Соотношение между частотой и длиной волны
   Теперь у нас достаточно большой словарь, и благодаря ему мы сможем рассмотреть три важных вопроса. Еще раньше мы заметили: чем выше частота (звучание) ноты, тем короче струна и тем короче длина волны.
   Положение 1. Умножая частоту звука на длину его волны, мы всегда будем получать неизменный результат - константу.
   Положение 2. Эта константа - не просто бессмысленная цифра. Она отражает скорость распространения звука в воздушном пространстве (332 м/сек).
   Положение 3. Зная частоту звука, мы можем вычислить длину его волны. Исходя из положения 1 и 2 мы имеем:
   частота х длина волны = константа или длина волны = константа/частота.
   Для примера, вычислим длину волны, соответствующую частоте 1000 гц.
   332 м/сек / 1000 гц = 0,332 метра.
   Весьма полезно запомнить некоторые цифры. Скажем, длина волны звука, имеющего частоту 100 гц, составляет приблизительно 3,32 метра, а частоте ультразвукового диапазона 30000 герц соответствует длина волны около 11 миллиметров.
   Некоторые другие базовые понятия
   Сейчас у нас создается общий фон для понимания темы. Наберитесь терпения, чтобы узнать еще несколько понятий, столь необходимых нам в дальнейшем.
   Вот простая пара слов. Когда звук 1 отражается 0 и возвращается к своему источнику, мы слышим 1эхо 0. Стреляя в тире из винтовки, мы сначала слышим непосредственно звук выстрела, а затем его 1 отражение 0 от защитной стенки, находящейся за мишенью.
   Эффект Допплера
   Представьте себе комнату площадью 18 квадратных метров и высотой 3 метра, в которой созданы все условия для абсолютного покоя. Предположим, что на одной из стен, на высоте 1.8 м, висит ультразвуковой передатчик, напоминающий небольшой высокочастотный динамик. Рядом с ним приемник (рецептор) ультразвука. Оба они направлены на противоположный угол комнаты. Расположенные таким образом, передатчик и приемник образуют ультразвуковую 1допплеровскую систему 0.
   Передатчик будет посылать ультразвуковую энергию с частотой излучения 20000 гц (что равняется длине волны 16.6 мм), а приемник будет принимать энергию той же частоты - исходящую прямо от передатчика, или частично отраженную от стен, и, может быть, от пола или потолка. Теперь предположим, что в углу комнаты, как раз напротив нашего датчика, находится дверь, в которую входит непрошеный гость. Часть потока энергии, которая в нормальных условиях отразилась бы от стены и закрытой двери, теперь отражается от движущегося по комнате человека. Главный вопрос состоит в том, сможет ли приемникрецептор определить разницу между сигналами, отраженными от неподвижных предметов, и сигналами, отраженными от передвигающихся объектов.
   Ответ - да, может. Как мы увидели ранее, частота звука, помноженная на длину волны, составляет скорость звука. Сейчас, когда нарушитель передвигается по комнате, отражаемая от, него энергия возвращается к приемнику раньше, "чем это ожидалось". Образно говоря, приемник думает, что скорость звука увеличилась, а потому он составляет уравнение:
   частота х длина волны=скорость звука + приращение.
   Но уравнение стало теперь неравенством. Мы уже говорили, что в комнате созданы условия абсолютного покоя, поэтому единственное, что может привести наше уравнение в норму, - это увеличение частоты. Таким образом,
   (частота + приращение) х длина волны = скорость звука + приращение.
   Приемник фиксирует увеличение частоты сигналов, отражающихся от нарушителя. Электроника сравнивает новые данные со стандартной частотой излучаемого ультразвука, и выявленная разница служит основанием для подачи сигнала "Тревога".
   Что-то подобное происходит и тогда, когда в качестве рецептора мы используем наши собственные уши. Мы фиксируем изменение частоты звука, когда на улице мимо нас проезжает сигналящая машина. Первым ученым, объяснившим это явление был Допплер. Сейчас, говоря о сдвигах в частоте, мы употребляем понятие "эффект Допплера".
   Затухание
   Вся природа устроена таким образом, что с увеличением частоты возрастает и затухание, или потеря энергии. Слушая музыку, прикройте уши ладонями. Все звуки резко уменьшатся в объеме, но заметьте при этом: высокие звуки (если вы их вообще услышите) будут звучать куда тише, чем низкие. Тоже самое получится, если поместить репродуктор за толстый тяжелый занавес.
   Затухание наблюдается не только у звуковой волны, оно распространяется и на световую волну. Вспомните спектр цветов, излучаемых солнцем и в совокупности составляющих дневной свет. У фиолетового цвета - выше частота и короче длина волны. В полдень солнце дает нам нормальный свет, но на закате или на восходе солнечные лучи проделывают гораздо больший путь по наклонной через атмосферу нашей планеты, насыщенную пылью, которая поглощает фиолетовые и голубые лучи, также имеющие высокую частоту. Как следствие, восход и закат окрашены в красные тона.
   Постоянство свойств природы
   В природе все логически связано: и тепло, и радио сигналы и микроволновая энергия и свет передаются в пространстве электромагнитными волнами. В действительности, все они представляют собой электромагнитные волны различной длины. Так же, как звуковая волна, они обладают способностью затухать, что видно из примера с солнечными лучами. Но если скорость звука имеет границы, то скорость электромагнитного излучения практически безгранична. Сопоставление двух величин скорости создает разительный контраст: за одну секунду звук распространяется на 332 метра, а электромагнитная волна - на 300 миллионов метров.
   Еще более удивительно, что свойства распространения волны сохраняются постоянными и в такой принципиально отличной от других по физическим свойствам среде, как эфир. Скорость здесь определяется по той же формуле.
   Еще немного о затухании
   Иллюстрируя связь между увеличением затухания и частотой, мы привели примеры из области акустики и электромагнитного излучения. К счастью, в нашей области охраны мы имеем дело с расстоянием в несколько десятков или, самое большее, в несколько сот метров. По сравнению с теми расстояниями, на которые обычно отправляются радиоволны и световые волны, наши дистанции так коротки, и потеря энергии на них столь незначительна, что при описании устройства, работающего на радиоволнах, фактор затухания можно в расчет не брать.
   Если, однако, мы имеем дело с ультразвуком, то этот фактор достаточно весом. Он устанавливает предел для высоты частот. Превысив его, мы потеряем слишком много энергии, и в результате эхо не будет достаточным, чтобы обнаружить человека в помещении. Для большей ясности скажем, что потеря энергии пропорциональна квадрату частоты. Например, увеличив частоту излучения с 20 000 гц до 40 000 гц, мы уменьшим энергию эха на четверть.
   Дисперсия
   Ниже мы рассмотрим другие фундаментальные причины, которые ограничивают дальность действия пространственных детекторов.
   Обратно пропорциональная зависимость от квадрата расстояния
   Представим себе незаряженный, но включенный диапроектор, стоящий на расстоянии 1 метра от экрана. Он высвечивает светлый квадрат, яркость которого можно замерить. Удвоим расстояние до экрана. Площадь, покрываемая световым пятном, также увеличится. Измерение вертикальных и горизонтальных сторон освещенного участка показывает, что площадь увеличилась в четыре раза по сравнению с первоначальной. Однако мощность лампы диапроектора осталась прежняя, поэтому можно утверждать, что при удвоении расстояния между прибором и экраном яркость освещения сократится в четыре раза по сравнению с первоначальной. Тот же здравый смысл должен подсказать нам, что для сохранения прежней яркости освещения площади, вдвое превышающей изначальную, нам надо было бы увеличить в мощность лампы в четыре раза, например, со 100 до 400 ватт. Такая обратно пропорциональная зависимость от квадрата расстояния получила название закона обратных квадратов. Она в равной степени применима к радио-, микроволновым, ультразвуковым и пассивным инфракрасным датчикам обнаружения. Однако в случае, когда приемник и передатчик детектора располагаются друг возле друга, как это характерно для устройств, использующих радарный принцип, такая зависимость приобретает исключительно важное значение. Об этом как раз и пойдет речь ниже, а также в главе 15.
   Обратно пропорциональная зависимость от четвертой степени расстояния
   Закон обратного квадрата применим и для энергии, отражающейся от тела нарушителя и достигающей приемника системы, работающей по принципу радара. Прибегнем к аналогии с диапроектором, предположив, что свет отражается от экрана почти идеально. Экран становится передатчиком, а глаз человека, находящегося рядом с аппаратом - приемником. Допустим, нам удалось сохранить без изменений освещенность экрана после того, как мы удвоили расстояние между диапроектором и экраном. В этом случае глаз человека все равно воспринимает это, как будто яркость света уменьшилась в четыре раза, как и вначале, потому что действует уже известная нам закономерность. Вообще же, в ситуациях она действует в двух направлениях сначала от диапроектора к экрану, затем от экрана к глазу наблюдающего. Таким образом, получается, что глаз получает в качестве отражения одну четвертую часть от одной четвертой части первоначального освещения, или другими словами, одну шестнадцатую часть той энергии, которая воспринималась глазом наблюдателя, когда экран находился на расстоянии 1 метра.
   К счастью, человеческий глаз автоматически корректирует свою чувствительность, однако приемник детектора не обладает такой способностью. Приемники детекторов почти все время работают при максимальном уровне чувствительности, в то время как мощность передатчиков обычно ограничивается соображениями экономии или правительственными ограничениями.
   Если бы вы пожелали увеличить радиус обнаружения цели у допплеровских систем в два раза, вам пришлось бы увеличить мощность передатчика в 16 раз. В обычных условиях такое едва ли возможно, поэтому многие идут по пути увеличения чувствительности приемников и таким образом усугубляют проблему ложных сигналов тревоги, так как приемники начинают фиксировать любые незначительные отклонения от нормы.
   Форма пучка
   Обнаружение цели в пространстве имеет еще один значимый аспект, который необходимо знать для общего понимания вопроса. Вернемся снова к примеру с диапроектором. Предположим, что в лекционной аудитории аппарат освещает экран с расстояния 10 метров. Случилось так, что потребовалось место и диапроектор передвинули к задней стенке аудитории на расстояние 20 метров от экрана. С учетом сказанного выше нам ясно, что изображение на экране теперь увеличилось в четыре раза, а освещенность уменьшилась. Оператор может исправить ситуацию, заменив объектив аппарата на другой, у которого фокусное расстояние вдвое больше. Если, скажем, в первом случае лучи падали на экран под углом 40 градусов по горизонтали и вертикали, то уменьшив угол до 20 градусов, мы восстановим прежнюю освещенность, сохранив положение диапроектора в глубине аудитории.
   Подобное изменение формы пучка применяется и в сигнализационных детекторах пространственного обнаружения. Выше, приводя пример с допплеровскими датчиками, мы говорили, что для удвоения радиуса обнаружения объекта нам необходимо увеличить в 16 раз мощность передатчика. Но если угол излучения и приема энергии уменьшить по вертикали и горизонтали (например, с обычных 80 до 40 градусов), то реальный радиус обнаружения можно увеличить в два раза, оставив прежними и мощность передатчика, и чувствительность приемника. Этот способ широко применяется в радарной технологии с использованием отражателей, рупоров или линз; при условии правильного понимания его сути, он может найти еще большее применение в устройствах обнаружения.
   Запросто с пространственным обнаружением
   Теперь мы уяснили себе: в принципах работы различных устройств, фиксирующих передвижение в пространстве, нет ничего непонятного, а, следовательно, в последующих главах мы не встретимся с какими либо трудностями.
   Если вы разобрались в сути фотографии, а в школьном курсе вы не имели затруднений с понятиями тепла, света и звука, вы разберетесь и с микроволновыми радарами. Микроволны - это тоже электромагнитное излучение, вся разница состоит только в длине волны. Ну а коль скоро вы разобрались в микроволновых допплеровских детекторах, то с ультразвуковыми сложностей у вас не должно быть: при похожести волн здесь изменяется только среда распространения - воздух вместо эфира. Что же касается инфракрасных лучей, то они нашли себе местечко между светом и микроволнами.
   В последующих главах мы рассмотрим практические аспекты работы. Пока же помещенные ниже темы для обсуждения помогут вам проверить, как много информации осталось в вашей памяти по прочтении этой главы.
   Темы для обсуждения
   1. Почему электронные вспышки зачастую приносят фотографам большое разочарование?
   2. Можно ли услышать звук, длина волны которого составляет 10 мм? Какую длину волны имеет самый высокий слышимый звук?
   3. Какие волны затухают в среде быстрее: МКВ или ИК? Почему?
   ГЛАВА 5
   НАБЛЮДЕНИЕ ЗА ВХОДОМ ВО ВНУТРЕННИЕ ПОМЕЩЕНИЯ
   Под внутренними помещениями мы понимаем пространство внутри зданий, ограниченное стенами, полом, потолком, крышей, дверьми, окнами и т.д. В это понятие не входят внутренние площадки дворов, огороженные заборами, и подобные им территории.
   Мы начинаем с того момента, на котором мы прервали рассуждения в главе 3, где говорили о концепции систем безопасности. Теперь приступим к рассмотрению вопроса какие возникают требования к охране помещений от проникновения посторонних лиц с преступными целями, а также того, что из эти требования вытекает.
   Должностные лица, предъявляющие требования по безопасности
   Знание этого аспекта важно. Для большинства из на требование - это предложение, сделанное в письменном виде содержащее в себе инструкцию к действию. Требование может быть выдвинуто непосредственно нашим начальником. Но давайте на несколько минут отвлечемся и посмотрим: кого еще может заинтересовать соблюдение мер безопасности. Конечно риск вторжения в помещение всегда существует, существуют: различные предположения, как и почему может произойти вторжение, а это уже и составляет основу для различных требовании Но дело не только в этом. Важна не столько сама систем, защиты, сколько сигнал о том, что через нее пытаются проник нуть внутрь. Кто же эти люди, которые по должности обязаны ясно осознавать то, о чем мы говорим?
   Прямой интерес к надлежащей системе охраны помещения проявляет страховщик, взявший на себя обязательство возместить по требованию клиента в денежной форме утрате любого предмета, оговоренного в страховом соглашении. Прежде чем взять на себя столь большую ответственность, страховщик узнает у местного агента страховой компании о степени риска. Однако страховой агент не всегда имеет специальную подготовку чтобы проводить необходимую оценку риска. Специально обучен для этого, скорее всего, страховой инспектор; он же может составить список мер безопасности и оборудования обнаружения при наличии которых страховщик сможет принять на себя обязательства по выплате ущерба.
   Другим лицом, выдвигающим требования, является офицер полиции по предотвращению преступлений. В то время, когда он не вовлечен непосредственно в задержание преступников, он ведет наблюдение за новыми домами, старыми, где производится реконструкция или меняется направление использования их владельцами или арендаторами, а также теми зданиями, в которых недавно произошли кражи. Он дает рекомендации по мерам защиты собственности, советует, какие шаги следует предпринять, чтобы облегчить задачу охраны обычным подразделениям полиции и тем, кто выезжает на место по сигналу тревоги.
   Офицер безопасности промышленных объектов (должность, возникшая в результате эволюции профессии ночного сторожа) - это хорошо обученный и опытный гражданский чиновник, находящийся на службе у промышленных и контролируемых правительством организаций, чьи помещения могут подвергаться таким вторжениям, каких не могут предотвратить обычные полицейские подразделения. Одетые в униформу офицеры безопасности промышленных объектов - что-то вроде частной полиции. Риск проникновения заставляет вести круглосуточное наблюдение, не сводимое к простой проверке, все ли двери закрыты. Старший офицер безопасности и его сотрудники часто обращают свое внимание на электронные меры защиты.
   Порою мы не осознаем, что местное начальство также может выступить в качестве автора требований по безопасности. В тех организациях, где на начальников отделов возлагается вся полнота ответственности за успешное ведение дел, там и развивается у сотрудников острое осознание причин возможных потерь (включая потери из-за плохой охраны помещений). Правда, сами начальники непосредственно занимаются вопросами безопасности очень редко - здесь в игру вступает старший офицер безопасности или другое лицо с эквивалентными обязанностями.
   Требования от частных служб безопасности
   В прежние времена всегда хватало компаний, которые предоставляли свои услуги для охраны объекта. С ними вступали в контакт по телефону или письменно, через круг должностных лиц, о которых мы упомянули. Но эти контакты приходилось, да и приходится, поддерживать скорее благодаря личным взаимоотношениям, а не исходя из определенных производственных интересов.
   Бытует легкомысленное отношение к вопросу охраны помещений - по принципу: " с нами ничего такого не случится", а отсюда - расцвет дилетантских компаний по охране безопасности. С другой стороны, тот, кто проблему охраны воспринимает всерьез, все больше нуждается в замене старых систем безопасности. Но хорошо известно: люди, однажды установившие оборудование, которое сделало свое дело качественно, далеко не всегда считают нужным производить замену. Если старая система являлась хорошим средством сдерживания и предупреждения нападений, зачем создавать себе сложность с ее заменой? - так думают они.
   Поэтому компаниям безопасности все чаще приходится напоминать таким тугодумам, что сейчас у грабителей появились новые мотивы для нападения, а посему и необходимо вместо старой системы устанавливать новую.
   Настаивать на этом перед каждым бывшим своим клиентом - тяжелое занятие для людей, работающих в сфере охраны. Но перспектива потерять клиента и начинать новую работу в примитивной области оснащения охранными системами жилых домов удручает их еще больше. Не удивительно, что когда-то непопулярный вид рекламы находит все больше поклонников как в отдельных местностях, так и масштабе всей страны. Какой рекламы? Основанной на теме страха. Страх перед возможными последствиями, которые ожидают тех, кто игнорирует меры безопасности. Нагнетание такого рода страха является благодатной почвой для возделывания рекламы. Ведь средства массовой информации в сообщениях о грабежах у нас и за рубежом чуть ли не каждый раз указывают: "Меры безопасности были всеобъемлющими".
   Наша цель - предотвратить преступление. Но оправдывает ли цель средства? Оправдана ли в этом случае игра, основанная на чувстве страха? Игра, призванная убедить людей сделать шаг вам навстречу, который принесет им безопасность в дом или офис и спокойствие в душу? Попозже задумайтесь для самоконтроля над этим вопросом. Помните при этом: чтобы быть на плаву, предприниматели, работающие в любой области, должны получать прибыль от сделок, - и это их вторая цель. Если же вы находите ее сомнительной, то подумайте: к каким последствиям могло бы привести исчезновение этой цели из бизнеса?
   Осмотр помещения
   Выше я писал, что никогда не стал бы давать рекомендации по охране помещения, предварительно его не осмотрев. Столь же важно провести беседу с непосредственно работающими там людьми. Ни одна электронная система, сколь совершенна она не была бы, - не спасет нас от грабителя, если в ней не предусмотрены приборы, информирующие конкретных людей о происходящем вторжении. Это бесспорный факт. Все остальное относительно осмотра помещения - дело вкуса.
   Хорошо бы для тех, кто осуществляет инспекцию помещений, управляет инспекторами или обучает их, выработать типовую схему осмотра. Она позволит, с одной стороны, учитывать личные пристрастия, а с другой - проявить последовательность и применить практические навыки.
   Задача осмотра сводится к следующему:
   1. Каким образом грабитель может достичь своей цели? Его цель - это объект риска и выяснение, каким путем вторгшийся в помещение может претворить в жизнь свои планы, - это анализ риска.
   2. Отталкиваясь от анализа риска, инспектор или инженер, работающий с системой безопасности, может выработать меры (включая меры по конкретному применению электронного оборудования), которые необходимы для предупреждения охранников о проникновении постороннего в охраняемое помещение. Это проект системы.
   3. Технический отдел должен разработать схему установки оборудования по проекту. В такой схеме детально определяется отбор оборудования по проекту, пути прокладки кабеля, способы защиты системы от блокировки, а также нахождение наиболее выгодных мест, из которых подается сигнал тревоги.
   В вышеизложенных трех пунктах мы коснулись таких вопросов, как анализ, проектирование и размещение систем безопасности. Думая о них, вы будете помнить о цели осмотра помещения и о результатах, к которым осмотр должен привести. Но как бы не обстояли дела, не забывайте, что собственно обнаружение вторгшегося в помещение грабителя - вопрос технический, и только технический.
   Методы обнаружения, используемые для охраны периметра здания.
   Новичкам в нашем деле охраны, наверное, покажется логичным уяснить себе суть всего на примере хотя бы одного осмотра помещения. Начнем с того, с чего начинает любой заинтересованный специалист или грабитель с периметра здания, на некоторое время оставив в стороне мои советы и систему сигнализации.
   Вопрос 1. Нужно ли использовать систему безопасности в рабочие часы или можно ограничиться нерабочими часами и выходными днями, когда здание пустует?
   Здесь мы сразу сталкиваемся с необходимостью обойти помещения вместе с клиентом (владельцем или управляющим), знакомым с режимом этого офиса, или использовать знания об этом здании авторитетного в таких делах инспектора.
   Скажу сразу: если включение системы безопасности требуется только в рабочие часы, ознакомьтесь с главами 10, 23, и 25, где говорится о контроле за доступом в здание. Если же вы хотите использовать ее в нерабочие часы, то читайте дальше эту главу.
   Вопрос 2. Какой выход из здания предпочитают сотрудники в конце рабочего дня?
   Тщательно продумайте этот вопрос. Выходом может оказаться не только парадная, но и боковая или задняя дверь (так называемый "черный ход"). Расположение выхода не имеет большого значения, если оно отвечает нескольким требованиям:
   - для держателя ключей существует безопасный проход к зданию и от него;
   - дверь не поддается выбиванию, так как открывается наружу, а не вовнутрь, имеет предохранительные затворы, а дверная коробка вмонтирована в стену;
   - установлен замок усовершенствованного типа, в котором при попытке взлома приводится в действие блокирующие задвижки.
   Вопрос 3. Есть ли другие выходы по периметру здания?
   Требования, предъявляемые к двери служебного выхода (через которую сотрудники покидают здание), в равной степени относятся и к другим дверям по всему периметру здания. Особое внимание следует уделять их физической защищенности. Вот самое минимальное требование: каждая дверь должна иметь вверху и внизу большие засовы. Если инспектор считает, что для служебного входа лучше выбрать какую-либо другую дверь, то он должен посоветовать это сопровождаемому его клиенту. Последний может высказать возражения, а инспектору необходимо выяснить, что стоит за ними и насколько они весомы. Он может спросить, не будет ли клиент возражать против внесения пункта "Об изменении служебного входа" в список предложений по обеспечению безопасности. Однако, какой бы тон для возражений не выбрал сопровождающий, инспектору всегда нужно помнить: именно он, сопровождающий, положит его предложения (или чьи-нибудь другие?) на стол начальству, поэтому на всех стадиях осмотра необходимы поиски согласия.
   И все же, если приведя двери в соответствие с комплексом предохранительных мер, мы все же стоим перед перспективой грабежа, то нам нужно четко уловить тот момент, когда их начнут вскрывать. Какие существуют устройства для того, чтобы был подан сигнал тревоги?