Несколько слов о безопасности
   Время от времени нас будоражат слухи об опасном влиянии излучения микроволновых печей на человеческий организм. Воспоминание о них может настроить пользователей и против МКВ-сигнализации. Но мощность микроволновых печей измеряется киловаттами, а в системах сигнализации государственные службы большинства стран используют источники мощностью от 1 до 10 милливатт - в миллионы раз слабее.
   О безопасности МКВ-сигнализации вы можете судить по отсутствию несчастных случаев или болезней на этой почве. Моя двадцатилетняя практика создания и использования микроволновых систем сигнализации на волнах длиною до 3 см доказала их безопасность. Но вот что касается волн более короткого диапазона, то я бы не рекомендовал использовать колебания с длиной волны менее 1 см в системах сигнализации, так как сам работал над созданием радара, испускающего миллиметровые волны.
   Скорость
   Вернемся еще к одному свойству электромагнитной энергии. Независимо от характера источника скорость ее распространения равна скорости света - 300 тысяч километров в секунду. Такую величину даже в наше время трудно себе представить, в особенности если подумать, сколько усилий нужно, чтобы самолет преодолел скорость звука - 332 метра в секунду. Вот если бы воздуха не было...
   Влияние воздуха
   Самое смешное, что для МКВ-излучения воздуха как бы не существует. Микроволновые колебания распространяются в атмосфере все с той же скоростью света. Следовательно, те проблемы, которые представляли для дифракционных ультразвуковых систем сквозняки и прочие движения воздуха, для микроволновых систем такого рода не существуют. Таким образом, радарный принцип расположения приемника и передатчика детектора становится в данном случае вовсе не обязательным.
   Оптические свойства
   Если вы представляете себе физические свойства света, то свойства МКВ-излучения для вас почти уже ясны.
   Сверхвысокочастотные волны движутся по прямой - значит, между передатчиком и приемником должна быть открытая прямая линия; микроволны можно отражать, преломлять и фокусировать.
   Проникающая способность
   Понятие проникающей способности впервые появилось в нашем с вами словаре при обсуждении различных видов электромагнитной энергии. Но с ней стоит разобраться поглубже, чтобы квалифицированно противопоставлять, сравнивать и применять МКВ и ультразвуковые приборы в конкретных практических ситуациях. Ключевым моментом является то, что МКВизлучение проникает через все, кроме металла. То, насколько это влияет на систему сигнализации, зависит от плотности и толщины слоя неметалла. Например, кирпичная стена поглощает большую часть энергии МКВ-излучения, и происходящее за этой преградой не вызывает срабатывания системы - особенно если принять во внимание оптические свойства луча, и пучок отводится от стены. Однако для МКВ-излучения "не существует" деревянных дверей, стекол, панелей из ДСП. Именно поэтому использование МКВ-датчика вблизи окна может стать источником большого числа ложных тревог.
   Ультразвук может проникать через тонкие листы бумаги и пластика, но не более того.
   Для запоминания и применения в последующей работе сведений о проникающей способности микроволнового излучения подойдет следующая мнемоническая формула: микроволны пронизывают неметаллические материалы благодаря своей высокой скорости, но металлическая "броня" им не по зубам. Ультразвук же, подобно кавалеристу, идет своей медленной леткой походкой и не может пробить никаких стен.
   Принцип работы
   Что бы вы сказали о том, что летучая мышь знает едва ли не больше всех нас о пространственном распознавании и определении в воздухе координат людей и препятствий. Лично для меня в работе по созданию радаров этот крылатый зверек всегда был источником вдохновения. То, что летучая мышь использует ультразвук интересно, но не принципиально. С тем же успехом она могла бы пользоваться и микроволновым излучением.
   Летучая мышь настолько совершенно ориентируется в пространстве, что пытавшимся добиться таких же результатов инженерам-конструкторам приходилось довольствоваться их простейшими подобиями, дальнейшее совершенствование которых затруднялось их дороговизной и лавинообразным ростом технологических сложностей.
   Кое-что еще о допплеровском эффекте
   Если дело того стоит, то летучая мышь может пролететь в полной темноте через дыру не шире размаха ее крыльев. Чтобы выполнить такой трюк, она должна своей сложной радарной измерительной системой определить точный угол сдвига своего тела в стороны, скорость, расстояние до отверстия и его ширину. Для определения скорости летучая мышь использует допплеровский эффект, а для измерения дистанции и направления различные виды этих животных пользуются амплитудной или частотной модуляцией ультразвука, а также их комбинацией.
   К счастью, для систем сигнализации не важна скорость или направление движения нарушителя. Достаточно знать, что он в помещении и движется к охраняемому объекту. Следовательно, из арсенала летучей мыши можно позаимствовать лишь допплеровский эффект.
   Стоит также обратить внимание на то, что в случае летучей мыши отверстие стоит на месте, а движется источник ультразвука. В системах сигнализации все наоборот. Допплеровский эффект одинаково работает в обоих случаях, так как он фиксирует относительное движение.
   Радарное обнаружение
   В главах 4 и 15 уже говорилось, что в радарах приемник и передатчик расположены рядом, и сигнал в требуемом направлении излучается постоянно. Все, что попадается на пути луча, отражает часть его энергии на приемник в виде эха. Если объект стоит на месте, частота волны эха не изменится. МКВ-датчик будет игнорировать такой отраженный сигнал даже при сильных перемещениях воздуха в отличие от ультразвукового детектора.
   Если объект движется, и это, к примеру, нарушитель, проникший в комнату, частота сигнала-эха будет отличаться от частоты исходного импульса. На основе этой информации приемник включит систему сигнализации.
   Дифракционный метод обнаружения
   Поскольку перемещения воздуха для микроволнового излучения не помеха, то вполне разумно использовать дифракционный метод в МКВ-системах сигнализации. То, что таких систем мало, связано, видимо, с существовавшей в ранних моделях МКВ-детекторов проблемы "мертвых зон", уже описанной в главе 15. Если же добавить еще один-два приемника и придать таким образом разносторонность системе приема, то в наших руках будет весьма эффективное средство защиты складских помещений.
   В главе 19 мы вновь возвратимся к проблеме "мертвых зон" или, иначе говоря, ситуаций, когда поднимается ложная тревога из-за потери сигнала на приемнике. Такие ситуации вполне могут возникнуть в микроволновых заграждениях по периметру вне помещения.
   Уловки обнаружения
   Для МКВ нарушитель - не что иное, как сосуд с водой: вода прекрасно отражает микроволновое излучение, особенно если она не совсем чистая. Следовательно, несмотря на глубокое проникновение излучения в тело микроволновый радар не смотрит "сквозь" нарушителя, а реагирует на него.
   Надежность и контроль за ложными тревогами
   Многое из того, что было сказано в главе 15 о способах избежания ложных тревог, относится и к микроволновым радарам. Что особенно важно электронные системы обработки сигналов в обоих случаях практически совпадают.
   Проблема в том, что типичный допплеровский сдвиг частот в популярном у конструкторов диапазоне волн длиной около 3 см совпадает с пульсацией тока в системе питания - 5060 или 100-120 герц. Избежать этой трудности можно, снабдив детектор качественным стабилизатором тока. Но такое устройство и обеспечение его долговременной надежной работы - тоже конструкторская задача высокой сложности. Кроме того, диод Ганна, используемый для генерации МКВ, к сожалению, не очень эффективен. Разрушение термического контакта между диодом и металлической оболочкой резонатора может привести к перегреву и последующему отказу покрытия. Преодолеть малую эффективность системы можно, используя недавно открытые источники микроволновой энергии, такие, как полевые транзисторы на базе арсенида галлия (тиристоры).
   Проблем со стабилизацией частоты тока и эффективностью источника излучения можно избежать при переходе из диапазона волн 3 см в диапазон 12 см. Такая мера учетверяет размеры допплеровского сдвига и уводит его от частоты пульсаций тока в сети питания. Кроме того, волны длиной 12 см очень эффективно генерируются транзисторами, впаянными в схему, что снижает риск перегрева. Остальные достоинства диапазона 12 см обсуждаются ниже.
   Формирование пучка
   Соображения цены столь важны для создателей систем сигнализации, что они, как правило, стараются применять в своих конструкциях компоненты, уже опробованные в других областях техники. Ультразвуковой диск - излучатель изначально создавался для приборов дистанционного управления телевизорами. Лишь по счастливой случайности было обнаружено, что его конический пучок с углом расхождения около 60 градусов весьма подходит для эффективного перекрытия пространства и снижает процент ложных тревог в системах сигнализации.
   Точно так же наиболее разработанным в других областях техники оказалось микроволновое оборудование с длиной волны в 3 см. Вместо проводов электромагнитная энергия подобной частоты могла передаваться по трубчатым волноводам. Такие волноводы производились в большом количестве, и когда стало очевидно, что пучок трехсантиметровых волн, входящих через открытый конец трубки с размерами 2,5 х 1,25 см имеет угловые параметры 60 х 120 градусов, была принята именно такая конструкция без всяких "антенн" и формирующих насадок. Вы можете спросить, какие размеры каким соответствуют, и я вам отвечу: 2,5 см - 60-ти градусам, а 1,25 см - 120 или наоборот.
   Пожалуй, ответ проще всего представить себе в виде ряби на поверхности емкости с водой. Подобная аналогия уже использовалась в 1801 году Томасом Янгом для объяснения поведения волн света. Если вы посмотрите на поверхность воды так, под определенным углом, вы увидите, что поперек емкости установлена перегородка с небольшим отверстием в ней. Всколыхнув воду, вы заметите, что волны равномерно движутся к отверстию, но проходя через него, они начинают быстро расходиться под большим углом. Если в перегородке оставлено широкое отверстие, и те же самые волны свободно через него проходят, лишь немного расходясь. Чем больше будет отверстие, тем меньше угол расхождения. Следовательно, соответствие размеров пучка и волновода, указанные выше, имеет смысл, хотя и кажется странным.
   Если вы начинаете улавливать важность длины волны для ультразвука и МКВ, то запомните такую формулу: чем больше сечение выходного отверстия в одной из плоскостей - если его исчислять в количестве укладывающихся длин волн, - тем меньше угол расхождения и угловое сечение пучка.
   Получая на выходе волновода слишком широкий пучок МКВ-излучения, мы можем снабдить его специальной насадкой, называемой "рупор". Не имеет смысла углубляться в детали конструкции этих насадок, но о них полезно помнить следующее:
   1) угловые размеры пучка обратно пропорциональны 1 размерам отверстия волновода. Следовательно, чтобы уменьшить угол с 80 до 20 градусов, нам понадобится увеличить одну из сторон отверстия в 4 раза;
   2) угловые размеры пучка прямо пропорциональны длине волны. Это значит, что если нам известны ожидаемые размеры пучка для данного отверстия при длине волны в 9 см, то эти размеры уменьшатся втрое при переходе в диапазон 3 см.
   Схемы перекрытия пространства детектором
   Желая узнать, сможет ли радар, установленный в конкретном месте, обнаружить нарушителя во всех положениях в пределах защищаемого пространства, мы задаем вопрос: "А какова схема перекрытия пространства у этого радара?"
   Хотя эти схемы в действительности трехмерны, на бумаге их придется изобразить в двух измерениях. Следовательно, получится две картинки. Одна из них показывает сечение пучка в горизонтальной плоскости, а другая - в вертикальной. Эти схемы в трехмерном изображении обычно напоминают грушу или яблоко с "черенком" у радара и противоположной стороны у границы обнаружения.
   Размеры зоны перекрытия обычно можно рассчитать, исходя из ширины пучка, но его форму можно установить лишь на практике. Практические испытания обычно состоят из медленных прогулок по охраняемому помещению и нанесению на карту позиций, в которых радар срабатывает. Если приходится принимать во внимание возможность избежать обнаружения путем замедленного движения, расчеты зоны проводятся при наименьшей возможной скорости передвижения. Полезно также испытать радар на обнаружение нарушителя, пытающегося соблюдать одну и ту же дистанцию от источника МКВ-излучения. Таким образом вы удостоверитесь, что система срабатывает при самом минимальном допплеровском сдвиге. Если при испытании на очень малых скоростях выявляются проблемы в работе системы, возможно, стоит позаимствовать некоторые принципы пассивного инфракрасного обнаружения. Вертикальное сечение зоны перекрытия можно установить, поставив радар на бок и замерив его так же, как и горизонтальный - передвижением.
   В следующем разделе мы обсудим интересное применение зон перекрытия для создания наружных радарных систем.
   Наружные радарные системы
   При рассмотрении типов зон перекрытия подчеркивалось, что для испытаний необходимо участие человека. Практически невозможно создать манекен, чьи отражающие характеристики в МКВ-диапазоне совпадают с человеческими. Манекен не способен также имитировать всю гамму добавочных частот отраженного излучения, возникающего при движении конечностей, а она крайне важна для прибора, работающего на допплеровском принципе. Чем меньше рост нарушителя, тем меньше мощность эха и дистанция надежного обнаружения. На близком расстоянии радар обнаруживает все. Поэтому близко летящая птица также способна вызвать ложную тревогу. Методы исчисления зон перекрытия могут сослужить, таким образом, хорошую службу при создании радара, малочувствительного к наружным помехам.
   Основным доводом в пользу создания зоны необычной формы служит то, что если цель (птица) не "высвечивается" передатчиком, то на приемнике нет эха и ложной тревоги. То же самое верно и в случае попадания птицы только в зону перекрытия передатчика. Энергия, отраженная от нее, не даст эха в зоне чувствительности приемника. Чуть дальше от радара, там, где по схеме датчик не имеет чувствительности, допплеровский сигнал от птицы появится может, но если удачно подобрано перекрытие зон излучения передатчика и чувствительности приемника, эхо будет слишком слабым для срабатывания.
   Эхо от человеческого тела будет достаточно сильным для реальной тревоги во всей области наложения зон излучения передатчика и чувствительности приемника. Разделение конусов перекрытия возможно при раздельной установке друг над другом передатчика и приемника. Дистанция между ними должна быть примерно 100 длин волны (для 3-х сантиметровых волн это примерно 300 мм, или 3 метра). При большей длине рабочей волны появляется необходимость в технических компромиссах для создания достаточно надежной системы. Однако компромиссные варианты окупаются снижением чувствительности к малым целям.
   При использовании диапазона 3 см в периметровых системах ложные тревоги могут быть вызваны дождем или градом, но разделение передатчика и приемника устранит их.
   Удачные и неудачные варианты практического использования
   Еще до начала обсуждения микроволновых детекторов необходимо уточнить, что радар установлен там, где это необходимо для конкретного случая.
   Большие участки пространства
   В целом, МКВ-устройства способны перекрывать большую площадь в расчете на детектор, чем любой другой метод сейсмического или пространственного обнаружения. Ширина лицензируемых диапазонов такова, что позволяет установить несколько раздельных детекторов с индивидуальными рабочими частотами для еще большего увеличения охраняемой площади. Широкий разброс частот внутри разрешенного диапазона практически исключает риск случайной работы детекторов на близких частотах, появления наведенного допплеровского сигнала и ложной тревоги.
   Положительные качества микроволновых датчиков, работающих на больших площадях, еще ярче проявляются, если радары установлены на потолке или перекрытии крыши. Зона перекрытия таким образом увеличивается вдвое по сравнению с расположением на стене или колонне. Учитывая, что размеры нормального пучка 120-150 градусов в одной плоскости и 60-75 градусов в другой, нет необходимости направлять его на стены, окна и двери, где повышается риск ложных тревог.
   Благодаря большей, по сравнению с ультразвуком, длине волны, микроволновое излучение менее чувствительно к внешней вибрации и к помехам из окружающей среды вообще. А поскольку МКВ-излучение пронизывает такие тонкие материалы, как колеблемая сквозняком бумага или картон, и делает это тем лучше, чем больше длина волны, то увеличение этой длины в разумных пределах улучшает надежность охраны складских помещений.
   Площади среднего размера
   Дать определение "охраняемой площади среднего размера" труднее. Возможно, под площадью среднего размера лучше всего понимать такую площадь, перекрытие которой потребует одного детектора и, возможно, второго для ликвидации непросматриваемой зоны. Выбор подходящего для такого помещения способа пространственного обнаружения - дело хозяйское, хотя иногда приходится действовать и методом исключения. Например, в офисах слишком многое может заставить ультразвуковой радар "нервничать", и лучше использовать его микроволновый аналог, не направляя его на окна и разделительные легкие перегородки.
   Малые площади
   С уменьшением площади и возрастанием риска на работу систем пространственного обнаружения начинают все сильнее влиять конструктивные особенности стен, потолка, пола, дверей и окон. Расстояние до них уменьшается, и растет, соответственно, возможность ложных срабатываний. Если проникновение в помещение не слишком затруднено, например, через окна в магазине, тогда лучше использовать ультразвуковые детекторы, не направленные на границы территории. В жестких строительных конструкциях, особенно не имеющих окон, более пригодны микроволновые устройства. Если риск не слишком велик, то приемлемы и более дешевые инфракрасные приборы пассивного действия, описанные в главе 17.
   Запатентованные устройства
   Как и в случае с ультразвуковыми устройствами, микроволновые детекторы производятся многими фирмами. Однако нельзя не отметить, что большинство запатентованных устройств не блещет оригинальностью и не использует полностью всех технических и эксплуатационных возможностей МКВ.
   Одной из первых фирм, появившихся на рынке с микроволновым детектором на диодах Ганна, была "Shorrock Security Systems". Ныне ассортимент продукции этой компании включает в себя работающие в диапазоне 3 см стационарные переносные камуфлированные модификации (виды) МКВ-детекторов.
   Фирма "Racal Security" после длительных исследований добилась снижения силы тока питания МКВ-детекторов со 150 миллиампер, потребных для диода Ганна, до 25 миллиампер. Основой прибора является полевой транзистор на базе арсенида галлия (тиристор), генерирующий волны длиной 3 см.
   Конструкторам на этапе создания систем и задания спецификации оборудования важно помнить, что правительственные органы большинства стран ограничивают максимальную мощность выходного сигнала МКВ систем охраны, чтобы избежать засорения эфира радиопомехами. Ограничивается и рабочая частота устройства. Для диапазона 3 см типичными рабочими частотами разных стран являются:
   для Франции - 9,900 мегагерц;
   для Германии - 9,470 мегагерц;
   для Великобритании - 10,687 мегагерц (в помещении);
   10,587 мегагерц (на открытом воздухе);
   для США - 10,525 мегагерц.
   Кроме "Shorrok Security Systems" на создании систем наружной микроволновой радарной сигнализации специализируется фирма "Bridgend Technologies Lid".
   Эта фирма выпускает датчики, учитывающие направление перемещения, что позволяет снизить процент ложных срабатываний от продольных периодических колебаний в зоне действия пучка и не реагировать на предельно большой допплеровский сдвиг частот с целью подавления сигналов от быстро движущихся птиц и машин. "Bridgend Technologies Ltd" рекомендует также устанавливать радар достаточно высоко, чтобы он не реагировал на наземные помехи от мелких животных.
   Хотя многие другие методы обнаружения дешевле микроволнового, МКВ-детекторы незаменимы в зонах высокого риска проникновения, и поэтому в данном контексте о них не стоит, может быть, говорить так много.
   В главе 17 вам встретится ссылка на так называемые комбинированные устройства при описании инфракрасных систем пассивного действия. Инфракрасный пассивный детектор в них сочетается со средствами ультразвукового, микроволнового или микрофонного обнаружения. Для поднятия тревоги должны сработать оба устройства (см. главу 19).
   Темы для обсуждения
   Уже упоминалось, что системы сигнализации тоже подвержены веяниям моды. В особенности это верно для систем пространственного обнаружения, где соперничают три основных метода - ультразвуковой, микроволновый и пассивный инфракрасный. Чтобы сделать обоснованный выбор, специалисту необходимо быть в курсе последних достижений в каждой из этих областей и следить за появлением иных эффективных методик. Практический опыт специалиста должен сочетаться со знанием цены одного устройства, всей системы, надежностью обнаружения, риска ложных срабатываний и иных труднопредсказуемых интересов заказчика. При таком количестве переменных величин единственным практичным путем поиска приемлемой комбинации могла бы быть организация дискуссионных групп и обобщение их опыта, мыслей и знаний. Подобные дискуссии дадут возможность руководству фирм, производящих системы сигнализации, нащупать надежную основу дальнейшей работы с учетом полезного афоризма - "Стандартизация хороша лишь на время".
   ГЛАВА 17
   ПАССИВНЫЕ ИНФРАКРАСНЫЕ ДЕТЕКТОРЫ
   В главе 14 обсуждалось использование активных инфракрасных комплексов "передатчик - приемник" для создания систем сигнализации. В название был специально включен термин "активный", чтобы провести границу между устройствами с источниками инфракрасного излучения и без них. Последние получили название инфракрасных пассивных детекторов.
   Как известно, большинство наиболее полезных для человека открытий было сделано случайно. Говорят, что однажды внимательный инженер осматривал сломанную из-за отказа лампы активную систему и вдруг заметил короткий сигнал на выходе приемника, когда напротив прошел его коллега. Точно не известно, было ли все именно так, или пассивные инфракрасные системы родились из научного знания о том, что люди сами активно излучают инфракрасный свет в форме тепла. Может быть, два или более исследователя разными путями пришли к одному и тому же выводу в одно время, и обе истории содержат долю истины. Можно предполагать подсознательно, что пассивный инфракрасный метод идеален для обнаружения нарушителей.
   Возможности и трудности
   Если среда, в которой движется нарушитель, той же температуры, что и его тело, инфракрасные устройства пассивного действия никуда не годятся. В возможности их широкого применения есть оговорка - удастся или нет найти эффективный способ измерения разности температур или, по крайней мере, ее выявления. Я впервые понял важность подобного устройства для создания систем сигнализации, когда прочитал, что один из американских изобретателей декларирует возможность при помощи своего прибора обнаружить собаку на расстоянии в 100 ярдов. "Не приведи господь", - подумал я тогда. Ведь речь шла фактически о патентованном генераторе ложных тревог. Тем не менее, я написал ему письмо, но ответа не получил. В тот период мне стало ясно, что технологические компоненты удобной в практическом пользовании пассивной инфракрасной системы сигнализации еще не разработаны. Позже они появились. Особых успехов в их разработке достигли Германия, США и Великобритания. Трудно гарантировать, но, по-моему, 80-е годы войдут в историю как период, когда все три системы пространственного обнаружения - ультразвуковые, микроволновые и инфракрасные устройства пассивного действия - достигли возраста возмужания.
   Чувствительные элементы ИК систем
   Пользователя, конечно, больше волнует результат. Но все же интересно отметить, что на путях прогресса различные страны отдают предпочтение разным светочувствительным материалам инфракрасного диапазона. В Германии используется танталит лития, а в Великобритании - керамика на свинцово-циркониево-титановой основе. Сравнительно недавно американская фирма "Pennwalt Corporation" разработала пьезоэлектрическую пленку "Купаг". В пассивных инфракрасных детекторах этот материал используется, потому что он обладает не только пьезоэлектрическим, но и фотоэлектрическим качествами.
   Чтобы прибор обладал достаточной различающей способностью, в его инфракрасный "глаз" должен поступать не постоянный, а переменный по мощности поток энергии. К счастью для создателей систем охраны, нарушитель достаточно быстро меняет характер этого потока теплом своего тела. Кроме того, для воздействия на чувствительный элемент энергию надо несколько сфокусировать. К сожалению, стекло - далеко не лучший проводник инфракрасных лучей, и обычные линзы для фокусировки не подойдут. Надо искать что-то иное.