте незаконно). Все синтетические гормональные препараты являются по своему механизму действия и вызываемым в организме эффектам аналогами естественных гормонов человека.
Гормоны – это биологически активные вещества, которые вырабатываются в железах внутренней секреции, а также определенными группами клеток в некоторых тканях. Все гормоны имеют огромное значение в регуляции разнообразных функций организма.
В медицинской практике гормональные препараты используются в основном в качестве средств заместительной терапии (при недостаточной функции какой-либо железы внутренней секреции).
Например, инсулин, вводимый при сахарном диабете, заменяет эндогенный инсулин, который в недостаточном количестве вырабатывается поджелудочной железой.
Также они используются как средства симптоматической (адреналин при гипотонии) или патогенетической (глюкокортикоиды при бронхиальной астме, полиартритах и ином как противовоспалительное средство) терапии.
Все гормональные препараты делятся на несколько групп по происхождению и вызываемым эффектам:
1) препараты гормонов гипоталамуса и гипофиза: кортикотропин, соматотропин, тиротропин, лактин, окситоцин, вазопрессин, питуитрин, рифатироин. Они применяются чаще как средства заместительной терапии при снижении функции гипофиза или гипоталамуса, окситоцин – для стимуляции родовой деятельности и остановки кровотечений, вазопрессин – для регуляции водного обмена;
2) препараты гормонов щитовидной железы) тироксин, L-тироксин, кальцитонин и др.). Они используются как заместительные средства;
3) препарат гормона поджелудочной железы – инсулина;
4) препараты гормонов коры и мозгового слоя надпочечников – глюкокортикоиды и минералокортикоиды, находящие самое широкое применение в повседневной медицинской практике, как при оказании экстренной медицинской помощи, так и в плановой терапии больных различными терапевтическими, хирургическими и другими заболеваниями;
5) препараты половых гормонов. Женские половые гормоны используются как средства контрацепции, а также при лечении различных гинекологических и эндокринных расстройств. Мужские половые гормоны применяются в виде анаболических стероидов для наращивания мышечной массы, ускорения роста костей при истощении, переломах, а также в спортивной практике. Тестостерон используется для восстановления потенции у мужчин.
Все гормональные препараты являются высокоактивными соединениями, способными далее в небольших дозах вызывать значительные физиологические эффекты.
Все они являются и высокотоксичными для организма, и их систематическое употребление сопровождается массой нежелательных побочных эффектов.
Поэтому применяться они должны только по назначению врача и после всестороннего обследования и попыток лечения другими группами лекарственных средств.
История открытия гормонов и создания их синтетических аналогов очень короткая (по сравнению с историей других лекарственных средств), хотя предположения о существовании особых веществ, способных регулировать различные функции организма, делались уже очень давно и в лечебных целях еще в глубокой древности применялись различные органы, ткани и выделения животных, содержавшие гормоны.
Однако лее делалось это обычно только эмпирически, часто на религиозно-мистической основе, никаких научных обоснований не было.
Только лишь в XIX в., после многочисленных знаменательных открытий в области физиологии и химии, началось научно обоснованное применение препаратов – вытяжек из эндокринных желез животных и человека.
Однако и в этой короткой истории есть немало интересных фактов и своих трагедий.
История создания инсулина
Самым, пожалуй, важным и наиболее часто применяемым в медицинской практике гормональным препаратом является инсулин. Человеческий инсулин – гормон, синтезируемый бета-клетками поджелудочной железы, – играет в процессах нормальной жизнедеятельности человеческого организма огромнейшую роль.
Самая главная его функция – обеспечение клеток организма основным энергетическим материалом – глюкозой.
Если инсулина не хватает, клетки не способны усваивать глюкозу, она накапливается в крови, а ткани и органы испытывают энергетическое голодание. При недостатке инсулина развивается такое серьезное заболевание, как сахарный диабет.
До начала XX в. больные сахарным диабетом умирали в детском или молодом возрасте от различных осложнений своей болезни, практически никому не удавалось прожить более 5–7 лет после начала заболевания.
Роль поджелудочной железы в развитии сахарного диабета стала известна лишь в конце XIX в. В 1869 г. в Берлине 22-летний студент-медик Поль Лангерганс, изучая с помощью микроскопа строение поджелудочной железы, обратил внимание на ранее неизвестные клетки, образующие группы, которые были равномерно распределены по всей железе, однако функция этих клеток, названных потом островками Лангерганса, оставалась неизвестной.
Позже Эрнст Лако выдвинул гипотезу, что поджелудочная железа принимает участие в процессах пищеварения. В 1889 г. немецкий физиолог Оскар Минковски попытался доказать, что значение поджелудочной железы в пищеварении надумано. Для этого он поставил эксперимент, в котором произвел удаление железы у здоровой собаки. Через несколько дней после начала эксперимента помощник Минковски, следивший за состоянием лабораторных животных, обратил внимание на большое количество мух, которые слетались на мочу подопытной собаки.
После исследования мочи он обнаружил, что собака, лишенная поджелудочной железы, вместе с мочой выделяет сахар. Это было первое наблюдение, которое связывало работу поджелудочной железы и развитие сахарного диабета. В 1901 г. Евген Опи доказал, что сахарный диабет обусловлен нарушениями в структуре поджелудочной железы, а именно полным или частичным разрушением островков Лангерганса.
Первым, кто сумел выделить инсулин и с успехом применить его для лечения больных, был канадский физиолог Фредерик Бантинг. К попытке создания лекарства от диабета молодого ученого подтолкнули трагические события – двое его друзей умерли от сахарного диабета. Еще до Бантинга многие исследователи, понимая роль поджелудочной железы в развитии сахарного диабета, пытались выделить вещество, которое влияло бы непосредственно на уровень сахара крови, однако все попытки заканчивались неудачей.
Эти неудачи были обусловлены в том числе и тем, что ферменты поджелудочной железы (главным образом трипсин) успевали как минимум частично разложить белковые молекулы инсулина раньше, чем их удавалось выделить из экстракта тканей железы. В 1906 г. Георгу Людвигу Зэльцеру удалось достичь определенного успеха в снижении уровня глюкозы в крови подопытных собак при помощи панкреатического экстракта, но он не смог продолжить свою работу. Скотт в 1911 г. в Чикагском университете использовал водный экстракт поджелудочной железы и заметил некоторое уменьшение гликозурии у подопытных животных, но он не смог убедить своего руководителя в важности своих исследований, и вскоре эти эксперименты были прекращены.
Такой же эффект демонстрировал и Израэль Кляйнер в 1919 г., но не завершил работу в связи с началом Первой мировой войны.
Схожую работу в 1921 г. опубликовал и профессор физиологии Румынской школы медицины Никола Паулеско, и многие, в том числе и в Румынии, считают именно его первооткрывателем инсулина. Однако заслуга выделения инсулина и его успешного применения принадлежит именно Фредерику Бантингу.
Бантинг работал младшим преподавателем кафедры анатомии и физиологии в одном из канадских университетов под руководством профессора Джона Маклеода, считавшегося тогда большим специалистом по диабету. Бантинг пытался добиться атрофии поджелудочной железы при помощи перевязки ее выводных протоков (каналов) на 6–8 недель, сохранив при этом островки Лангерганса неизмененными от воздействия ферментов поджелудочной железы, и получить чистый экстракт клеток этих островков.
Для проведения этого эксперимента требовались лаборатория, помощники и подопытные собаки, которых у Бантинга не было.
За помощью он обратился к профессору Джону Маклеоду, хорошо знавшему о прежних неудачах с получением гормонов поджелудочной железы. Поэтому он сначала не допустил Бантинга в свою лабораторию. Однако Бантинг не отступал и весной 1921 г. вновь попросил Маклеода разрешить поработать в лаборатории хотя бы два месяца. Так как в это время Маклеод собирался поехать в Европу и лаборатория была свободной, то он согласился. В качестве помощника Бантингу был дан студент 5-го курса Чарльз Бест, который хорошо изучил методы определения сахара в крови и моче.
Для проведения эксперимента, который требовал больших расходов, Бантингу пришлось продать практически все свое имущество.
Нескольким собакам были перевязаны протоки поджелудочной железы, после чего стали дожидаться ее атрофии. 27 июля 1921 г. собаке с удаленной поджелудочной железой, находившейся в прекоме, ввели экстракт атрофированной поджелудочной железы. Через несколько часов у собаки отмечалось снижение уровня сахара в крови и моче, исчез ацетон.
Затем экстракт поджелудочной железы был введен во второй раз, и она прожила еще 7 дней. Возможно, собака прожила бы и дольше, однако у исследователей закончился запас экстракта, так как получение инсулина из поджелудочных желез собак было чрезвычайно трудоемкой и длительной работой.
В последующем Бантинг и Бест начали получать экстракт из поджелудочной железы нерожденных телят, у которых еще не вырабатывались пищеварительные ферменты, но уже синтезировалось достаточное количество инсулина. Количества инсулина теперь хватало на то, чтобы поддерживать жизнь подопытной собаки уже до 70 дней. Маклеод, вернувшийся к тому времени из Европы, постепенно заинтересовался работой Бантинга и Беста и подключил к ней весь персонал лаборатории. Бантинг, который изначально назвал полученный экстракт поджелудочной железы ислетином, по предложению Маклеода переименовал его в инсулин (от лат. insula – «остров»).
Работы по получению инсулина успешно продолжались. 14 ноября 1921 г. Бантинг и Бест сделали сообщение о результатах своих исследований на заседании клуба «Физиологического журнала» университета Торонто. Через месяц последовал доклад в США, в Американском физиологическом обществе в Нью-Хейвене.
Количество экстракта, получаемого из поджелудочных желез крупного рогатого скота, забитого на бойне, стало быстро расти, и потребовался специалист для обеспечения тонкой очистки инсулина. Для этого в конце 1921 г. Маклеод привлек к работе известного биохимика Джеймса Коллипа, который очень быстро добился хороших результатов по очистке инсулина. К январю 1922 г. Бантинг и Бест начали первые клинические испытания инсулина на человеке.
Вначале ученые ввели по 10 условных единиц инсулина себе, а затем – добровольцу, которым стал 14-летний мальчик Леонард Томпсон, страдавший сахарным диабетом. Первая инъекция была сделана ему 11 января 1922 г., однако оказалась не совсем удачной, так как экстракт был недостаточно очищенным, что привело к развитию аллергии. Следующие 11 дней Коллип упорно работал в лаборатории над улучшением экстракта, и 23 января мальчику была сделана вторая инъекция инсулина.
После введения инсулина мальчик стал быстро поправляться – это был первый человек, которого спас инсулин. В скором времени Бантинг спас от наступающей смерти своего друга – врача Джо Джилькриста.
Известие о первом успешном применении инсулина 23 января 1922 г. стало международной сенсацией. Бантинг и его коллеги буквально воскрешали сотни больных диабетом, особенно с тяжелыми формами. Ему писали множество писем с просьбами о спасении от болезни, приезжали к нему в лабораторию. Однако на тот момент существовало еще много недостатков – препарат инсулина был недостаточно стандартизован, средств самоконтроля не было и дозы инсулина приходилось отмерять грубо, на глазок. Поэтому нередко случались и гипогликемические реакции организма, когда уровень глюкозы падал ниже нормы.
Однако усовершенствование инсулина и его внедрение в повседневную врачебную практику продолжались.
Университет Торонто начал продавать различным фармацевтическим компаниям лицензии на производство инсулина, и уже к 1923 г. этот гормон стал доступен всем больным сахарным диабетом.
Разрешение на производство лекарства получили компании «Лили» (США) и «Ново Нордиск» (Дания), которые и сейчас являются лидерами в этой области. Бантингу в 1923 г. университет Торонто присвоил степень доктора наук, он был избран профессором. Также было открыто отделение медицинских специально исследований для Бантинга и Беста, которым назначили высокие персональные оклады.
В 1923 г. Бантингу и Маклеоду была присуждена Нобелевская премия по физиологии и медицине, которую они добровольно разделили с Бестом и Коллипом.
В 1926 г. ученому-медику Абелю удалось синтезировать инсулин в кристаллическом виде. Через 10 лет датский исследователь Хагедорн получил инсулин пролонгированного (продленного) действия, а еще через 10 лет был создан нейтральный протамин Хагердона, который до сих пор остается одним из самых популярных видов инсулина.
Химический состав инсулина установил британский молекулярный биолог Фредерик Сенгер, получивший в 1958 г. за это Нобелевскую премию. Инсулин стал первым белком, последовательность аминокислот которого была полностью расшифрована.
Пространственное строение молекулы инсулина было установлено с помощью метода рентгеновской дифракции в 1990-х гг. Дороти Кроуфт Ходжкин, которая тоже была удостоена Нобелевской премии.
После получения Бантингом бычьего инсулина проводились опыты с инсулином, полученным из поджелудочных желез свиней и коров, а также других животных (например, китов и рыб).
Молекула человеческого инсулина состоит из 51 аминокислоты. Свиной инсулин отличается от него только лишь одной аминокислотой, коровий – тремя, что не мешает им нормализовать уровень сахара достаточно хорошо. Однако у инсулина животного происхождения есть существенный недостаток – у значительной части больных он вызывает аллергическую реакцию. Поэтому были необходимы дальнейшие работы по усовершенствованию инсулина. В 1955 г. была расшифрована структура человеческого инсулина, и начались интенсивные работы по его выделению.
Впервые это удалось в 1981 г. американским ученым Жильберу и Ломедико. Несколько позже появился инсулин, полученный из пекарских дрожжей методом генной инженерии. Инсулин стал первым из человеческих белков, синтезированным в 1978 г. генетически модифицированной бактерией Е. coli. Именно с него в биотехнологии началась новая эпоха. С 1982 г. американская компания «Генентех» стала продавать человеческий инсулин, синтезированный в биореакторе. Этот инсулин не оказывает аллергизирующего действия на человеческий организм.
История инсулина – одна из самых замечательных историй необыкновенных открытий в фармакологии. Всю важность открытия и синтеза инсулина показывает уже тот факт, что за работы с этой молекулой были присуждены три Нобелевские премии. Сахарный диабет и до настоящего времени продолжает оставаться неизлечимой болезнью, жизнь больным могут спасти только лишь постоянные инъекции волшебного лекарства.
Самая главная его функция – обеспечение клеток организма основным энергетическим материалом – глюкозой.
Если инсулина не хватает, клетки не способны усваивать глюкозу, она накапливается в крови, а ткани и органы испытывают энергетическое голодание. При недостатке инсулина развивается такое серьезное заболевание, как сахарный диабет.
До начала XX в. больные сахарным диабетом умирали в детском или молодом возрасте от различных осложнений своей болезни, практически никому не удавалось прожить более 5–7 лет после начала заболевания.
Роль поджелудочной железы в развитии сахарного диабета стала известна лишь в конце XIX в. В 1869 г. в Берлине 22-летний студент-медик Поль Лангерганс, изучая с помощью микроскопа строение поджелудочной железы, обратил внимание на ранее неизвестные клетки, образующие группы, которые были равномерно распределены по всей железе, однако функция этих клеток, названных потом островками Лангерганса, оставалась неизвестной.
Позже Эрнст Лако выдвинул гипотезу, что поджелудочная железа принимает участие в процессах пищеварения. В 1889 г. немецкий физиолог Оскар Минковски попытался доказать, что значение поджелудочной железы в пищеварении надумано. Для этого он поставил эксперимент, в котором произвел удаление железы у здоровой собаки. Через несколько дней после начала эксперимента помощник Минковски, следивший за состоянием лабораторных животных, обратил внимание на большое количество мух, которые слетались на мочу подопытной собаки.
После исследования мочи он обнаружил, что собака, лишенная поджелудочной железы, вместе с мочой выделяет сахар. Это было первое наблюдение, которое связывало работу поджелудочной железы и развитие сахарного диабета. В 1901 г. Евген Опи доказал, что сахарный диабет обусловлен нарушениями в структуре поджелудочной железы, а именно полным или частичным разрушением островков Лангерганса.
Первым, кто сумел выделить инсулин и с успехом применить его для лечения больных, был канадский физиолог Фредерик Бантинг. К попытке создания лекарства от диабета молодого ученого подтолкнули трагические события – двое его друзей умерли от сахарного диабета. Еще до Бантинга многие исследователи, понимая роль поджелудочной железы в развитии сахарного диабета, пытались выделить вещество, которое влияло бы непосредственно на уровень сахара крови, однако все попытки заканчивались неудачей.
Эти неудачи были обусловлены в том числе и тем, что ферменты поджелудочной железы (главным образом трипсин) успевали как минимум частично разложить белковые молекулы инсулина раньше, чем их удавалось выделить из экстракта тканей железы. В 1906 г. Георгу Людвигу Зэльцеру удалось достичь определенного успеха в снижении уровня глюкозы в крови подопытных собак при помощи панкреатического экстракта, но он не смог продолжить свою работу. Скотт в 1911 г. в Чикагском университете использовал водный экстракт поджелудочной железы и заметил некоторое уменьшение гликозурии у подопытных животных, но он не смог убедить своего руководителя в важности своих исследований, и вскоре эти эксперименты были прекращены.
Такой же эффект демонстрировал и Израэль Кляйнер в 1919 г., но не завершил работу в связи с началом Первой мировой войны.
Схожую работу в 1921 г. опубликовал и профессор физиологии Румынской школы медицины Никола Паулеско, и многие, в том числе и в Румынии, считают именно его первооткрывателем инсулина. Однако заслуга выделения инсулина и его успешного применения принадлежит именно Фредерику Бантингу.
Бантинг работал младшим преподавателем кафедры анатомии и физиологии в одном из канадских университетов под руководством профессора Джона Маклеода, считавшегося тогда большим специалистом по диабету. Бантинг пытался добиться атрофии поджелудочной железы при помощи перевязки ее выводных протоков (каналов) на 6–8 недель, сохранив при этом островки Лангерганса неизмененными от воздействия ферментов поджелудочной железы, и получить чистый экстракт клеток этих островков.
Для проведения этого эксперимента требовались лаборатория, помощники и подопытные собаки, которых у Бантинга не было.
За помощью он обратился к профессору Джону Маклеоду, хорошо знавшему о прежних неудачах с получением гормонов поджелудочной железы. Поэтому он сначала не допустил Бантинга в свою лабораторию. Однако Бантинг не отступал и весной 1921 г. вновь попросил Маклеода разрешить поработать в лаборатории хотя бы два месяца. Так как в это время Маклеод собирался поехать в Европу и лаборатория была свободной, то он согласился. В качестве помощника Бантингу был дан студент 5-го курса Чарльз Бест, который хорошо изучил методы определения сахара в крови и моче.
Для проведения эксперимента, который требовал больших расходов, Бантингу пришлось продать практически все свое имущество.
Нескольким собакам были перевязаны протоки поджелудочной железы, после чего стали дожидаться ее атрофии. 27 июля 1921 г. собаке с удаленной поджелудочной железой, находившейся в прекоме, ввели экстракт атрофированной поджелудочной железы. Через несколько часов у собаки отмечалось снижение уровня сахара в крови и моче, исчез ацетон.
Затем экстракт поджелудочной железы был введен во второй раз, и она прожила еще 7 дней. Возможно, собака прожила бы и дольше, однако у исследователей закончился запас экстракта, так как получение инсулина из поджелудочных желез собак было чрезвычайно трудоемкой и длительной работой.
В последующем Бантинг и Бест начали получать экстракт из поджелудочной железы нерожденных телят, у которых еще не вырабатывались пищеварительные ферменты, но уже синтезировалось достаточное количество инсулина. Количества инсулина теперь хватало на то, чтобы поддерживать жизнь подопытной собаки уже до 70 дней. Маклеод, вернувшийся к тому времени из Европы, постепенно заинтересовался работой Бантинга и Беста и подключил к ней весь персонал лаборатории. Бантинг, который изначально назвал полученный экстракт поджелудочной железы ислетином, по предложению Маклеода переименовал его в инсулин (от лат. insula – «остров»).
Работы по получению инсулина успешно продолжались. 14 ноября 1921 г. Бантинг и Бест сделали сообщение о результатах своих исследований на заседании клуба «Физиологического журнала» университета Торонто. Через месяц последовал доклад в США, в Американском физиологическом обществе в Нью-Хейвене.
Количество экстракта, получаемого из поджелудочных желез крупного рогатого скота, забитого на бойне, стало быстро расти, и потребовался специалист для обеспечения тонкой очистки инсулина. Для этого в конце 1921 г. Маклеод привлек к работе известного биохимика Джеймса Коллипа, который очень быстро добился хороших результатов по очистке инсулина. К январю 1922 г. Бантинг и Бест начали первые клинические испытания инсулина на человеке.
Вначале ученые ввели по 10 условных единиц инсулина себе, а затем – добровольцу, которым стал 14-летний мальчик Леонард Томпсон, страдавший сахарным диабетом. Первая инъекция была сделана ему 11 января 1922 г., однако оказалась не совсем удачной, так как экстракт был недостаточно очищенным, что привело к развитию аллергии. Следующие 11 дней Коллип упорно работал в лаборатории над улучшением экстракта, и 23 января мальчику была сделана вторая инъекция инсулина.
После введения инсулина мальчик стал быстро поправляться – это был первый человек, которого спас инсулин. В скором времени Бантинг спас от наступающей смерти своего друга – врача Джо Джилькриста.
Известие о первом успешном применении инсулина 23 января 1922 г. стало международной сенсацией. Бантинг и его коллеги буквально воскрешали сотни больных диабетом, особенно с тяжелыми формами. Ему писали множество писем с просьбами о спасении от болезни, приезжали к нему в лабораторию. Однако на тот момент существовало еще много недостатков – препарат инсулина был недостаточно стандартизован, средств самоконтроля не было и дозы инсулина приходилось отмерять грубо, на глазок. Поэтому нередко случались и гипогликемические реакции организма, когда уровень глюкозы падал ниже нормы.
Однако усовершенствование инсулина и его внедрение в повседневную врачебную практику продолжались.
Университет Торонто начал продавать различным фармацевтическим компаниям лицензии на производство инсулина, и уже к 1923 г. этот гормон стал доступен всем больным сахарным диабетом.
Разрешение на производство лекарства получили компании «Лили» (США) и «Ново Нордиск» (Дания), которые и сейчас являются лидерами в этой области. Бантингу в 1923 г. университет Торонто присвоил степень доктора наук, он был избран профессором. Также было открыто отделение медицинских специально исследований для Бантинга и Беста, которым назначили высокие персональные оклады.
В 1923 г. Бантингу и Маклеоду была присуждена Нобелевская премия по физиологии и медицине, которую они добровольно разделили с Бестом и Коллипом.
В 1926 г. ученому-медику Абелю удалось синтезировать инсулин в кристаллическом виде. Через 10 лет датский исследователь Хагедорн получил инсулин пролонгированного (продленного) действия, а еще через 10 лет был создан нейтральный протамин Хагердона, который до сих пор остается одним из самых популярных видов инсулина.
Химический состав инсулина установил британский молекулярный биолог Фредерик Сенгер, получивший в 1958 г. за это Нобелевскую премию. Инсулин стал первым белком, последовательность аминокислот которого была полностью расшифрована.
Пространственное строение молекулы инсулина было установлено с помощью метода рентгеновской дифракции в 1990-х гг. Дороти Кроуфт Ходжкин, которая тоже была удостоена Нобелевской премии.
После получения Бантингом бычьего инсулина проводились опыты с инсулином, полученным из поджелудочных желез свиней и коров, а также других животных (например, китов и рыб).
Молекула человеческого инсулина состоит из 51 аминокислоты. Свиной инсулин отличается от него только лишь одной аминокислотой, коровий – тремя, что не мешает им нормализовать уровень сахара достаточно хорошо. Однако у инсулина животного происхождения есть существенный недостаток – у значительной части больных он вызывает аллергическую реакцию. Поэтому были необходимы дальнейшие работы по усовершенствованию инсулина. В 1955 г. была расшифрована структура человеческого инсулина, и начались интенсивные работы по его выделению.
Впервые это удалось в 1981 г. американским ученым Жильберу и Ломедико. Несколько позже появился инсулин, полученный из пекарских дрожжей методом генной инженерии. Инсулин стал первым из человеческих белков, синтезированным в 1978 г. генетически модифицированной бактерией Е. coli. Именно с него в биотехнологии началась новая эпоха. С 1982 г. американская компания «Генентех» стала продавать человеческий инсулин, синтезированный в биореакторе. Этот инсулин не оказывает аллергизирующего действия на человеческий организм.
История инсулина – одна из самых замечательных историй необыкновенных открытий в фармакологии. Всю важность открытия и синтеза инсулина показывает уже тот факт, что за работы с этой молекулой были присуждены три Нобелевские премии. Сахарный диабет и до настоящего времени продолжает оставаться неизлечимой болезнью, жизнь больным могут спасти только лишь постоянные инъекции волшебного лекарства.