В социалистическом праве материалистическое понимание природы права и диалектический подход к вопросам создания и обязательности правовых установлений обусловили принципиально иное решение проблемы И. п. Различаются И. п. в материальном и формальном (юридическом) смысле. И. п. в материальном смысле - совокупность социальных факторов, создающих право: государство, классы и их борьба, идеология и политика, материальные условия данного классового общества. Государственная власть , опосредствуя через сознание и волю господствующего класса материальные условия жизни общества, выражает его интересы в праве, обеспечивает охрану правовых установлений от нарушений. В формальном смысле И. п. - формы выражения государственной воли, при которых содержащиеся в них правила приобретают значение норм права. В этом смысле советские учёные видят в И. п. не силу, сообщающую праву обязательность, а формы существования права - акты, содержащие нормы права. В СССР - это законы СССР, союзных и автономных республик, нормативные указы президиумов Верховных Советов СССР, союзных и автономных республик, постановления и распоряжения Советов Министров СССР, союзных и автономных республик, приказы и инструкции министров СССР, союзных и автономных республик, решения местных Советов депутатов трудящихся и их исполкомов. В определённых случаях, предусмотренных законом, И. п. являются нормативные акты общественных организаций (например, постановления ВЦСПС по вопросам охраны труда), коллективные договоры .
Аналогичные И. п. существуют и в других социалистических странах. Во всех социалистических странах судебный прецедент не признаётся И. п., почти не находит применения правовой обычай.
Л. Ф. Шебанов.
Источники света
Исто'чники све'та,излучатели электромагнитной энергии в видимой (или оптической, т. е. не только видимой, но и ультрафиолетовой и инфракрасной) области спектра. Естественными И. с. являются Солнце, Луна, звёзды, атмосферные электрические разряды и др., искусственными - устройства, превращающие энергию любого вида в энергию видимых (или оптических) излучений.
Различают тепловые И. с., в которых свет возникает при нагревании тел до высокой температуры, и люминесцентные, в которых свет возникает в результате превращения тех или иных видов энергии непосредственно в оптическое излучение, независимо от теплового состояния излучающего тела. Искусственные И. с. могут подразделяться: по роду используемой энергии на химические, электрические, радиоактивные и др., по назначению на осветительные, сигнальные и т. п. Каждый из типов, в свою очередь, может классифицироваться по различным дополнительным признакам, например по конструктивно-технологическим, эксплуатационным и др.
Первые искусственные И. с. (костёр, лучина, факел) появились в глубокой древности. До конца 19 в. применялись в основном тепловые И. с., основанные на сжигании горючих веществ (свечи, масляные и керосиновые лампы, калильные сетки). Излучение в них создаётся раскалёнными в пламени мельчайшими частицами твёрдого углерода или калильными сетками. Они дают непрерывный спектр излучения. Их световая отдача очень мала и не превышает 1 лм/ вт(теоретический предел для белого света около 250 лм/ вт).
В конце 19 в. появились первые практически пригодные электрические И. с., в создание которых большой вклад внесли русские учёные П. Н. Яблочков , В. Н. Чиколев , А. Н. Лодыгин и др. С начала 20 в. электрическая лампа накаливания благодаря экономичности, гигиеничности и удобству в эксплуатации начинает быстро и повсеместно вытеснять И. с., основанные на сжигании. Современная электрическая лампа накаливания - тепловой И. с., в котором излучение создаётся спиралью из вольфрамовой проволоки, накалённой до высокой температуры (около 3000 К) проходящим через неё электрическим током. Лампы накаливания - наиболее массовые И. с. Их светоотдача составляет 10-30 лм/ вт.
Начиная с 30-х гг. 20 в. получают распространение газоразрядные источники света , в которых используется излучение электрического разряда в инертных газах или в парах различных металлов, особенно ртути. По принципу действия они относятся к люминесцентным И. с. или И. с. смешанного излучения, т. е. люминесценции и теплового. Благодаря более высокому кпд излучения и большему разнообразию спектра и других характеристик, чем у ламп накаливания, они находят применение для освещения, сигнализации, рекламы (см. Газосветная трубка ) и других целей. Особенно широко для освещения применяются люминесцентные лампы , в которых ультрафиолетовое излучение ртутного разряда с помощью люминофоров преобразуется в видимое; светоотдача современных люминесцентных ламп белого света до 80-85 лм/ вт.В так называемых электролюминесцентных панелях люминесценция порошкообразных люминофоров, находящихся в среде диэлектрика, возникает под действием переменного электрического поля. По эффективности они близки к лампам накаливания и применяются главным образом как световые индикаторы, табло, декоративные элементы и т. д. В полупроводниковых И. с. люминесценция возникает при прохождении тока. Арсенид галлия, например, даёт инфракрасное излучение, фосфид галлия и карбид кремния - видимое и т. д. Эти И. с. применяются для специальных целей; кпд их пока невелик. В катодолюминесцентных И. с. люминофор возбуждается быстрыми электронами (индикаторные радиолампы, электронно-оптические преобразователи , электроннолучевые трубки и т. д.).
В радиоизотопных И. с. люминофор возбуждается продуктами радиоактивного распада некоторых изотопов, например трития. Эти И. с. не требуют внешнего источника энергии, имеют большой срок службы, но дают небольшие световые потоки малой яркости. В принципе возможны хемилюминесцентные И. с., в которых люминесценция возникает в результате превращения энергии химических реакций в излучение (например, как при свечении, наблюдаемом в животном и растительном мире, - глубоководные рыбы, светлячки и др.). Подробнее см. ст. Люминесценция .
Совершенно новый тип И. с. представляют собой лазеры , которые дают когерентные световые пучки высоких интенсивностей, исключительной однородности по частоте и острой направленности.
Лит.:Иванов А. П., Электрические источники света, ч. 1-2, М.-Л., 1938-48; Шателен М. А., Русские электротехники второй половины XIX века, М.-Л., 1950; Рохлин Г. Н., Газоразрядные источники света, М.-Л., 1966; Квантовая электроника. Маленькая энциклопедия, М., 1969.
Г. Н. Рохлин.
Источники тока
Исто'чники то'ка,устройства, преобразующие различные виды энергии в электрическую. По виду преобразуемой энергии И. т. условно можно разделить на химические и физические. Сведения о первых химических И. т. (гальванических элементах и аккумуляторах) относятся к 19 в. (например, батарея Вольта, элемент Лекланше). Однако вплоть до 40-х гг. 20 в. в мире было разработано и реализовано в конструкциях не более 5 типов гальванических пар. С середины 40-х гг. вследствие развития радиоэлектроники и широкого использования автономных И. т. создано ещё около 25 типов гальванических пар. Теоретически в И. т. может быть реализована свободная энергия химических реакции практически любого окислителя и восстановителя, а следовательно, возможна реализация несколько тысяч гальванических пар. Принципы работы большинства физических И. т. были известны уже в 19 в. В дальнейшем вследствие быстрого развития и совершенствования турбогенераторы и гидрогенераторы стали основными промышленными источниками электроэнергии. Физические И. т., основанные на других принципах, получили промышленное развитие лишь в 50-60-х гг. 20 в., что обусловлено возросшими и достаточно специфическими требованиями современной техники. В 60-х гг. технически развитые страны уже имели промышленные образцы термогенераторов, термоэмиссионных генераторов (СССР, ФРГ, США), атомных батарей (Франция, США, СССР).
Технический прогресс, проникновение электротехники и электроники на транспорт, в быт, медицину и т. д. стимулировали разработку автономных источников электропитания, среди которых химические И. т. в количественном отношении заняли видное место, став продукцией массового потребления. Переносные осветительные приборы, магнитофоны и радиоприёмники, телевизоры и переносная медицинская аппаратура, средства ж.-д. транспорта, автомобили, тракторы, самолёты, искусственные спутники, космические корабли, средства связи и многое другое оснащены малогабаритными И. т.
Теория И. т. предусматривает исследование всех стадий процесса генерирования электрического тока на основе современных представлений о физике твёрдого тела, жидкости и газа, о процессах переноса зарядов и электрохимических реакциях. Теория И. т. изучает также вопросы оптимизации, включающие как выбор исходных параметров, обеспечивающих оптимальные выходные характеристики И. т., так и разработку методов прогнозирования характеристик будущих И. т. К важнейшим характеристикам И. т. относятся: кпд, энергоёмкость (или удельная энергоёмкость), мощность (или удельная мощность, отнесённая к единице массы, объёма и т. д.), срок службы, качество генерируемой электроэнергии (частота, напряжение, способность к перегрузкам, стоимость, надёжность).
Химическими источниками токапринято называть устройства, вырабатывающие электрический ток за счёт энергии окислительно-восстановительных реакций химических реагентов. В соответствии с эксплуатационной схемой и способностью отдавать энергию в электрическую сеть химические И. т. подразделяются на первичные, вторичные и резервные, а также электрохимические генераторы. Первичные И. т. (гальванические элементы и батареи) допускают, как правило, однократное использование энергии химических реагентов. Отдельные конструкции гальванических элементов и батарей разрешают кратковременное повторное использование энергии реагентов после электрической подзарядки. Положительный (катод) и отрицательный (анод) электроды, разделённые электролитом в жидком или пастообразном состоянии или же пористой мембраной-сепаратором с поглощённым в ней электролитом, электрически связаны (гальваническая связь) в течение всего срока службы И. т.
Вторичные И. т. (отдельные аккумуляторы и аккумуляторные батареи) допускают многократное (сотни и тысячи заряд-разрядных циклов) использование энергии составляющих химических реагентов. Электроды и электролит весь срок службы аккумуляторов находятся в электрическом контакте друг с другом. Для увеличения ресурса аккумуляторов в некоторых специфических условиях эксплуатации разработаны способы сухозаряженного хранения аккумуляторов. Такие аккумуляторы перед включением предварительно заливают электролитом.
Резервные И. т. допускают только однократное использование энергии химических реагентов. В отличие от гальванических элементов и аккумуляторов, в резервных И. т. электролит при хранении никогда гальванически не связан с электродами. Он хранится в жидком состоянии (в стеклянных, пластмассовых или металлических ампулах) либо в твёрдом (но неэлектропроводном) состоянии в межэлектродных зазорах. При подготовке к работе резервных И. т. ампулы разрушают сжатым воздухом, взрывом, а кристаллы твёрдого электролита расплавляют с помощью электрического или пиротехнического разогрева. Резервные И. т. применяют для питания электрической аппаратуры, которая долгое время может (вынуждена) находиться в резервном (неработающем) состоянии. Срок хранения современных резервных И. т. превышает 10-15 лет.
Электрохимические генераторы ( топливные элементы ) представляют собой разновидность химических И. т. Электрохимические генераторы способны длительное время непрерывно генерировать электрический ток в результате преобразования энергии химических реагентов (газообразных или жидких), поступающих в генератор извне.
К 1970 в США и СССР были созданы промышленные образцы электрохимических генераторов. Ведутся интенсивные работы по созданию электрохимических генераторов для космических объектов, электромобилей, стационарных установок и т. д. Разрабатываются разновидности электрохимических генераторов (высоко-, средне- и низкотемпературные, на газообразных, жидких и твёрдых реагентах и т. д.), из которых наиболее перспективны генераторы, непосредственно преобразующие энергию природного топлива в электрическую. (Подробнее о химических И. т. см. в ст. Химические источники тока .)
Физическими источниками токаназывают устройства, преобразующие тепловую, механическую, электромагнитную энергию, а также энергию радиационного излучения и ядерного распада в электрическую. В соответствии с наиболее часто употребляемой классификацией к физическим И. т. относят: электромашинные генераторы, термоэлектрические генераторы, термоэмиссионные преобразователи, МГД-генераторы, а также генераторы, преобразующие энергию солнечного излучения и атомного распада.
Электромашинные генераторы, преобразующие механическую энергию в электрическую, - наиболее распространённый вид источников электрической энергии, основа современной энергетики. Они могут быть классифицированы по мощности (от долей втдо сотен Мвт), по назначению и особенностям эксплуатации (стационарные, транспортные, резервные и т. д.), по роду первичного двигателя (дизель-генераторы, турбо- и гидрогенераторы), по рабочему телу (пар, вода, газ) и т. д. Благодаря длительному периоду теоретического, конструктивного и технологического совершенствования характеристики этого типа И. т. достигли значений, близких к предельным (см. Генератор электромашинный ).
Работа термоэлектрического генератора (ТЭГ) основана на использовании Зеебека эффекта . Рабочим материалом в ТЭГ служат различные полупроводниковые соединения кремния, германия и т. п. (как правило, твёрдые растворы). Кпд ТЭГ от 3 до 15% в диапазоне температур от 100 до 1000°C. Исследования ТЭГ ведутся в СССР, США, Франции и др. Области возможного применения ТЭГ: автономные источники питания (на транспорте, в технике связи, медицине), антикоррозионная защита (на магистральных трубопроводах) и др. (см. Термоэлектрический генератор ).
Принцип работы термоэмиссионного преобразователя (ТЭП) основан на использовании термоэмиссионного эффекта (испускание электронов поверхностью нагретого металла). Термоэмиссионный поток электронов зависит главным образом от температуры и свойств поверхности материала. Кпд отдельных лабораторных образцов ТЭП достигает 30%, а действующих энергетических установок 15% (при электрической мощности, снимаемой с единицы поверхности катода, - 30 вт/ см 2). Наиболее перспективно применение ТЭП в качестве автономных источников электроэнергии большой мощности (до 100 квт). Работы по ТЭП ведутся в СССР, США, ФРГ, Франции и др. (см. Термоэмиссионный преобразователь энергии ).
Принцип действия И. т., преобразующих энергию солнечного излучения, основан на использовании внутреннего фотоэффекта (см. Фотоэлектрические явления ). Фотоэлектрический генератор ( солнечная батарея ) представляет собой совокупность вентильных фотоэлементов, преобразующих энергию солнечного излучения в электрическую. Практически прямое преобразование энергии солнечного излучения стало возможно лишь после создания в 1953 высокоэффективного фотоэлемента из монокристаллического кремния. Лучшие образцы кремниевых фотоэлементов имеют кпд около 15%; срок службы их практически неограничен. Солнечные батареи применяются главным образом в космической технике, где они занимают доминирующее положение как источники энергии на искусственных спутниках Земли, орбитальных станциях и космических кораблях, а также для снабжения электроэнергией удалённых от линии электропередачи районов с большим числом солнечных дней в году, например в Туркменской ССР, Индии, Пакистане (см. Гелиотехника ).
И. т., преобразующие энергию атомного распада (атомные батареи), используют кинетическую энергию электронов, образующихся при b-распаде. Эти И. т. находились к 1971 в стадии разработки, и их практическое использование требует решения многих конструкторских и технологических задач. Кпд атомных батарей невысок (до 1%), а область применения может быть определена лишь после накопления достаточного опыта их использования.
Лит.см. при статьях с описанием конкретных типов источников тока.
Н. С. Лидоренко.
Источниковедение
Источникове'дение,комплексная историческая специальная дисциплина, наука об исторических источниках, теория и практика их выявления, изучения и использования (см. Источники исторические ). Частными по отношению к И. являются: И. письменных источников, вспомогательные исторические дисциплины . Комплекс проблем, изучаемых И., позволяет выделить теоретические и прикладной аспекты. Теоретическое И. изучает закономерности образования исторических источников и отражения ими реального исторического процесса, структуру и свойства содержащейся в них информации, определяет принципы систематизации источников и классифицирует их, разрабатывает методику исторического исследования как общую, так и применительно к отдельным классам и видам источников. Теоретические проблемы И. изучаются главным образом на материале письменных источников, лежащих в основе большинства исторических трудов. Прикладное (конкретное) И. складывается из И. отдельных отраслей, разделов, периодов, проблем истории. Источниковедческая практика включает в себя деятельность архивов, музеев и библиотек по сбору, хранению и описанию источников, публикаторскуюИ деятельность и работу историков над источниками в процессе исследований. Элементы прикладного И. встречаются также в повседневной общественной практике (в делопроизводстве, в криминалистике, в оценке любой информации).
И. возникло из выработанных эмпирически в сфере повседневной жизни общества правил определения подлинности документов. Отдельные приёмы критического анализа источников были известны ещё античным историкам (Лукиан, Тацит). В эпоху Возрождения с научной критикой древних текстов выступили гуманисты (Л. Валла, У. фон Гуттен и др.). К 17 в. относятся первые попытки создания методики научного исследования документов, связанные с развитием дипломатики . В конце 18 в. - 1-й половине 19 в. трудами немецких учёных А. Л. Шлёцера, Б. Г. Нибура и Л. Ранке создаётся метод исторической критики. Как дисциплина с собственным предметом исследования и специфической методикой И. сложилось во 2-й половине 19 в. в трудах историков И. Г. Дройзена и Э. Бернхейма (Германия), Ш. В. Ланглуа и Ш. Сеньобоса (Франция), Э. Фримена (Англия) и др. В России критическое отношение к источнику встречается уже в трудах В. Н. Татищева. И. Н. Болтин первым показал возможность и целесообразность специального анализа исторических сочинений и источников, М. Т. Каченовский считал историческую критику одной из важнейших наук. Глубокий анализ источников характерен для работ С. М. Соловьева, К. Н. Бестужева-Рюмина, В. И. Семевского. Вершиной русского дореволюционного И. явились труды В. О. Ключевского, А. А. Шахматова и А. С. Лаппо-Данилевского. Источниковедческие труды западноевропейских и русских учёных создавались на основе идеалистического мировоззрения. Однако в области разработки приёмов источниковедческого анализа и конкретного И. они содержат много ценного и сохраняют значение до сих пор. Советское И. творчески использует наследие буржуазного И. Основные принципы марксистского подхода к источнику и образцы применения на практике источниковедческого анализа были разработаны В. И. Лениным. Значительным вкладом в развитие советского И. являются труды С. Н. Валка, Д. С. Лихачева, А. Д. Люблинской, М. Н. Тихомирова, Л. В. Черепнина, В. К. Яцунского и их учеников. Марксистское И. успешно развивается также в других социалистических странах, за последние годы ряд ценных трудов появился в ГДР, Польше, Болгарии. Методология советского И. является составной частью методологии истории и основывается на марксистско-ленинской философии (см. Диалектический материализм , Исторический материализм ). Марксистское И. рассматривает источник как сложное общественное явление, отражающее реальную действительность. Источник, как правило, является результатом взаимодействия различных аспектов деятельности и воззрений людей и требует поэтому всестороннего анализа. Одно и то же явление отражается обычно во многих источниках, которые вследствие этого необходимо изучать в совокупности. Принципиально новый, диалектико-материалистический подход к источнику позволяет историкам-марксистам, используя технические приёмы исторического исследования, выработанные буржуазными учёными, достигать качественно иных, более значительных результатов.
Исследовательская работа историка начинается с выявления источников (эвристика) по избранной теме. Необходимо привлечение всех без исключения источников, доступных историку при современном состоянии науки. При обилии источников нового времени, особенно массовых, допускается выборочное изучение, с тем, однако, чтобы выборка была достаточно репрезентативна (представительна). Основным методом изучения письменных источников является источниковедческое исследование, которое складывается из анализа, позволяющего извлекать из источников отдельные факты, и синтеза, задачей которого является получение совокупности фактов из комплекса источников. Источниковедческое исследование неразрывно связано с исследованием собственно историческим, которое и предшествует изучению источников, и сопровождает его, и становится его завершением. Приступая к исследованию источников, историк должен знать историческую обстановку, своеобразие мышления и особенности передачи информации в изучаемую эпоху, владеть специальными знаниями, необходимыми для работы с документами избранного периода (например, для эпохи феодализма - знание палеографии, исторической грамматики и др.).
Источниковедческий анализ (историческая критика) состоит из двух частей: определение подлинности источника (внешняя или текстологическая критика) и выяснение достоверности содержащихся в нём сведений (внутренняя, или собственно историческая критика). Источниковедческий анализ разных видов источников имеет свои особенности (например, акты исследуются при помощи формулярного анализа, разработанного дипломатикой; документальные источники исследуются иначе, чем повествовательные, и т. п.).
Определение подлинности складывается из решения трёх задач: установление текста, интерпретация источника и изучение его происхождения. Установление текста производится по методике, разработанной текстологией , и включает: прочтение и осмысление текста, выявление позднейших приписок и вставок (интерполяции), определение отношения к оригиналу; если не подлинник, то восстановление истории текста и первоначального авторского оригинала и т. п. Интерпретация источника состоит в уяснении, что именно сообщается в нём о конкретных фактах, событиях и явлениях, в истолковании прямого и иносказательного значения текста, расшифровке специфических выражений, метафор, намёков. Изучение происхождения источника заключается в установлении имени автора (атрибуция), времени, места и условий возникновения источника. Дата и место могут быть определены приблизительно, по косвенным признакам методами палеографии, метрологии, дипломатики и др. Только совпадение всех косвенных признаков позволяет считать задачу решенной. Атрибуция по косвенным признакам (содержание, язык, стиль, почерк) всегда ненадёжна и должна считаться рабочей гипотезой до её документального подтверждения. В итоге первой части исследования историк может сделать выводы о подлинности или подложности источника. Однако некоторые задачи могут оставаться нерешенными (атрибуция, место и условия возникновения). Методы дальнейшего анализа зависят от характера информации, содержащейся в источнике. Документальные источники (законодательные памятники, акты и др.) в целом не нуждаются в доказательстве достоверности. Однако в них могут содержаться отдельные части повествовательного характера (преамбулы, исторические введения), которые должны подвергаться внутренней критике. Установив подлинность документального источника, исследователь раскрывает его классовое и политическое содержание, изучает конкретные условия и историю возникновения, его место в общественной жизни, извлекает из документа сведения, попавшие в него независимо от воли составителя.