Энергопитание бортовой аппаратуры большинства ИСЗ осуществляется от солнечных батарей, панели которых ориентируются перпендикулярно направлению солнечных лучей или расположены так, чтобы часть из них освещалась Солнцем при любом его положении относительно ИСЗ (так называемые всенаправленные солнечные батареи). Солнечные батареи обеспечивают длительную работу бортовой аппаратуры (до нескольких лет). На ИСЗ, рассчитанных на ограниченные сроки работы (до 2-3 недель), используются электрохимические источники тока - аккумуляторы, топливные элементы. Некоторые ИСЗ имеют на борту изотопные генераторы электрической энергии. Тепловой режим ИСЗ, необходимый для работы их бортовой аппаратуры, поддерживается системами терморегулирования.
В ИСЗ, отличающихся значительным тепловыделением аппаратуры, и космических кораблях применяются системы с жидкостным контуром теплопередачи; на ИСЗ с небольшим тепловыделением аппаратуры в ряде случаев ограничиваются пассивными средствами терморегулирования (выбор внешней поверхности с подходящим оптическим коэффициентом, теплоизоляции отдельных элементов).
Передача научной и другой информации с ИСЗ на Землю производится с помощью радиотелеметрических систем (часто имеющих запоминающие бортовые устройства для регистрации информации в периоды полёта ИСЗ вне зон радиовидимости наземных пунктов).
Пилотируемые корабли-спутники и некоторые автоматические ИСЗ имеют спускаемые аппараты для возвращения на Землю экипажа, отдельных приборов, плёнок, подопытных животных.
Движение ИСЗ.ИСЗ выводятся на орбиты с помощью автоматических управляемых многоступенчатых ракет-носителей, которые от старта до некоторой расчётной точки в пространстве движутся благодаря тяге, развиваемой реактивными двигателями. Этот путь, называемый траекторией выведения ИСЗ на орбиту, или активным участком движения ракеты, составляет обычно от нескольких сотен до двух-трёх тыс. км. Ракета стартует, двигаясь вертикально вверх, и проходит сквозь наиболее плотные слои земной атмосферы на сравнительно малой скорости (что сокращает энергетические затраты на преодоление сопротивления атмосферы). При подъёме ракета постепенно разворачивается, и направление её движения становится близким к горизонтальному. На этом почти горизонтальном отрезке сила тяги ракеты расходуется не на преодоление тормозящего действия сил притяжения Земли и сопротивления атмосферы, а главным образом на увеличение скорости. После достижения ракетой в конце активного участка расчётной скорости (по величине и направлению) работа реактивных двигателей прекращается; это - так называемая точка выведения ИСЗ на орбиту. Запускаемый космический аппарат, который несёт последняя ступень ракеты, автоматически отделяется от неё и начинает своё движение по некоторой орбите относительно Земли, становясь искусственным небесным телом. Его движение подчинено пассивным силам (притяжение Земли, а также Луны, Солнца и др. планет, сопротивление земной атмосферы и т. д.) и активным (управляющим) силам, если на борту космического аппарата установлены специальные реактивные двигатели. Вид начальной орбиты ИСЗ относительно Земли зависит целиком от его положения и скорости в конце активного участка движения (в момент выхода ИСЗ на орбиту) и математически рассчитывается с помощью методов небесной механики. Если эта скорость равна или превышает (но не более чем в 1,4 раза) первую космическую скорость (около 8 км/ секу поверхности Земли), а её направление не отклоняется сильно от горизонтального, то космический аппарат выходит на орбиту спутника Земли. Точка выхода ИСЗ на орбиту в этом случае расположена вблизи перигея орбиты. Выход па орбиту возможен и в других точках орбиты, например вблизи апогея, но поскольку в этом случае орбита ИСЗ расположена ниже точки выведения, то сама точка выведения должна располагаться достаточно высоко, скорость же в конце активного участка при этом должна быть несколько меньше круговой.
В первом приближении орбита ИСЗ представляет собой эллипс с фокусом в центре Земли (в частном случае - окружность), сохраняющий неизменное положение в пространстве. Движение по такой орбите называется невозмущённым и соответствует предположениям, что Земля притягивает по закону Ньютона как шар со сферическим распределением плотности и что на спутник действует только сила притяжения Земли.
Такие факторы, как сопротивление земной атмосферы, сжатие Земли, давление солнечного излучения, притяжения Луны и Солнца, являются причиной отклонений от невозмущённого движения. Изучение этих отклонений позволяет получать новые данные о свойствах земной атмосферы, о гравитационном поле Земли. Из-за сопротивления атмосферы ИСЗ, движущиеся по орбитам с перигеем на высоте несколько сот км, постепенно снижаются и, попадая в сравнительно плотные слои атмосферы на высоте 120-130 кми ниже, разрушаются и сгорают; они имеют, таким образом, ограниченный срок существования. Так, например, первый советский ИСЗ находился в момент выхода на орбиту на высоте около 228 кмнад поверхностью Земли и имел почти горизонтальную скорость около 7,97 км/ сек.Большая полуось его эллиптической орбиты (т. е. среднее расстояние от центра Земли) составляла около 6950 км, период обращения 96,17 мин, а наименее и наиболее удалённые точки орбиты (перигей и апогей) располагались на высотах около 228 и 947 кмсоответственно. Спутник существовал до 4 января 1958, когда он, вследствие возмущений его орбиты, вошёл в плотные слои атмосферы.
Орбита, на которую выводится ИСЗ сразу после участка разгона ракеты-носителя, бывает иногда лишь промежуточной. В этом случае на борту ИСЗ имеются реактивные двигатели, которые включаются в определённые моменты на короткое время по команде с Земли, сообщая ИСЗ дополнительную скорость. В результате ИСЗ переходит на другую орбиту. Автоматические межпланетные станции выводятся обычно сначала на орбиту спутника Земли, а затем переводятся непосредственно на траекторию полёта к Луне или планетам.
Наблюдения ИСЗ.Контроль движения ИСЗ и вторичных орбитальных объектов осуществляется путём наблюдений их со специальных наземных станций. По результатам таких наблюдений уточняются элементы орбит спутников и вычисляются эфемериды для предстоящих наблюдений, в том числе и для решения различных научных и прикладных задач. По используемой аппаратуре наблюдения ИСЗ разделяются на оптические, радиотехнические, лазерные; по их конечной цели - на позиционные (определение направлений на ИСЗ) и дальномерные наблюдения, измерения угловой и пространственной скорости.
Наиболее простыми позиционными наблюдениями являются визуальные (оптические), выполняемые с помощью визуальных оптических инструментов и позволяющие определять небесные координаты ИСЗ с точностью до нескольких минут дуги. Для решения научных задач ведутся фотографические наблюдения с помощью спутниковых фотокамер , обеспечивающих точность определений до 1-2ўў по положению и 0,001 секпо времени. Оптические наблюдения возможны лишь в том случае, когда ИСЗ освещен солнечными лучами (исключение составляют геодезические спутники, оборудованные импульсными источниками света; они могут наблюдаться и находясь в земной тени), небо над станцией достаточно тёмное и погода благоприятствует наблюдениям. Эти условия значительно ограничивают возможность оптических наблюдений. Менее зависимы от таких условий радиотехнические методы наблюдений ИСЗ, являющиеся основными методами наблюдений спутников в период функционирования установленных на них специальных радиосистем. Такие наблюдения заключаются в приёме и анализе радиосигналов, которые либо генерируются бортовыми радиопередатчиками спутника, либо посылаются с Земли и ретранслируются спутником. Сравнение фаз сигналов, принимаемых на нескольких (минимально трёх) разнесённых антеннах, позволяет определить положение спутника на небесной сфере. Точность таких наблюдений около 3ў по положению и около 0,001 секпо времени. Измерение доплеровского смещения частоты (см. Доплера эффект ) радиосигналов даёт возможность определить относительную скорость ИСЗ, минимальное расстояние до него при наблюдавшемся прохождении и момент времени, когда спутник был на этом расстоянии; наблюдения, выполняемые одновременно из трёх пунктов, позволяют вычислить угловые скорости спутника.
Дальномерные наблюдения осуществляются путём измерения промежутка времени между посылкой радиосигнала с Земли и приёмом после ретрансляции его бортовым радиоответчиком ИСЗ. Наиболее точные измерения расстояний до ИСЗ обеспечивают лазерные дальномеры (точность до 1-2 ми выше). Для радиотехнических наблюдений пассивных космических объектов используются радиолокационные системы.
Научно-исследовательские ИСЗ.Аппаратура, устанавливаемая на борту ИСЗ, а также наблюдения ИСЗ с наземных станций позволяют проводить разнообразные геофизические, астрономические, геодезические и др. исследования. Орбиты таких ИСЗ разнообразны - от почти круговых на высоте 200-300 кмдо вытянутых эллиптических с высотой апогея до 500 тыс. км. К научно-исследовательским ИСЗ относятся первые советские спутники, советские ИСЗ серий «Электрон» , «Протон» , «Космос» , американские спутники серий «Авангард», «Эксплорер», «ОГО», «ОСО», «ОАО» (орбитальные геофизические, солнечные, астрономические обсерватории); английский ИСЗ «Ариель», французский ИСЗ «Диадем» и др. Научно-исследовательские ИСЗ составляют около половины всех запущенных ИСЗ.
С помощью научных приборов, установленных на ИСЗ, изучаются нейтральный и ионный состав верхней атмосферы, её давление и температура, а также изменения этих параметров. Концентрация электронов в ионосфере и её вариации исследуются как с помощью бортовой аппаратуры, так и по наблюдениям прохождения сквозь ионосферу радиосигналов бортовых радиомаяков. С помощью ионозондов детально изучены структура верхней части ионосферы (выше главного максимума электронной концентрации) и изменения электронной концентрации в зависимости от геомагнитной широты, времени суток и т. п. Все результаты исследований атмосферы, полученные с помощью ИСЗ, являются важным и надёжным экспериментальным материалом для понимания механизмов атмосферных процессов и для решения таких практических вопросов, как прогноз радиосвязи, прогноз состояния верхней атмосферы и т. п.
С помощью ИСЗ обнаружены и исследуются радиационные пояса Земли . Наряду с космическими зондами ИСЗ позволили исследовать структуру магнитосферы Земли и характер её обтекания солнечным ветром, а также характеристики самого солнечного ветра (плотность потока и энергию частиц, величину и характер «вмороженного» магнитного поля) и др. недоступные для наземных наблюдений излучения Солнца - ультрафиолетовое и рентгеновское, что представляет большой интерес с точки зрения понимания солнечно-земных связей. Ценные для научных исследований данные доставляют также и некоторые прикладные ИСЗ. Так, результаты наблюдений, выполняемых на метеорологических ИСЗ, широко используются для различных геофизических исследований.
Результаты наблюдений ИСЗ дают возможность с высокой точностью определять возмущения орбит ИСЗ, изменения плотности верхней атмосферы (в связи с различными проявлениями солнечной активности), законы циркуляции атмосферы, структуру гравитационного поля Земли и др. Специально организуемые позиционные и дальномерные синхронные наблюдения спутников (одновременно с нескольких станций) методами спутниковой геодезии позволяют осуществлять геодезическую привязку пунктов, удалённых на тысячи кмдруг от друга, изучать движение материков и т. п.
Прикладные ИСЗ.К прикладным ИСЗ относят спутники, запускаемые для решения тех или иных технических, хозяйственных, военных задач.
Спутники связи служат для обеспечения телевизионных передач, радиотелефонной, телеграфной и др. видов связи между наземными станциями, расположенными друг от друга на расстояниях до 10-15 тыс. км. Бортовая радиоаппаратура таких ИСЗ принимает сигналы наземных радиостанций, усиливает их и ретранслирует на другие наземные радиостанции. Спутники связи выводятся на высокие орбиты (до 40 тыс. км). К ИСЗ этого типа относятся советский ИСЗ « Молния», американский ИСЗ «Синком», ИСЗ «Интелсат» и др. Спутники связи, выведенные на стационарные орбиты, постоянно находятся над определёнными районами земной поверхности.
Метеорологические спутники предназначены для регулярной передачи на наземные станции телевизионных изображений облачного, снегового и ледового покровов Земли, сведений о тепловом излучении земной поверхности и облаков и т. п. ИСЗ этого типа запускаются на орбиты, близкие к круговым, с высотой от 500-600 кмдо 1200-1500 км; полоса обзора с них достигает 2-3 тыс. км. К метеорологическим спутникам относятся некоторые советские ИСЗ серии «Космос», спутники «Метеор» , американские ИСЗ «Тирос», «ЭССА», «Нимбус». Проводятся эксперименты по глобальным метеорологическим наблюдениям с высот, достигающих 40 тыс. км(советский ИСЗ «Молния-1», американский ИСЗ «АТС»).
Исключительно перспективными с точки зрения применения в народном хозяйстве являются спутники для исследования природных ресурсов Земли. Наряду с метеорологическими, океанографическими и гидрологическими наблюдениями такие ИСЗ позволяют получать оперативную информацию, необходимую для геологии, сельского хозяйства, рыбного промысла, лесного хозяйства, контроля загрязнений природной среды. Результаты, полученные с помощью ИСЗ и пилотируемых космических кораблей, с одной стороны, и контрольные измерения с баллонов и самолётов - с другой, показывают перспективность развития этого направления исследований.
Навигационные спутники, функционирование которых поддерживается специальной наземной системой обеспечения, служат для навигации морских кораблей, в том числе подводных. Корабль, принимая радиосигналы и определяя своё положение относительно ИСЗ, координаты которого на орбите в каждый момент известны с высокой точностью, устанавливает своё местоположение. Примером навигационных ИСЗ являются американские спутники «Транзит», «Навсат».
Пилотируемые корабли-спутники.Пилотируемые корабли-спутники и обитаемые орбитальные станции являются наиболее сложными и совершенными ИСЗ. Они, как правило, рассчитаны на решение широкого круга задач, в первую очередь - на проведение комплексных научных исследований, отработку средств космической техники, изучение природных ресурсов Земли и др. Впервые запуск пилотируемого ИСЗ осуществлен 12 апреля 1961: на советском космическом корабле-спутнике «Восток» лётчик-космонавт Ю. А. Гагарин совершил полёт вокруг Земли по орбите с высотой апогея 327 км. 20 февраля 1962 вышел на орбиту первый американский космический корабль с космонавтом Дж. Гленном на борту. Новым шагом в исследовании космического пространства с помощью пилотируемых ИСЗ был полёт советской орбитальной станции «Салют» , на которой в июне 1971 экипаж в составе Г. Т. Добровольского, В. Н. Волкова и В. И. Пацаева выполнил широкую программу научно-технических, медико-биологических и др. исследований.
О запусках всех пилотируемых кораблей и орбитальных станций см. табл. в ст. Космонавтика . См. также Астродинамика , Орбиты небесных тел , Орбиты искусственных космических объектов , Космические скорости , Космический летательный аппарат .
Лит.:Александров С. Г., Федоров Р. Е., Советские спутники и космические корабли, 2 изд., М., 1961; Эльясберг П. Е., Введение в теорию полёта искусственных спутников Земли, М., 1965; Руппе Г. О., Введение в астронавтику, пер. с англ., т. 1, М., 1970; Левантовский В. И., Механика космического полёта в элементарном изложении, М., 1970; Кинг-Хили Д., Теория орбит искусственных спутников в атмосфере, пер. с англ., М., 1966; Рябов Ю. А., Движение небесных тел, М., 1962; Меллер И., Введение в спутниковую геодезию, пер. с англ., М., 1967. См. также лит. при ст. Космический летательный аппарат .
Н. П. Ерпылёв, М. Т. Крошкин, Ю. А. Рябов, Е. Ф. Рязанов.
Советские искусственные спутники Земли. Спутник серии «Космос» - ионосферная лаборатория.
Советские искусственные спутники Земли. «Метеор».
Советские искусственные спутники Земли. Первый искусственный спутник Земли.
Зарубежные искусственные спутники Земли. «Тирос».
Зарубежные искусственные спутники Земли. «Синком-3».
Советские искусственные спутники Земли. «Восток».
Советские искусственные спутники Земли. «Союз».
Советские искусственные спутники Земли. «Протон-4».
Зарубежные искусственные спутники Земли. «Диадем-1».
Зарубежные искусственные спутники Земли. «ОСО-1».
Советские искусственные спутники Земли. «Салют».
Зарубежные искусственные спутники Земли. «Эксплорер-25».
Зарубежные искусственные спутники Земли. «Оскар-3».
Зарубежные искусственные спутники Земли. «Транзит».
Советские искусственные спутники Земли. «Электрон».
Зарубежные искусственные спутники Земли. «Джемини».
Искусственные спутники Луны
Иску'сственные Спу'тники Луны'(ИСЛ), космические летательные аппараты, выведенные на орбиты вокруг Луны; движение ИСЛ определяется главным образом притяжением Луны. Первый ИСЛ - советская автоматическая станция «Луна-10», запущенная 31 марта 1966. При запусках ИСЛ последнюю ступень ракеты-носителя сначала выводят на орбиту спутника Земли, а затем дополнительным включением реактивного двигателя её переводят на орбиту полёта к Луне. Скорость космического аппарата при старте с околоземной орбиты несколько меньше параболической (см. Космические скорости ); она соответствует очень вытянутому эллипсу с апогеем, достигающим орбиты Луны или лежащим за её пределами. Наименьшая возможная скорость при старте с орбиты на высоте 200 кмнад поверхностью Земли около 10,92 км/ сек(параболическая скорость на этой высоте равна 11,015 км/ сек); время полёта до ближайшей окрестности Луны в этом случае - около 4,74 сут. При стартовых скоростях 10,93 и 10,96 км/ секполёт продолжается около 3,5 и 2,6 сутсоответственно. На расстоянии около 66000 кмот центра Луны космический аппарат входит в сферу действия тяготения Луны. В случае облётных траекторий селеноцентрическая (относительно Луны) скорость космического аппарата на границе этой сферы не меньше 0,8 км/ сек, что существенно превышает параболическую скорость для Луны на этом расстоянии (0,38 км/ сек). При этих условиях космический аппарат в случае пассивного (неуправляемого) движения огибает Луну, двигаясь относительно неё по гиперболе, а затем покидает сферу действия Луны и возвращается к Земле. Для того чтобы космический аппарат перешёл на орбиту спутника Луны, включают на короткое время по команде с Земли бортовой реактивный двигатель, сообщающий ему тормозящий импульс (см. рис. ).
Орбита ИСЛ аналогична орбитам спутников всех планет и в первом приближении представляет собой эллипс с фокусом в центре Луны. Наиболее близкая к центру Луны точка орбиты называется периселением, а наиболее далёкая - апоселением. Селеноцентрическая скорость v kдвижения ИСЛ по круговой орбите радиуса rи период Тего обращения по орбите со средним расстоянием rот центра Луны определяются по формулам:
где R -радиус Луны (1738 км). Селеноцентрическая параболическая скорость на расстоянии rот центра Луны равна
Значительные возмущения в движении невысоких (несколько сот кмнад поверхностью Луны) ИСЛ вызываются главным образом нецентральностью поля тяготения Луны, обусловленной сложной формой Луны и неравномерным распределением вещества внутри неё; менее существенные возмущения - гравитационным влиянием Земли и Солнца. Основным следствием возмущений являются почти периодические изменения формы орбиты, а вместе с тем и высот периселения и апоселения, причём периселений постепенно снижается и ИСЛ падает на Луну.
Первый ИСЛ - советская автоматическая станция «Луна-10» - при выходе на траекторию к Луне имел скорость 10,87 км/ сек(на высоте около 270 кмнад Землёй). Через 3,5 сутстанция, огибая Луну, проходила на минимальном расстоянии около 1000 кмот её поверхности и имела в это время селеноцентрическую скорость около 2,1 км/ сек. Включением тормозного двигателя скорость была уменьшена до 1,25 км/сек,и станция перешла на орбиту вокруг Луны с высотой апоселения 1017 кми периселения 350 км.Наклон орбиты составлял 71°54ў к экватору Луны. Активный период существования «Луны-10», в течение которого со станции передавалась информация о показаниях бортовых приборов и проводились траекторные измерения, продолжался с 3 апреля до 30 мая 1966. За это время ИСЛ совершил 460 оборотов вокруг Луны; вследствие возмущения периселений поднялся до высоты 378,7 км, а апоселений опустился до высоты 985,3 км. При этом возмущения, обусловленные нецентральностью поля тяготения Луны, превышали возмущения из-за притяжения Земли в 5-6 раз, а последние превышали солнечные в 180 раз. Теоретические расчёты показали, что через 6,5 меспериселений должен был достигнуть расстояния 2150 кмот центра Луны, а затем начать спускаться так, что падение «Луны-10» на Луну должно было произойти через 2,5 года.
Всего в 1966-69 было запущено 5 советских (серии «Луна» ) и 5 американских (серии «Лунар орбитер» ) ИСЛ. Целями запусков были: а) непосредственные исследования свойств поверхности Луны и окололунного пространства с помощью бортовой научной аппаратуры, а также фотографирование поверхности Луны; б) изучение поля тяготения Луны, а также особенностей формы и внутреннего строения Луны, от которых это поле зависит, уточнение массы Луны на основе траекторных измерений и анализа возмущений в движении ИСЛ. Так, на ИСЛ «Луна-10» были установлены спектрометры для исследования гамма-излучения и инфракрасного излучения поверхностных лунных пород, прибор для регистрации потоков заряженных частиц, идущих от Солнца, и космического излучения, регистратор метеорных частиц в окололунном пространстве, прибор для обнаружения магнитного поля Луны; на ИСЛ «Луна-11», кроме того, - радиоастрономическая аппаратура для исследования длинноволнового космического радиоизлучения; на борту ИСЛ «Луна-12» дополнительно - фототелевизионная аппаратура, с помощью которой были получены и переданы на Землю крупномасштабные изображения участков лунной поверхности (наименьшие детали достигали 15-20 мв поперечнике). Предварительный анализ возмущений в движении ИСЛ показал, что либо Луна имеет грушевидную форму с вытянутостью на обратной стороне, либо плотность вещества внутри Луны больше на её обратной стороне (ранее считалось, что Луна, имея грушевидную форму, вытянута, наоборот, к Земле). ИСЛ «Лунар орбитер» использовались главным образом для фотографирования лунной поверхности, в частности с целью выбора мест, удобных для посадки кораблей «Аполлон». Анализ возмущений этих спутников позволил также установить существование на Луне участков с весьма значительной концентрацией масс под поверхностью (получивших название «масконов» - сокращение от mass concentration), влияние которых приводило к дополнительным колебаниям высоты периселения порядка 5-10 км.
В целях получения разносторонней информации о различных областях окололунного пространства и лунной поверхности запуск ИСЛ производится на различные орбиты, отличающиеся друг от друга высотами периселения и апоселения, а также наклоном. В некоторых случаях с помощью бортовых двигательных установок осуществляется маневрирование ИСЛ. На орбиты ИСЛ выводятся первоначально также космические аппараты, предназначенные для мягкой посадки на Луну; их называют орбитами ожидания. Так, советский космический аппарат «Луна-16» был выведен сначала (17 сентября 1969) на селеноцентрическую круговую орбиту с высотой около 110 км; затем в течение 3 сутпосле двух манёвров переведён на эллиптическую орбиту с высотой периселения 15 кми апоселения 106 км, после этого был осуществлен перевод его на траекторию снижения и посадки. Космический аппарат, движущийся по орбите ИСЛ, может быть переведён с помощью ускоряющего импульса также на траекторию возвращения к Земле. Американские космические корабли «Аполлон-11», «Аполлон-12», «Аполлон-14» при обратном перелёте с Луны на Землю выводились сначала на орбиты ожидания вокруг Луны, после чего переводились на траектории возвращения. См. также