Первые четыре книги этого труда сохранились на греческом языке, следующие три в арабском переводе, а последняя книга утеряна. Апполоний первым ввел эллипс, параболу и гиперболу как произвольные плоские сечения произвольных конусов с круговым основанием и детально исследовал их свойства. Метод Апполония состоял в отнесении кривой к какому-либо ее диаметру и сопряженным с ним хордам, и предвосхищал созданный в XVII веке метод координат. «Конические сечения» Апполония оказали огромное влияние на развитие наук Нового времени - астрономии, механики, оптики. Из положений Апполония исходили при создании аналитической геометрии Декарт (1596–1650) и Ферма (1601–1655).

Мы видим, что большинство математических теорий до какого-то времени имело своим предметом геометрические объекты. Дело в том, что геометрические величины представлялись имеющими преимущество наибольшей общности в классе математических величин. Хотя, разумеется, нет оснований утверждать, что геометрические формы исчерпывали всю совокупность форм математической деятельности. Греки Византии в практической области применяли большой комплекс арифметико-вычислительных методов. Этот комплекс проникал и в теоретические работы, дополняя теорию арифметико-алгебраическими и теоретико-числовыми элементами.

Но неудобства алфавитной системы счисления и неразработанность символов мешали развитию вычислительных операций. Да и требования практики не были достаточными, чтобы стимулировать операции с весьма большими числами. Вслед за сравнительно ограниченным набором чисел, имеющих названия, довольно быстро наступал порог, после которого число элементов практически представлялось неисчислимым.

Чтобы устранить подобное несовершенство и показать неограниченную продолжаемость натурального ряда чисел, Архимед написал специальное сочинение под названием «Псаммит» (исчисление песка), в котором показывается, что система чисел может быть продолжена сколь угодно далеко и может служить для пересчета любого конечного множества предметов.

Система чисел Архимеда построена по десятичному принципу: единицы (монады), десятки (декады), сотни (гекады), тысячи (хилиады), десятки тысяч (мириады) и т. д. Мириада затем рассматривается как основа счета до числа мириады мириад (10^ 8). Числа от 1 до 10^ 8образуют первую октаду (от слова восемь), а числа, в нее входящие, называются первыми. Далее следуют вторая октада, третья и т. д., до октады чисел октадных, замыкающей первый период. Она является исходной единицей второго периода, далее следуют единицы чисел третьего периода, четвертого и так до октады чисел октадных октадного периода.

Получающиеся огромные числа воспринимались как своеобразные бесконечности, шкала роста которых могла быть неограниченно продолжаема. Их с избытком хватало даже для такой задачи, как определение порядка числа песчинок, могущих полностью заполнить всю Вселенную.

Чтобы сделать задачу возможно более определенной, Архимед, исходя из гелиоцентрических воззрений Аристарха Самосского, представляет Вселенную как шар, в центре которого находится Солнце. Радиус шара считается от Солнца до неподвижных звезд. Для дальнейшего уточнения задачи принимается, что диаметр Вселенной во столько же раз больше диаметра солнечной системы, во сколько раз этот последний больше диаметра Земли. Архимед использует экспериментальные данные астрономов, округляя их в сторону увеличения.

Единица измерения Вселенной - песчинка, принята за 0,0001 зернышка мака, которых требуется 40 штук, чтобы сравняться с шириной человеческого пальца. Подсчеты, произведенные Архимедом, показали, что искомое число песчинок будет не больше чем 10^ 63, или тысячи (10^ 3) мириад (10^ 4) чисел восьмых (10^ 78) первого периода.

Однако уровень вычислительно-практических приложений многих развитых математических теорий оставался все же сравнительно низким. Это объясняется оторванностью от практики, принудительностью геометрической формы, ограничением совокупности применяемых методов, отсутствием тригонометрии. Требования астрономии к математике с достаточной силой сказались несколько позже.

Официальная история удивляется, что после Евклида, Архимеда и Аполлония наступило время как бы деградации византийской математики. Такой взгляд происходит от неправильного понимания авторства и времени написания этих трудов.

Считается, что после разгрома Александрийского научного центра в VI веке остался последний центр античной науки - Афины, который так же был со временем разгромлен. На самом деле «переезд науки» в Афины - это история Афин под властью крестоносцев, XIII–XV века. Здесь произошла встреча западноевропейской, арабской и остатков византийской культуры.

В более позднее время постепенно интерес смещается в сторону практических вычислительных методов и задач. Образцом работ подобного направления являются математические работы Герона из Александрии, в особенности его «Метрика». Стиль последней - рецептурный: для определенных классов задач формулируются правила, справедливость которых подкрепляется примерами.

В «Метрике» содержатся правила для точного и приближенного определения площадей геометрических фигур и объемов тел, правила численного решения квадратных уравнений и извлечения (преимущественно приближенного) квадратных и кубических корней. В частности, в ней приводится известная формула Герона для вычисления площади треугольника по трем его сторонам

S = [р(р-а)(р-b)(р-с)]^ 1/2,

где а, b, с - стороны, p= (а + b + с)/2.

Наконец, значительную часть содержания «Метрики» составляет описание приемов землемерия и геодезических инструментов.

Значение прикладной вычислительной стороны математики еще более подчеркивается той большой и все возрастающей работой, которую математики вынуждены были вести для составления астрономических таблиц. Среди последних особо значительное место занимают таблицы хорд Птолемея, где данные приведены через каждые 30 от 0 до 180°.

На основе преимущественного роста вычислительной стороны математики, а возможно и под другими дополнительными влияниями в математике зародились элементы алгебры и начальные формы алгебраической символики. На это обстоятельство указывают методы и результаты Диофанта. Из математических сочинений этого александрийского ученого сохранились шесть книг «Арифметики» и отрывки книги о многоугольных числах. Диофант во всех задачах производит только операции с числами, нигде не высказывая общих теорем. Тем не менее, для обозначения неизвестного количества в уравнении и для записи функций от него он был вынужден разработать систему символов.

Символика Диофанта основана на сокращении слов, и в истории развития алгебраической символики она знаменует переход от словесных выражений алгебраических зависимостей ( риторическаяалгебра) к сокращениям этих выражений ( синкопическаяалгебра). Следующей ступенью развития стала чисто символическая алгебра.

Неизвестная величина хв уравнениях Диофанта представлена специальным символом. Переписчики, впрочем, пользовались разными символами, что не изменяет принципиально существа дела, ибо символика не строго единообразная, имеет модификации.

Общая теория диофантовых уравнений первой степени ах+b=1, где аи b - взаимно простые целые числа, была построена в XVII веке французским математиком Баше де Мезириаком (1587–1638). Он также издал в 1621 году сочинения Диофанта на греческом и латинском языках со своими комментариями. Над созданием общей теории диофантовых уравнений 2-й степени трудились многие выдающиеся ученые: П. Ферма, Дж. Валлис, Л. Эйлер, Ж. Лагранж и К. Гаусс. В результате их усилий к началу XIX века было в основном исследовано общее неоднородное уравнение 2-й степени с двумя неизвестными и с целыми коэффициентами.

Имя Диофанта прочно закрепилось и в той части теории чисел, которая изучает приближения действительных чисел рациональными числами; эти приближения так и называются диофантовыми.

Историки науки отмечают, что после закрытия афинской школы в бассейне Средиземноморья в развитии математики как науки наступил длительный перерыв, завершают они. Но мы помним, что это за афинская школа. Это как раз время заката Византийской империи, и подтверждением этому тот неоспоримый факт, что в рамках математических теорий «античной древности» возникли и развивались элементы более поздних математических наук: алгебры, анализа бесконечно малых, аналитической геометрии, теоретической механики, аксиоматического метода в математике.

Если сравнивать разные «части» традиционной истории, сразу видно, что умением плавать по морю и строить города ромеи (византийцы) не уступали своим предкам-эллинам; в государственных делах они так же были впереди многих государств. И при этом историки науки нам говорят, что ромеи не унаследовали от эллинов любовь к натурфилософии и к точным наукам. Оказывается, для них главным видом интеллектуальной деятельности стало богословие. Монахи и императоры косо смотрели на «языческую премудрость» эллинов. И в завершение, ликвидировали последний оплот знания - Академию в Афинах.

В результате возникает необъяснимый феномен: тысячелетняя Византийская империя, не знающая математики. Но загадки нет, если правильно понять, где и когда развивалось то, что мы называем математикой Древней Греции.

<p>О математике Китая</p>

Сведения о математических познаниях китайцев в древности крайне скудны и разрознены. Самым ранним математическим сочинением, если не считать трактата о чжоу-би(солнечных часах), называют трактат «Математика в девяти книгах». Считается, что это сочинение появилось как своеобразный итог математических достижений Китая к началу нашей эры. Известно даже имя автора, государственного деятеля и ученого Чжан Цаня (152 год до н. э.), собравшего и систематизировавшего все известные к его времени математические знания. Вместе с тем признается, что «Математика в девяти книгах» неоднократно подвергалась переработкам и дополнениям: в I веке до н. э. этим занимался Гэн Чоу-чан, в III веке н. э. - Лю Хуэй, в VI Чжень Луань, и в VII Ли Чун-фэн. Были и другие.

В результате трактат приобрел вид своеобразной математической энциклопедии с неоднородным содержанием. В VII–Х веках он сделался основным учебником для поступающих на государственную службу и классическим сочинением, на который опирались ученые-математики в своих исследованиях. И эта дата тоже сомнительна, но согласимся с тем, что это памятник Х века.

Книги, составляющие трактат, имели вид отдельных свитков. Они посвящены различным темам, преимущественно практического характера. Различие объясняют тем, что разные книги предназначались для чиновников разных ведомств: землемеров, инженеров, астрономов, сборщиков налогов и т. п. Позднейшие дополнения вносились в книги не по признаку математической общности, а по единству темы. То есть это некоторая солянка сборная из сведений, неизвестно откуда взявшихся.

Изложение - догматическое: формулируются условия задач (всего 246 задач) и даются ответы к ним. После группы однотипных задач приводится алгоритм их решения, состоящий или из общей формулировки правила, или из указаний последовательных операций над конкретными числами. Объяснений, определений, доказательств нет. То есть это справочник, не показывающий, на основании каких работ он составлен.

Книга первая называется «Измерение полей». Единицей измерения служит прямоугольник со сторонами 15 и 16 бу(то есть шагов, приблизительно равных 133 сантиметрам). Площади прямолинейных фигур вычисляются верно. При вычислении площадей круга, сектора и кольца принимается, что число «пи» = 3. Площадь сегмента вычисляется как площадь трапеции, большее основание которой совпадает с основанием сегмента, а меньшее основание и высота - каждое равно высоте сегмента.

Используемая при этом система счисления - десятичная иероглифическая. Числа делятся на классы по 4 разряда в каждом. Особого знака нуля при такой системе записи, очевидно, не требуется. (Нуль действительно появился значительно позднее, только в XII веке.) Чтобы придать большую общность постановке основной задачи об измерении площадей, в первой книге введены простые дроби и арифметические действия над ними. Правила действий - обычные; особенностью является только то, что при делении дробей требуется предварительное приведение их к общему знаменателю.

Но вот что настораживает. Употребляемое в первой книге значение «пи» = 3 не соответствует китайской традиции не только Х, но и VI века. Считается, что китайские математики того времени умели и более точно вычислять значения «пи». Например, в I веке до н. э. у Лю Синя дается значение «пи» = 3,1547, во II веке н. э. у Чжан Хэна «пи» определено, как 10^ 1/2(3,162). Чжан Хэн считал, что квадрат длины окружности относится к квадрату периметра описанного квадрата, как 5 к 8. В III веке при вычислении сторон вписанных многоугольников Лю Хуэй нашел, что «пи» = 3,14. Он исходил из предложения, что площадь круга аппроксимируется снизу площадями вписанных многоугольников. Для аппроксимации сверху площади этих многоугольников увеличиваются на сумму прямоугольников, описанных вокруг остаточных сегментов.

Дойдя до 192-угольника, Лю Хуэй получил, что «пи» = 3,14. Некоторые авторы утверждают, что Лю Хуэй продолжил вычисления далее до 3072-угольника и получил значение 3,14159. В V веке Цзу Чун-чжи, по свидетельству Вей Ши (643 год), дал для «пи» значение 3,1415927. Ну, и как все это согласовать с тем, что китайцы даже в Х веке не знали, как вычислять значение «пи»?

Книга вторая - «Соотношение между различными видами зерновых культур», отражает старинную практику взимания налогов зерном, измеряемым в объемных мерах, и расчетов при переработке этого зерна. Математические задачи, возникающие при этом, - это задачи на тройное правило и пропорциональное деление. Ко второй книге была позднее добавлена группа задач на определение стоимости предметов, число которых берется как целое, так и дробное.

Задачи на пропорциональное деление, деление пропорционально обратным значениям чисел, а также простое и сложное тройное правило составляют содержание и следующей, третьей книги - «Деление по ступеням». Правил суммирования арифметических прогрессий здесь еще нет, хотя, по утверждениям тех же историков науки, они известны китайцам с VI века (трактат Чжан Цзю-цзяна).

В четвертой книге вначале речь идет об определении стороны прямоугольника по данным площади и другой стороне. Затем излагаются правила извлечения квадратных и кубических корней, нахождения радиуса круга по его площади. Правила сформулированы специально для счетной доски. Подкоренное число делится на разряды соответственно по 2 или по 3 знака, затем последовательно подбирается очередное число корня и дается правило перестройки палочек на счетной доске.

В книге пятой, «Оценка работ», собраны задачи, связанные с расчетами при строительстве крепостных стен, валов, плотин, башен, ям, рвов и других сооружений. При этом вычисляются как объемы различных тел, так и потребности в рабочей силе, материале, транспортных средствах при различных условиях.

Книга шестая - «Пропорциональное распределение», начинается группой задач о справедливом (пропорциональном) распределении налогов. Математические методы здесь те же, что в книге 3, где речь шла о распределении доходов между чиновниками различных классов, - пропорциональное деление, простое и сложное тройное правило. Кроме того, в шестую книгу входит серия задач на суммирование отдельных арифметических прогрессий и задач на совместную работу лиц с разной производительностью.

«Избыток-недостаток» - так называется седьмая книга. В ней подобраны задачи, приводящиеся к линейным уравнениям и их системам, и разработан способ их решения, совпадающий с методом двух ложных положений. Задачи и в этом случае накапливались в возрастающей степени трудности. Метод тоже еще не сформулирован четко и имеет много разновидностей частного характера.

Усовершенствование складывающихся в седьмой книге правил решения систем линейных уравнений и распространение их на системы с большим числом неизвестных изложены в правиле фан-чэн, которому посвящена вся восьмая книга. Задачи этой книги приводят к системам до пяти совместных уравнений линейных с положительными корнями. Для всех систем установлен единый алгоритм вычисления корней - упомянутый фан-чэн.

Дело в том, что в процессе преобразований матрицы системы китайские ученые ввели отрицательные числа. Для их сложения и вычитания и было введено специальное правило, которое можно перевести как правило «плюс-минус». Так как все вычисления, в том числе и преобразования матрицы, производились на счетной доске, то для обозначения отрицательных чисел применялись счетные палочки другого цвета или формы, а в случае записи применялись иероглифы разных цветов.

Расширение понятия числа в связи с нуждами обобщения созданного алгоритма является характерной особенностью развития математики. Те же стремления обеспечить общность решения в радикалах уравнений 2–4 степени привели в Италии к введению в XVI веке мнимых чисел. Что же касается приоритета китайских математиков относительно правила фан-чэн, то он был бы бесспорен, если бы мы не знали, что отрицательные числа в явном виде появились в Европе в конце XV века в сочинениях Н. Шюке, и что очень много европейских новинок было привезено в Китай иезуитами в XVI веке.

Практическую основу последней книги «Математики в девяти книгах» составляют задачи определения недоступных расстояний и высот с помощью теоремы Пифагора и свойств подобных треугольников. Математически эта книга особенно интересна общей, алгебраической формулировкой правил. Помимо элементарных способов применения теоремы Пифагора, в ней имеется способ нахождения пифагорейских троек, то есть целочисленных решений уравнения x^ 2+y^ 2=z^ 2. Некоторые задачи приводят к полным квадратным уравнениям, а правила их решения эквивалентны общеупотребительным и ныне формулам.

Например, задача № 11 о размерах двери, относительно которой известны диагональ и разность между длиной и шириной, сводится к двум уравнениям. Выводов и доказательств, как уже было упомянуто, в рассматриваемом трактате нет.

Мы остановились так подробно на обзоре содержания «Математики в девяти книгах» потому, что это сочинение является самым значительным и даже, пожалуй, единственным крупным памятником древней китайской математики. И зная любовь китайцев к своим приоритетам, и стремление всё свое объявлять древним, полагаем, что он был создан позже прихода европейцев в Китай.

Сами же историки объявляют, что с XIV века в Китае начинается длительный период застоя в развитии наук. Добытые ранее знания не развиваются и даже забываются. Математика существует преимущественно за счет усвоения иностранных знаний. И лишь потом науками вновь занялись, и сразу вспомнили свои древние открытия. Как же это произошло?

В 1583 году в Китай пришел иезуит-миссионер М. Риччи, а затем сюда потянулись и другие. Видимо, не без их содействия в 1606 году в Китае впервые появились издания «Начал» Евклида, в 1650 году - таблицы логарифмов Влакка. Оригинальное же развитие китайской науки все еще было «прекратившимся». Спрашивается, а было ли оно раньше? Математики-специалисты китайского происхождения всегда готовились к научной деятельности за границей, да в большинстве случаев оттуда в Китай и не возвращались.

<p>О математике Индии</p>

В средневековой математике Индии преобладали вычислительно-алгоритмические методы и отсутствовали попытки построения дедуктивных систем. Геометрия индийцев - также практическая. И это не удивительно, так как в основном всё сюда приносилось из других мест, в том числе и наука - сначала вместе с религиозными эмигрантами из Византии, а потом с деятелями мусульманской экспансии. Соединение здесь различных потоков знания дало свои результаты, и весьма неплохие результаты.

Индийские математики ввели понятие нуля и широко использовали отрицательные числа, проводили исследования по комбинаторике (Ариабхатта, якобы V век). Они создали десятичную систему записи натуральных чисел и разработали правила операций над записанными так числами. Эту запись чисел стали применять математики многих восточных стран, откуда она попала в Европу. Индусы начали оперировать с иррациональными количествами так же, как с рациональными, без геометрического их представления, в отличие от византийских греков. У них были специальные обозначения для алгебраических действий, включая извлечение корня. Именно благодаря тому, что индусские и среднеазиатские ученые не смутились различием иррациональных и рациональных количеств, они смогли преодолеть «засилие» геометрии, и открыли путь развитию алгебры.

Но и в Индии есть мифический период в развитии математики. Согласно традиции, самыми ранними памятниками математической культуры индийцев являются религиозные книги: сутры и веды. Их происхождение относят к VIII–VII векам до н. э. В них приводились геометрические построения, составляющие важную часть ритуальных условий при постройке культовых сооружений: храмов, алтарей и прочего, а потому в них можно найти первые способы квадрирования кругов и применение теоремы Пифагора. Видимо, как следствие архитектурных требований решалась и арифметическая задача о нахождении пифагоровых троек натуральных чисел.

Числовая система с древних времен определилась как десятичная. Столь же рано определилась склонность к оперированию большими числами, нашедшая отражение в легендах. Будда, например, отличался феноменальным умением считать; он строил числовые десятичные системы до 10^ 54, давая наименования каждому разряду. Женихи прекрасной богини Земли, добиваясь ее руки, обязаны были соревноваться в письме, арифметике, борьбе и стрельбе из лука. Победитель соревнования Сарватасидда придумал, в частности, шкалу чисел, идущих в геометрической прогрессии со знаменателем 100, до числа с 421 нулем. Пристрастие к операциям с большими числами сохранялось в течение всей истории математики в Индии. Но мы не знаем, к какому реально периоду времени эти труды относятся.

Появление позиционного принципа в индийской математике относят к V веку. Отныне числовое значение каждой цифры определялось ее местом влево от конца цифрового ряда. Передвижение цифры на одно место увеличивало ее числовое значение в 10 раз. В соответствии с десятичным принципом индийцы разработали знаки для 9 цифр и десятый знак, нуль. Знак нуля ( шунья - пустой) сначала обозначался точкой, потом кружком. И кстати, по некоторым другим сведениям, первые записи с нулем датируются 876 годом.

Арабы (раньше всего в Багдадском халифате) узнали о математических открытиях индийцев в VIII веке благодаря торговым и дипломатическим сношениям. Сразу же подхваченная арабами цифровая система стала известна в Западной Европе под названием арабской к XII веку, по-видимому, через арабские владения в Испании. Слово сифр, впоследствии принятое в европейских странах для обозначения цифр вообще, исходно значило по-арабски нуль. В английском языке до сих пор слово cipher означает нуль, цифру, шифр.

Наиболее яркий период развития, оставивший самые значительные образцы математической литературы, это V–XII века. В это время трудились выдающиеся индийские ученые, математики и астрономы: Ариабхатта (считается, что он жил в конце V века), Брахмагупта (считается, что он родился в 598 году), Магавира (IX век), Бхаскара Акарья (родился в 1114 году) и другие.

Ариабхатта дал наиболее точное в то время определение числа «пи» - 3,1416, вычислил значение корней второй и третьей степени. Для понятия кореньон использовал перевод греческого слова basis, обозначавшего одновременно основаниеи корень. В XII веке это понятие было переведено на латынь словом radix (корень), из которого во многие языки вошли понятия кореньи радикал.

Брахмагупта в стихотворной форме написал огромное сочинение в 20 книгах «Усовершенствованная наука Брамы». Он излагал основы арифметики и геометрии, алгебры и метрология; занимался действиями над целыми числами и дробями и извлечением корней. Он решал задачи на бассейны и смеси; посвятил место суммированию рядов, планиметрии, вычислению различных объемов, задачам неопределенного анализа и задачам комбинаторики.

Главной особенностью индийской математики является преобладание вычислительных приемов, преподносимых учащимся или читателям в догматической форме.

Представление о бесконечно больших числах ввел в математику Бхаскара. Он пояснял, что бесконечно большое - это тоже число, но не претерпевающее изменений, приращения или ущерба, какое бы большое число мы к нему ни прибавляли или от него ни отнимали; его, по выражению Бхаскары, можно уподобить вечному времени бесконечной цепи существовании.

Индийские математики ввели в расчеты и правильно трактовали понятие отрицательного числа. Это пример, как иной подход к проблеме позволяет получать другие результаты. Ведь византийцы работали с отрезками прямых, представить себе отрезок отрицательной длины невозможно. Да и нулевой отрезок имеет мало смысла.