Страница:
В общем надо признать, что тот разговор о подтексте боровской статьи был, в сущности, первым в истории физики предметным спором о глубинной сути еще не родившейся квантовой механики. Ее основные принципы - Принцип неопределенности и Принцип дополнительности - еще были неведомы самому Бору. И он не мог опираться на них. Но от всей его аргументации веяло новым способом физического мышления.
И Резерфорд почувствовал это. И еще острее, чем при обсуждении стиля статьи, ощутил он себя в лагере отцов. Повинный в самом появлении теории Бора и готовый к ответу за это преступление против классики, он придирчиво выставлял на свет все, что особенно отягчало вину датчанина, а косвенно и его собственную. Вот был случай, когда понять воистину значило простить! И он хотел понять. Но сначала надо было смириться.
Бор потом написал: «Он был тогда ангельски терпелив со мной». Так пишут о дьявольски нетерпеливых, вдруг изменивших своему обыкновению. Бор выразился бы точнее, прибавив к словам о терпеливости слова о терпимости. Однако по относительной молодости он, конечно, не оценил тогдашнее самоотречение Резерфорда. Он слишком был переполнен радостью, что сам не отрекся - выстоял и не отрекся! И ему навсегда запомнилась похвала Резерфорда: «Никак не предполагал, что вы проявите такую неуступчивость!» Догадывался ли Бор, что Резерфорда в ту пору обрадовала бы прямо противоположная похвала - одобрение уступчивости, которую он проявил…
В начале апреля первая из трех исторических статей Нильса Бора «О конституции атомов и молекул» приняла окончательный вид. В ее проблемном содержании сохранилось все, что отстаивал Вор. В ее литературной форме изменилось все, на чем настаивал Резерфорд. И, задатированная 5 апреля 1913 года, она, снабженная препроводительным благословением Резерфорда, ушла, наконец, в редакцию «Philosophical magazine», чтобы открыть собою новую эпоху в теоретическом познании микромира.
Но по крайней мере она не была встречена молчанием.
Преимущественной реакцией были оппозиция и скептицизм.
Правда, совсем не воинственная оппозиция и не очень огорчительный скептицизм, ибо жила еще надежда, что все неприятности разъяснятся классически.
Когда летом 13-го года Рэлей-младший спросил своего отца - тогдашнего президента Королевского общества, прочел ли он статью Бора о происхождении водородного спектра, Рэлей-старший ответил: «Да, я просмотрел ее, но увидел, что пользы из нее извлечь не смогу… Это не по мне». Еще можно было относиться к квантовым идеям, как к чему-то необязательному. Вскоре, осенью того же года, лорд Рэлей вынужден был отвечать на тот же вопрос не в домашней обстановке и не сыну, а на очередном конгрессе Би-Эй в Бирмингаме целому сонму своих коллег - британских и чужеземных. Среди последних были Пуанкаре и Бор. Шла дискуссия о проблемах излучения.
- Резерфорда и всех нас позабавил один эпизод,- рассказывал позднее Бор.- Сэр Джозеф Лармор весьма торжественно предложил лорду Рэлею выразить свое мнение о самых последних шагах в этой области. Незамедлительный ответ великого ветерана, в прежние годы внесшего решающий вклад в понимание проблем радиации, был таков: «В молодости я строжайше исповедовал немало добропорядочных правил и среди них убеждение, что человек, переваливший за шестьдесят, не должен высказываться по поводу новейших идей. Хотя мне следует признаться, что ныне я не придерживаюсь такой точки зрения слишком уж строго, однако все еще достаточно строго, чтобы не принимать. участия в этой дискуссии!
Всего же забавней - а Бор упомянуть об этом забыл! - что старый ветеран тут же, вслед за этим признанием, не удержался и высказался по поводу новейших идей. И разумеется, без сочувствия:
- Мне трудно,- сказал он,- принять все это в качестве реальной картины того, что действительно имеет место в природе.
Старик был откровенней других, а принять это было трудно всем. Даже манчестерцам. И даже в их среде, судя по словам Андраде, выделялся как редкостное исключение один молодой исследователь, сумевший сразу безоглядно довериться идеям Бора и «распознать их фундаментальную важность».
Однако среди его заслуг была не только понятливость. Было открытие первостепенной значимости. Впрочем, без восторженного признания теории Бора это открытие, обессмертившее имя оксфордского магистра искусств Генри Гвина Д. Мозли, просто не состоялось бы.
Мозли называл боровскую теорию атома «h-гипотезой» и писал Резерфорду, что всем существом своим чувствует ее справедливость. И говорил, что готов сделать все возможное, дабы положить конец широко распространенному убеждению, будто построения Бора сводятся к удачному жонглированию хорошо подобранными числами. В энтузиазме он уверял Резерфорда, что для количественного постижения структуры атома вообще ничего не нужно, кроме трех величин: постоянной Планка «h», массы электрона «m» и элементарного заряда «е».
Такой безоговорочный культ простоты природы психологически помог Мозли уверенно искать - и в конце концов найти! - закономерную связь между зарядом атомного ядра и порядком расположения элементов в «естественной последовательности». …На протяжении почти полувека истинным казался менделеевский принцип расположения элементов: они следовали в периодической системе один за другим в порядке возрастания их атомных весов. Однако уже самому Менделееву пришлось дважды нарушить этот принцип и поставить более тяжелый кобальт перед более легким никелем, а теллур - перед йодом, иначе элементы в обеих парах не попадали на правильные места по своей химической характеристике. А в XX веке исследование продуктов радиоактивных распадов совсем уж смешало все карты: было обнаружено немало элементов, химически совершенно» неразличимых, но обладающих разными атомными весами.
Появилось несколько свинцов, несколько ториев, несколько радиев… Такие элементы Фредерик Содди и назвал изотопами, то есть занимающими одно и то же место - одну и ту же клетку в менделеевской таблице. Словом, постепенно стало ясно, что химические элементы принципиально отличаются один от другого не атомным весом, а чем-то другим. Чем же?
Ответ на этот вопрос и хотел получить Мозли.
Сегодня уже едва ли можно с точностью установить, как возник замысел знаменитой работы, решившей эту проблему: принадлежал ли он целиком Мозли или отчасти еще и математику Дарвину, не была ли руководящая идея подсказана Бором или внушена Резерфордом? Одно несомненно: ранним летом 13-го года, когда «Philosophical magazine» со статьей Бора в свет еще не вышел, Манчестер был единственным местом на земле, где подобный замысел мог прийти в голову экспериментатору. А Мозли был в Манчестере единственным исследователем, безусловно пригодным для его осуществления.
Дело в том, что уже около года Мозли занимался рентгеновскими спектрами. А для Манчестерской лаборатории такая тема была отнюдь не традиционной. Сам Резерфорд, наверное, с кавендишевских времен не держал в руках ренгтеновской трубки: спровоцировав когда-то Беккереля на открытие урановой радиации, Х-лучи стали в дальнейшем областью экспериментирования, не пересекавшейся с радиоактивностью. И молодому физику, пленившемуся в те времена именно Х-лучами, следовало искать себе вакантное место или в Вюрцбурге, где они были открыты; или в Мюнхене, где теперь работал Рентген и где в 1912 году Макс фон Лауэ предсказал, а его ученики открыли диффракцию этих лучей в кристаллах; или в Ливерпуле, где в 1911 году старый кавендишевец Чарльз Баркла обнаружил особое - характеристическое для каждого элемента - рентгеновское излучение; или в Лиддсе, где Вильям Генри и Вильям Лоуренс Брэгги - отец и сын - разрабатывали рентгеновский метод анализа кристаллических структур; или, скажем, в Париже, где Морис де Бройль-старший упорно изучал эту невидимую радиацию… Словом, где угодно - только не в Манчестере стоило искать пристанище для занятий рентгеновыми лучами. И конечно, бакалавр Мозли вовсе не ими собирался заниматься, когда летом 1910 года, окончив оксфордский колледж Святой троицы, написал Резерфорду письмо - прошение с просьбой принять его в штат Манчестерской лаборатории. Его увлекали радиоактивность и строение вещества.
И принятый, подобно Марсдену, на самый низший лабораторный пост, он два года самоотреченно трудился то над коротко-живущими продуктами распада (с Казимиром Фаянсом), то над гамма-радиацией (с Уолтером Маковером), то над бета-лучами (вполне самостоятельно)… Острый интерес к рентгену возник у него только в 1912 году, когда в работах Баркла, Лауэ, Брэггов он вдруг почуял верный путь к обильному источнику новой информации о глубинном устройстве атомов.
Жаждой такой информации жила вся лаборатория. Мозли не стоило труда склонить к совместной работе над рентгеновскими спектрами своего давнего - еще доманчестерского - приятеля Чарльза Дарвина. Труднее было получить одобрение Резерфорда.
Шеф не выносил в научных делах ни малейшего привкуса прожектерского легкомыслия. А тут этот привкус ощущался.
И тем явственнее, что на вопрос, какую задачу они, собственно, собираются решать, оба довольно беззаботно, судя по воспоминаниям Дарвина, ответили: «У нас нет никаких идей, мы просто хотим узнать, что за штука эти Х-лучи, поскольку Баркла считает их электромагнитными волнами, а Брэгг-отец - частицами…» Они лукавили: открытие диффракции уже подтвердило правоту Баркла - огибать препятствия, узлы кристаллической решетки, могли только волны. А до одновременного признания правоты и Брэгга - до квантовомеханической идеи о всеобщем дуализме волн-частиц - было еще далеко.
Молодые люди лукавили, не желая взваливать на плечи груз обещаний, быть может невыполнимых. Резерфорд насмешливо спросил, нравится ли им роль слабых лошадок в гандикапе.
И полюбопытствовал, ясно ли им рисуется перспектива трудного соперничества с лабораториями, где на Х-лучах давно собаку съели.
Этот довод, как и другие, их решимости не поколебал.
Они настаивали. Молча глядя на них, шеф перебирал в памяти детали двухлетнего знакомства с ними: ни тот, ни другой пока не сделали ни одного опрометчивого шага. Еще он прикинул в уме, что особых затрат их замысел не потребует. И взвесил возможный прибыток: лаборатория обзаведется собственными специалистами по рентгену. И наконец, вспомнил девиз Максвелла, нравившийся ему со времен кавендишевской молодости:
Я никогда не пробую отговорить человека от попытки провести тот или другой эксперимент. Если он не найдет того, что ищет, он, может быть, откроет нечто иное.
Резерфорду не пришлось шалеть о согласии, которое он дал. Прибыток превзошел ожидания. (С течением жизни он все чаще убеждался, что широта и терпимость самая выгодная линия поведения для правителя лаборатории. Да и для любого правителя вообще. Широта и терпимость - это не обещание наград за успех, а избавление от наказания за неудачу.
Но ищущим это-то всего более и необходимо - право на риск.) Совместная работа молодых друзей продолжалась до начала 13-го года, и в итоге они выполнили исследование, ставшее одним из классических в истории изучения рентгеновых лучей.
Через полвека Дарвин резюмировал сделанное ими в полуфразе: «… мы убедились, что Х-лучи подобны обычному свету, но частота их гораздо выше». А главное произошло чуть позже, когда Мозли, отделившись от Дарвина, ушедшего с головой в математические заботы, стал в одиночестве исследовать характеристические рентгеновские спектры разных металлов - спектры Баркла.
Это были такие же линейчатые атомные спектры, как и обычные, те, что получаются в диапазоне частот видимого света. Они тоже являли собою визитные карточки химических элементов: у каждого был свой набор высокочастотных спектральных линий. Мозли начал размышлять над их происхождением как раз тогда, когда в весеннем Манчестере 13-го года появился вслед за объемистым пакетом из Копенгагена сам Бор и пошли разговоры о бурных дискуссиях между датчанином и шефом. Неважно от кого из них - от шефа или от датчанина - впервые услышал Мозли о квантовой теории водородного атома. В обоих случаях информация была надежной.
Существенно, что Мозли сразу пустил ее в дело. В его руках «h-гипотеза» начала служить физике еще до ее опубликования.
Он не сомневался: линейчатость характеристических рентгеновских спектров тоже объясняется скачкообразными переходами возбужденных атомов в состояние устойчивости.
В теории Бора тогда еще не было представления об электронных оболочках в атомах и о правилах их заполнения. И Мозли пришлось отчасти предвосхитить этот шаг в развитии планетарной модели. Схема событий, порождающих рентгеновский спектр, рисовалась ему так. Когда катодный луч - а этот агент посерьезней пламени горелки - вырывает из атома электрон, обитавший на самом глубинном уровне, там возникает как бы вакантное место. Один из электронов, сидящих на следующем - втором - энергетическом уровне, падает вниз, заполняя дыру. Такие перескоки со второй орбиты на первую выглядели наиболее вероятными. Естественно было думать, что они-то и создают в высокочастотном спектре каждого элемента самую интенсивную линию.
А далее возникала мысль о зависимости между зарядом атомного ядра и частотой этой линии. В самом деле: чем больше ядерный заряд, тем сильнее связан с ядром электрон на наинизшей орбите, тем больше нужно энергии, чтобы оттащить его от ядра, иначе говоря - перебросить на другой уровень, скажем, на второй; но, стало быть, тем солидней - высокочастотней! - квант, испускаемый атомом, когда электрон снова падает вниз и расстается с этой избыточной энергией возбуждения.
У Мозли появилась надежда: изучая рентгеновские спектры, может быть, удастся установить, как от элемента к элементу изменяется заряд атомного ядра!
Ни модель Резерфорда, ни теория Бора не содержали на сей счет никаких определенных утверждений. И обе были без этого существенно не полны. А все, что об этом думали физики к середине 13-го года, ограничивалось двумя гипотезами.
Первая уверяла: «Заряд ядра численно равен примерно половине атомного веса элемента». Вторая была определенней:
«Заряд ядра равен номеру элемента в менделеевской таблице».
Первую гипотезу высказал еще в 1911 году Баркла. Вторую - в начале 1913 года голландец Ван дер Брок. Обе были известны Мозли. Гипотезу Ван дер Брока поддерживал Бор, и, видимо, Резерфорд тоже ее разделял. И Мозли она нравилась своей ясностью и простотой. И он мог рассматривать намеченное исследование, как опытную проверку этой гипотезы «Атомного Номера». Другими словами, он заранее предвкушал то, что получит: окажется, что от элемента к элементу заряд атомного ядра возрастает на единицу!..
Его открытие нередко изображается, как счастливая находка, вознаградившая трудолюбие. Между тем это яркий пример более редкого события в истории науки: выдающееся свершение было запланировано и сделано без малейшего соучастия Случая. В воспоминаниях о Резерфорде Бор рассказал, как летом 13-го года в Манчестере он обсуждал с Дарвином и Мозли проблему «правильного расположения элементов в соответствии с их атомными номерами». Мозли объявил тогда, что собирается «решить эту проблему систематическими измерениями высокочастотных спектров». …Он работал с фантастической быстротой.
На свете было немного вещей, которые могли доставить такое же удовольствие вечно нетерпеливому - и тоже быстро-действующему - шефу. Но даже Резерфорд, по словам Ива, был поражен стремительностью, с какой во второй половине 1913 года Мозли осуществил свой замысел.
Дарвин писал:
У него было два рабочих правила. Первое: если вы начали налаживать установку для эксперимента, вы не должны останавливаться, пока она не будет налажена.
Второе: когда установка налажена, вы не должны останавливаться, пока эксперимент не будет завершен.
Эти правила вынуждали Мозли вести совершенно нерегулярный образ жизни. И порою донельзя истощали его силы.
Но давать ему благие советы было бесполезно. Следя за Мозли и наблюдая его одержимость, Резерфорд видел, что перед ним не совсем обычный случай усердия и одухотворенности.
Хоть это и звучит полумистически, но, право, создается впечатление, будто Мозли чувствовал, что ему недолго жить, и потому спешил, превращая ночи в дни. Он наслаждался лабораторным уединением. И в среде резерфордовцев, где господствовал стиль легкого панибратства, он выделялся некоторой своей замкнутостью и чуть демонстративной независимостью.
Андраде говорил, что он был не из тех, кто со всеми на короткой ноге. И пояснял: «В отличие от большинства из нас».
Генри Мозли
Может быть, и в нем, как некогда в Содди, говорила оксфордская гордыня? Хотя у него было больше оснований для такой вздорной гордыни, ибо в Оксфорде профессорствовали его отец и оба деда, а сам он значился еще и воспитанником аристократического Итона, эта черта была ему не свойственна.
К своей степени магистра он в отличие от Содди не добавлял - «Охоп». Иерархического и светского тщеславия в нем не было. Он просто принадлежал к не очень многочисленной и одинаковой во все века человеческой разновидности монахов познания. И в свои двадцать с небольшим уже отличался чудачествами, обычно украшающими старых зубров науки.
Так, он в самом деле не любил, чтобы ему мешали! И всячески защищал свою сосредоточенность. Рассказывали «спичечную историю». В подражание Резерфорду он курил трубку и, подобно Резерфорду, изводил множество спичек. Но следовать резерфордовской манере - у всех и всюду одалживаться спичками, а потом не возвращать их, он не мог: это рассеивало и каждый раз нарушало уединение. Зато другие, зная, что у педантичного Мозли спички всегда найдутся, часто заглядывали к нему с той микробесцеремонностью, на какую в интернационале курильщиков не принято досадовать. Чаще других наведывался шеф. В один прекрасный день его встретил в лабораторной комнате Мозли маленький плакат: «Пожалуйста, возьмите одну из этих коробок и оставьте в покое мои спички!» Плакатик был воткнут в пирамидальную гору спичечных коробков. Купив за шиллинг и шесть пенсов гросс - дюжину дюжин - этого добра, Мозли приобрел право на лишние минуты сосредоточенного молчания.
Во второй половине 13-го года его лабораторное окно све- тилось ночами гораздо чаще, чем прежде. И это был не тот случай, когда Резерфорд мог бы запросто сказать: «Ступайте-ка домой, мой мальчик, и думайте!» Да, случай был не тот…
И мальчик был не тот… Напротив, легче представить, как вечерами, заглядывая перед уходом из лаборатории к Мозли, чтобы осведомиться о его успехах. Резерфорд, словно заговорщику, сообщал ему адрес ночной таверны, где в любое время можно отлично перекусить да еще послушать при этом занятные рассказы о жизни. А на следующий день допытывался:
«Ну как, Гарри, там неплохо было, а?» Невиннейший Мозли приобрел среди манчестерцев славу человека, знающего в городе злачные места, где тебя накормят и в три часа утра.
Не без консультаций шефа приобрел Мозли эту славу, которая ужаснула бы его любящую мать, узнай она у себя в Оксфорде об изнуряющем стиле жизни сына.
А может, она об этом и узнала, потому что в конце 13-го года настояла на скором возвращении Генри домой. И этим заставила его еще усилить темп работы. Во всяком случае, он успел до отъезда закончить исследование спектров для группы элементов от кальция до цинка. И успел вывести свой закон.
«…Уже в ноябре 1913 года я получил от него интереснейшее письмо с изложением важных результатов», - писал Бор, вспоминая свое тогдашнее удивление стремительностью происшедшего. Его удивление возросло еще больше, когда вскоре он увидел работу Мозли уже напечатанной в «Philosophical magazine».
Резерфорд не позволил статье оксфордца пролежать в лаборатории и часу лишнего! Для судьбы самой ядерно-планетарной модели атома эта статья была в известном смысле так же решающе важна, как и недавняя статья Бора. Замечательно совпадение: обе работы были опубликованы в одном и том же 26-м томе 6-й серии «Philosophical magazine» за 1913 год. Бор в июльском выпуске открывал этот том (стр. 1-25),- а Мозли в декабрьском - закрывал (стр. 1024 -1034). Ровно тысяча журнальных страниц, переполненных всяческой научной информацией, отделяла одну от другой две эти великие вехи в истории ядерно-планетарной модели атома.
Итоги исследования Мозли обладали редкой наглядностью.
При сравнении фотографий характеристических рентгеновских спектров (а он научился их фотографировать) было отчетливо видно, как в последовательности элементов - титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк - самая интенсивная линия шаг за шагом закономерно сдвигается в сторону все больших частот. А тем временем в математической формуле для этих частот некая величина в той же последовательности меняет свое значение с каждым шагом ровно на единицу! Если же линия в спектре сдвигается сразу на два шага - как при сравнении спектров кальция и титана, - то и эта величина возрастает не на единицу, а сразу на две…
Мозли назвал ее фундаментальной характеристикой атома и из простых соображений умозаключил:
Эта величина может быть только зарядом центрального положительного ядра, существование которого уже с определенностью доказано.
Тотчас разрешилось много застарелых недоумений. И среди них - вопрос о количестве электронов в атомах разных элементов. Многие авторы давали резко противоречивые оценки этого количества: в атоме водорода оказывалось от 1 до 3 электронов, а в атоме урана - от 120 до 700 с лишним! И ни одна оценка заведомо не претендовала на точность: всякий раз говорилось - «приблизительно столько-то…». Странно подумать сегодня, что в числе других этот вопрос обсуждался той осенью в Брюсселе на 2-м Сольвеевском конгрессе и представлялся отнюдь не элементарным мозговому тресту европейской физики. Перед отъездом в Брюссель, в конце сентября, Резерфорд еще не знал уверенного ответа на этот вопрос: работа Мозли была не кончена. (Открытия не приурочиваются к конгрессам и праздникам. Во всяком случае, школе Резерфорда такой способ ускорять научный поиск был совершенно чужд.) Месяцем бы позже собрался конгресс - Резерфорд мог бы объявить, что его сотрудник Г. Г. Дж. Мозли получил «сильнейшее и убедительнейшее доказательство справедливости гипотезы Ван дер Брока» и, следовательно, число электронов в атоме равно атомному номеру элемента, ибо таков по величине положительный заряд ядра, а в целом атом нейтрален.
Эти слова о сильнейшем и убедительнейшем доказательстве гипотезы Атомного Номера были произнесены Резерфордом
в декабре на страницах «Nature» и немедленно вызвали реплику Фр. Содди - неожиданную и написанную в обидчиво-раздраженном тоне. В письме из Глазго он утверждал, что химики в Глазго раньше Мозли доказали то же самое, да к тому же «более просто и убедительно». Редакция «Nature» напечатала реплику Содди, но притязания, выраженные в ней, были столь неразумны и ничтожны, что Резерфорд не стал отвечать на нее. (Конечно, Содди понимал, что описанием химических свойств элементов - а только на это он и ссылался, - не решаются количественные проблемы в физике атома. Но провокации тщеславия были сильнее доводов логики.) Эта маленькая история осталась, кажется, единственным темным пятнышком на блистательной судьбе открытия Мозли.
Между прочим, сравнивая спектры кобальта и никеля, Мозли тотчас увидел, что Менделеев был абсолютно прав, когда поставил более тяжелый кобальт перед никелем: для заряда кобальтового ядра получилось число +27, а для заряда никеля +28. Такого рода подробности производят особенно сильное впечатление на современников. А работа Мозли была полна такими деталями. Она была принята и признана сразу - всеми и повсеместно. Бор написал об этом так:
В новейшей истории физики и химии немногие события привлекали к себе с самого начала такое всеобщее внимание, как совершенное Мозли открытие простого закона, позволяющего однозначно приписать атомный номер элементу по его высокочастотному спектру. Это было немедленно осознано не только как решительное подтверждение атомной модели Резерфорда, но и как потрясающе выразительное свидетельство силы интуиции Менделеева, заставившей его в определенных местах периодической таблицы отступить от последовательности возрастающих атомных весов.
Бор мог бы добавить, что открытие закона атомного номера было осознано и как выдающийся успех только что родившейся квантовой теории атома.
А в декабре 13-го года Мозли был уже в Оксфорде.
Нехотя оставил он Манчестерскую лабораторию, повинуясь, очевидно, материнской воле. Через неделю он написал Резерфорду из дому пространное письмо - полуделовое, полулирическое. Там были строки:
Дела здесь движутся медленно по сравнению с Манчестером… Однако я, естественно, и не ожидал найти тут такие же хорошие условия для работы, какие созданы в Манчестерской лаборатории; да, впрочем, я уверен, что и во всей Англии бесполезно было бы искать нечто подобное.
Я хочу, чтобы вы знали, сколько радости доставили мне три года, проведенные у вас… Мне особенно хочется поблагодарить вас и м-сис Резерфорд за вашу доброту и заинтересованность в моей судьбе и хочется сказать, сколь многим я обязан вам за то, что вы «собственноручно» учили меня, как должно делать исследовательскую работу.
И Резерфорд почувствовал это. И еще острее, чем при обсуждении стиля статьи, ощутил он себя в лагере отцов. Повинный в самом появлении теории Бора и готовый к ответу за это преступление против классики, он придирчиво выставлял на свет все, что особенно отягчало вину датчанина, а косвенно и его собственную. Вот был случай, когда понять воистину значило простить! И он хотел понять. Но сначала надо было смириться.
Бор потом написал: «Он был тогда ангельски терпелив со мной». Так пишут о дьявольски нетерпеливых, вдруг изменивших своему обыкновению. Бор выразился бы точнее, прибавив к словам о терпеливости слова о терпимости. Однако по относительной молодости он, конечно, не оценил тогдашнее самоотречение Резерфорда. Он слишком был переполнен радостью, что сам не отрекся - выстоял и не отрекся! И ему навсегда запомнилась похвала Резерфорда: «Никак не предполагал, что вы проявите такую неуступчивость!» Догадывался ли Бор, что Резерфорда в ту пору обрадовала бы прямо противоположная похвала - одобрение уступчивости, которую он проявил…
В начале апреля первая из трех исторических статей Нильса Бора «О конституции атомов и молекул» приняла окончательный вид. В ее проблемном содержании сохранилось все, что отстаивал Вор. В ее литературной форме изменилось все, на чем настаивал Резерфорд. И, задатированная 5 апреля 1913 года, она, снабженная препроводительным благословением Резерфорда, ушла, наконец, в редакцию «Philosophical magazine», чтобы открыть собою новую эпоху в теоретическом познании микромира.
17
В который уже раз на страницах этой книги легко произносятся слова - «открыть новую эпоху…». Между тем двери истории ходят на тугих петлях. Как и перед ядерной моделью атома, они не распахнулись с готовностью перед теорией Бора.Но по крайней мере она не была встречена молчанием.
Преимущественной реакцией были оппозиция и скептицизм.
Правда, совсем не воинственная оппозиция и не очень огорчительный скептицизм, ибо жила еще надежда, что все неприятности разъяснятся классически.
Когда летом 13-го года Рэлей-младший спросил своего отца - тогдашнего президента Королевского общества, прочел ли он статью Бора о происхождении водородного спектра, Рэлей-старший ответил: «Да, я просмотрел ее, но увидел, что пользы из нее извлечь не смогу… Это не по мне». Еще можно было относиться к квантовым идеям, как к чему-то необязательному. Вскоре, осенью того же года, лорд Рэлей вынужден был отвечать на тот же вопрос не в домашней обстановке и не сыну, а на очередном конгрессе Би-Эй в Бирмингаме целому сонму своих коллег - британских и чужеземных. Среди последних были Пуанкаре и Бор. Шла дискуссия о проблемах излучения.
- Резерфорда и всех нас позабавил один эпизод,- рассказывал позднее Бор.- Сэр Джозеф Лармор весьма торжественно предложил лорду Рэлею выразить свое мнение о самых последних шагах в этой области. Незамедлительный ответ великого ветерана, в прежние годы внесшего решающий вклад в понимание проблем радиации, был таков: «В молодости я строжайше исповедовал немало добропорядочных правил и среди них убеждение, что человек, переваливший за шестьдесят, не должен высказываться по поводу новейших идей. Хотя мне следует признаться, что ныне я не придерживаюсь такой точки зрения слишком уж строго, однако все еще достаточно строго, чтобы не принимать. участия в этой дискуссии!
Всего же забавней - а Бор упомянуть об этом забыл! - что старый ветеран тут же, вслед за этим признанием, не удержался и высказался по поводу новейших идей. И разумеется, без сочувствия:
- Мне трудно,- сказал он,- принять все это в качестве реальной картины того, что действительно имеет место в природе.
Старик был откровенней других, а принять это было трудно всем. Даже манчестерцам. И даже в их среде, судя по словам Андраде, выделялся как редкостное исключение один молодой исследователь, сумевший сразу безоглядно довериться идеям Бора и «распознать их фундаментальную важность».
Однако среди его заслуг была не только понятливость. Было открытие первостепенной значимости. Впрочем, без восторженного признания теории Бора это открытие, обессмертившее имя оксфордского магистра искусств Генри Гвина Д. Мозли, просто не состоялось бы.
Мозли называл боровскую теорию атома «h-гипотезой» и писал Резерфорду, что всем существом своим чувствует ее справедливость. И говорил, что готов сделать все возможное, дабы положить конец широко распространенному убеждению, будто построения Бора сводятся к удачному жонглированию хорошо подобранными числами. В энтузиазме он уверял Резерфорда, что для количественного постижения структуры атома вообще ничего не нужно, кроме трех величин: постоянной Планка «h», массы электрона «m» и элементарного заряда «е».
Такой безоговорочный культ простоты природы психологически помог Мозли уверенно искать - и в конце концов найти! - закономерную связь между зарядом атомного ядра и порядком расположения элементов в «естественной последовательности». …На протяжении почти полувека истинным казался менделеевский принцип расположения элементов: они следовали в периодической системе один за другим в порядке возрастания их атомных весов. Однако уже самому Менделееву пришлось дважды нарушить этот принцип и поставить более тяжелый кобальт перед более легким никелем, а теллур - перед йодом, иначе элементы в обеих парах не попадали на правильные места по своей химической характеристике. А в XX веке исследование продуктов радиоактивных распадов совсем уж смешало все карты: было обнаружено немало элементов, химически совершенно» неразличимых, но обладающих разными атомными весами.
Появилось несколько свинцов, несколько ториев, несколько радиев… Такие элементы Фредерик Содди и назвал изотопами, то есть занимающими одно и то же место - одну и ту же клетку в менделеевской таблице. Словом, постепенно стало ясно, что химические элементы принципиально отличаются один от другого не атомным весом, а чем-то другим. Чем же?
Ответ на этот вопрос и хотел получить Мозли.
Сегодня уже едва ли можно с точностью установить, как возник замысел знаменитой работы, решившей эту проблему: принадлежал ли он целиком Мозли или отчасти еще и математику Дарвину, не была ли руководящая идея подсказана Бором или внушена Резерфордом? Одно несомненно: ранним летом 13-го года, когда «Philosophical magazine» со статьей Бора в свет еще не вышел, Манчестер был единственным местом на земле, где подобный замысел мог прийти в голову экспериментатору. А Мозли был в Манчестере единственным исследователем, безусловно пригодным для его осуществления.
Дело в том, что уже около года Мозли занимался рентгеновскими спектрами. А для Манчестерской лаборатории такая тема была отнюдь не традиционной. Сам Резерфорд, наверное, с кавендишевских времен не держал в руках ренгтеновской трубки: спровоцировав когда-то Беккереля на открытие урановой радиации, Х-лучи стали в дальнейшем областью экспериментирования, не пересекавшейся с радиоактивностью. И молодому физику, пленившемуся в те времена именно Х-лучами, следовало искать себе вакантное место или в Вюрцбурге, где они были открыты; или в Мюнхене, где теперь работал Рентген и где в 1912 году Макс фон Лауэ предсказал, а его ученики открыли диффракцию этих лучей в кристаллах; или в Ливерпуле, где в 1911 году старый кавендишевец Чарльз Баркла обнаружил особое - характеристическое для каждого элемента - рентгеновское излучение; или в Лиддсе, где Вильям Генри и Вильям Лоуренс Брэгги - отец и сын - разрабатывали рентгеновский метод анализа кристаллических структур; или, скажем, в Париже, где Морис де Бройль-старший упорно изучал эту невидимую радиацию… Словом, где угодно - только не в Манчестере стоило искать пристанище для занятий рентгеновыми лучами. И конечно, бакалавр Мозли вовсе не ими собирался заниматься, когда летом 1910 года, окончив оксфордский колледж Святой троицы, написал Резерфорду письмо - прошение с просьбой принять его в штат Манчестерской лаборатории. Его увлекали радиоактивность и строение вещества.
И принятый, подобно Марсдену, на самый низший лабораторный пост, он два года самоотреченно трудился то над коротко-живущими продуктами распада (с Казимиром Фаянсом), то над гамма-радиацией (с Уолтером Маковером), то над бета-лучами (вполне самостоятельно)… Острый интерес к рентгену возник у него только в 1912 году, когда в работах Баркла, Лауэ, Брэггов он вдруг почуял верный путь к обильному источнику новой информации о глубинном устройстве атомов.
Жаждой такой информации жила вся лаборатория. Мозли не стоило труда склонить к совместной работе над рентгеновскими спектрами своего давнего - еще доманчестерского - приятеля Чарльза Дарвина. Труднее было получить одобрение Резерфорда.
Шеф не выносил в научных делах ни малейшего привкуса прожектерского легкомыслия. А тут этот привкус ощущался.
И тем явственнее, что на вопрос, какую задачу они, собственно, собираются решать, оба довольно беззаботно, судя по воспоминаниям Дарвина, ответили: «У нас нет никаких идей, мы просто хотим узнать, что за штука эти Х-лучи, поскольку Баркла считает их электромагнитными волнами, а Брэгг-отец - частицами…» Они лукавили: открытие диффракции уже подтвердило правоту Баркла - огибать препятствия, узлы кристаллической решетки, могли только волны. А до одновременного признания правоты и Брэгга - до квантовомеханической идеи о всеобщем дуализме волн-частиц - было еще далеко.
Молодые люди лукавили, не желая взваливать на плечи груз обещаний, быть может невыполнимых. Резерфорд насмешливо спросил, нравится ли им роль слабых лошадок в гандикапе.
И полюбопытствовал, ясно ли им рисуется перспектива трудного соперничества с лабораториями, где на Х-лучах давно собаку съели.
Этот довод, как и другие, их решимости не поколебал.
Они настаивали. Молча глядя на них, шеф перебирал в памяти детали двухлетнего знакомства с ними: ни тот, ни другой пока не сделали ни одного опрометчивого шага. Еще он прикинул в уме, что особых затрат их замысел не потребует. И взвесил возможный прибыток: лаборатория обзаведется собственными специалистами по рентгену. И наконец, вспомнил девиз Максвелла, нравившийся ему со времен кавендишевской молодости:
Я никогда не пробую отговорить человека от попытки провести тот или другой эксперимент. Если он не найдет того, что ищет, он, может быть, откроет нечто иное.
Резерфорду не пришлось шалеть о согласии, которое он дал. Прибыток превзошел ожидания. (С течением жизни он все чаще убеждался, что широта и терпимость самая выгодная линия поведения для правителя лаборатории. Да и для любого правителя вообще. Широта и терпимость - это не обещание наград за успех, а избавление от наказания за неудачу.
Но ищущим это-то всего более и необходимо - право на риск.) Совместная работа молодых друзей продолжалась до начала 13-го года, и в итоге они выполнили исследование, ставшее одним из классических в истории изучения рентгеновых лучей.
Через полвека Дарвин резюмировал сделанное ими в полуфразе: «… мы убедились, что Х-лучи подобны обычному свету, но частота их гораздо выше». А главное произошло чуть позже, когда Мозли, отделившись от Дарвина, ушедшего с головой в математические заботы, стал в одиночестве исследовать характеристические рентгеновские спектры разных металлов - спектры Баркла.
Это были такие же линейчатые атомные спектры, как и обычные, те, что получаются в диапазоне частот видимого света. Они тоже являли собою визитные карточки химических элементов: у каждого был свой набор высокочастотных спектральных линий. Мозли начал размышлять над их происхождением как раз тогда, когда в весеннем Манчестере 13-го года появился вслед за объемистым пакетом из Копенгагена сам Бор и пошли разговоры о бурных дискуссиях между датчанином и шефом. Неважно от кого из них - от шефа или от датчанина - впервые услышал Мозли о квантовой теории водородного атома. В обоих случаях информация была надежной.
Существенно, что Мозли сразу пустил ее в дело. В его руках «h-гипотеза» начала служить физике еще до ее опубликования.
Он не сомневался: линейчатость характеристических рентгеновских спектров тоже объясняется скачкообразными переходами возбужденных атомов в состояние устойчивости.
В теории Бора тогда еще не было представления об электронных оболочках в атомах и о правилах их заполнения. И Мозли пришлось отчасти предвосхитить этот шаг в развитии планетарной модели. Схема событий, порождающих рентгеновский спектр, рисовалась ему так. Когда катодный луч - а этот агент посерьезней пламени горелки - вырывает из атома электрон, обитавший на самом глубинном уровне, там возникает как бы вакантное место. Один из электронов, сидящих на следующем - втором - энергетическом уровне, падает вниз, заполняя дыру. Такие перескоки со второй орбиты на первую выглядели наиболее вероятными. Естественно было думать, что они-то и создают в высокочастотном спектре каждого элемента самую интенсивную линию.
А далее возникала мысль о зависимости между зарядом атомного ядра и частотой этой линии. В самом деле: чем больше ядерный заряд, тем сильнее связан с ядром электрон на наинизшей орбите, тем больше нужно энергии, чтобы оттащить его от ядра, иначе говоря - перебросить на другой уровень, скажем, на второй; но, стало быть, тем солидней - высокочастотней! - квант, испускаемый атомом, когда электрон снова падает вниз и расстается с этой избыточной энергией возбуждения.
У Мозли появилась надежда: изучая рентгеновские спектры, может быть, удастся установить, как от элемента к элементу изменяется заряд атомного ядра!
Ни модель Резерфорда, ни теория Бора не содержали на сей счет никаких определенных утверждений. И обе были без этого существенно не полны. А все, что об этом думали физики к середине 13-го года, ограничивалось двумя гипотезами.
Первая уверяла: «Заряд ядра численно равен примерно половине атомного веса элемента». Вторая была определенней:
«Заряд ядра равен номеру элемента в менделеевской таблице».
Первую гипотезу высказал еще в 1911 году Баркла. Вторую - в начале 1913 года голландец Ван дер Брок. Обе были известны Мозли. Гипотезу Ван дер Брока поддерживал Бор, и, видимо, Резерфорд тоже ее разделял. И Мозли она нравилась своей ясностью и простотой. И он мог рассматривать намеченное исследование, как опытную проверку этой гипотезы «Атомного Номера». Другими словами, он заранее предвкушал то, что получит: окажется, что от элемента к элементу заряд атомного ядра возрастает на единицу!..
Его открытие нередко изображается, как счастливая находка, вознаградившая трудолюбие. Между тем это яркий пример более редкого события в истории науки: выдающееся свершение было запланировано и сделано без малейшего соучастия Случая. В воспоминаниях о Резерфорде Бор рассказал, как летом 13-го года в Манчестере он обсуждал с Дарвином и Мозли проблему «правильного расположения элементов в соответствии с их атомными номерами». Мозли объявил тогда, что собирается «решить эту проблему систематическими измерениями высокочастотных спектров». …Он работал с фантастической быстротой.
На свете было немного вещей, которые могли доставить такое же удовольствие вечно нетерпеливому - и тоже быстро-действующему - шефу. Но даже Резерфорд, по словам Ива, был поражен стремительностью, с какой во второй половине 1913 года Мозли осуществил свой замысел.
Дарвин писал:
У него было два рабочих правила. Первое: если вы начали налаживать установку для эксперимента, вы не должны останавливаться, пока она не будет налажена.
Второе: когда установка налажена, вы не должны останавливаться, пока эксперимент не будет завершен.
Эти правила вынуждали Мозли вести совершенно нерегулярный образ жизни. И порою донельзя истощали его силы.
Но давать ему благие советы было бесполезно. Следя за Мозли и наблюдая его одержимость, Резерфорд видел, что перед ним не совсем обычный случай усердия и одухотворенности.
Хоть это и звучит полумистически, но, право, создается впечатление, будто Мозли чувствовал, что ему недолго жить, и потому спешил, превращая ночи в дни. Он наслаждался лабораторным уединением. И в среде резерфордовцев, где господствовал стиль легкого панибратства, он выделялся некоторой своей замкнутостью и чуть демонстративной независимостью.
Андраде говорил, что он был не из тех, кто со всеми на короткой ноге. И пояснял: «В отличие от большинства из нас».
Генри Мозли
Может быть, и в нем, как некогда в Содди, говорила оксфордская гордыня? Хотя у него было больше оснований для такой вздорной гордыни, ибо в Оксфорде профессорствовали его отец и оба деда, а сам он значился еще и воспитанником аристократического Итона, эта черта была ему не свойственна.
К своей степени магистра он в отличие от Содди не добавлял - «Охоп». Иерархического и светского тщеславия в нем не было. Он просто принадлежал к не очень многочисленной и одинаковой во все века человеческой разновидности монахов познания. И в свои двадцать с небольшим уже отличался чудачествами, обычно украшающими старых зубров науки.
Так, он в самом деле не любил, чтобы ему мешали! И всячески защищал свою сосредоточенность. Рассказывали «спичечную историю». В подражание Резерфорду он курил трубку и, подобно Резерфорду, изводил множество спичек. Но следовать резерфордовской манере - у всех и всюду одалживаться спичками, а потом не возвращать их, он не мог: это рассеивало и каждый раз нарушало уединение. Зато другие, зная, что у педантичного Мозли спички всегда найдутся, часто заглядывали к нему с той микробесцеремонностью, на какую в интернационале курильщиков не принято досадовать. Чаще других наведывался шеф. В один прекрасный день его встретил в лабораторной комнате Мозли маленький плакат: «Пожалуйста, возьмите одну из этих коробок и оставьте в покое мои спички!» Плакатик был воткнут в пирамидальную гору спичечных коробков. Купив за шиллинг и шесть пенсов гросс - дюжину дюжин - этого добра, Мозли приобрел право на лишние минуты сосредоточенного молчания.
Во второй половине 13-го года его лабораторное окно све- тилось ночами гораздо чаще, чем прежде. И это был не тот случай, когда Резерфорд мог бы запросто сказать: «Ступайте-ка домой, мой мальчик, и думайте!» Да, случай был не тот…
И мальчик был не тот… Напротив, легче представить, как вечерами, заглядывая перед уходом из лаборатории к Мозли, чтобы осведомиться о его успехах. Резерфорд, словно заговорщику, сообщал ему адрес ночной таверны, где в любое время можно отлично перекусить да еще послушать при этом занятные рассказы о жизни. А на следующий день допытывался:
«Ну как, Гарри, там неплохо было, а?» Невиннейший Мозли приобрел среди манчестерцев славу человека, знающего в городе злачные места, где тебя накормят и в три часа утра.
Не без консультаций шефа приобрел Мозли эту славу, которая ужаснула бы его любящую мать, узнай она у себя в Оксфорде об изнуряющем стиле жизни сына.
А может, она об этом и узнала, потому что в конце 13-го года настояла на скором возвращении Генри домой. И этим заставила его еще усилить темп работы. Во всяком случае, он успел до отъезда закончить исследование спектров для группы элементов от кальция до цинка. И успел вывести свой закон.
«…Уже в ноябре 1913 года я получил от него интереснейшее письмо с изложением важных результатов», - писал Бор, вспоминая свое тогдашнее удивление стремительностью происшедшего. Его удивление возросло еще больше, когда вскоре он увидел работу Мозли уже напечатанной в «Philosophical magazine».
Резерфорд не позволил статье оксфордца пролежать в лаборатории и часу лишнего! Для судьбы самой ядерно-планетарной модели атома эта статья была в известном смысле так же решающе важна, как и недавняя статья Бора. Замечательно совпадение: обе работы были опубликованы в одном и том же 26-м томе 6-й серии «Philosophical magazine» за 1913 год. Бор в июльском выпуске открывал этот том (стр. 1-25),- а Мозли в декабрьском - закрывал (стр. 1024 -1034). Ровно тысяча журнальных страниц, переполненных всяческой научной информацией, отделяла одну от другой две эти великие вехи в истории ядерно-планетарной модели атома.
Итоги исследования Мозли обладали редкой наглядностью.
При сравнении фотографий характеристических рентгеновских спектров (а он научился их фотографировать) было отчетливо видно, как в последовательности элементов - титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк - самая интенсивная линия шаг за шагом закономерно сдвигается в сторону все больших частот. А тем временем в математической формуле для этих частот некая величина в той же последовательности меняет свое значение с каждым шагом ровно на единицу! Если же линия в спектре сдвигается сразу на два шага - как при сравнении спектров кальция и титана, - то и эта величина возрастает не на единицу, а сразу на две…
Мозли назвал ее фундаментальной характеристикой атома и из простых соображений умозаключил:
Эта величина может быть только зарядом центрального положительного ядра, существование которого уже с определенностью доказано.
Тотчас разрешилось много застарелых недоумений. И среди них - вопрос о количестве электронов в атомах разных элементов. Многие авторы давали резко противоречивые оценки этого количества: в атоме водорода оказывалось от 1 до 3 электронов, а в атоме урана - от 120 до 700 с лишним! И ни одна оценка заведомо не претендовала на точность: всякий раз говорилось - «приблизительно столько-то…». Странно подумать сегодня, что в числе других этот вопрос обсуждался той осенью в Брюсселе на 2-м Сольвеевском конгрессе и представлялся отнюдь не элементарным мозговому тресту европейской физики. Перед отъездом в Брюссель, в конце сентября, Резерфорд еще не знал уверенного ответа на этот вопрос: работа Мозли была не кончена. (Открытия не приурочиваются к конгрессам и праздникам. Во всяком случае, школе Резерфорда такой способ ускорять научный поиск был совершенно чужд.) Месяцем бы позже собрался конгресс - Резерфорд мог бы объявить, что его сотрудник Г. Г. Дж. Мозли получил «сильнейшее и убедительнейшее доказательство справедливости гипотезы Ван дер Брока» и, следовательно, число электронов в атоме равно атомному номеру элемента, ибо таков по величине положительный заряд ядра, а в целом атом нейтрален.
Эти слова о сильнейшем и убедительнейшем доказательстве гипотезы Атомного Номера были произнесены Резерфордом
в декабре на страницах «Nature» и немедленно вызвали реплику Фр. Содди - неожиданную и написанную в обидчиво-раздраженном тоне. В письме из Глазго он утверждал, что химики в Глазго раньше Мозли доказали то же самое, да к тому же «более просто и убедительно». Редакция «Nature» напечатала реплику Содди, но притязания, выраженные в ней, были столь неразумны и ничтожны, что Резерфорд не стал отвечать на нее. (Конечно, Содди понимал, что описанием химических свойств элементов - а только на это он и ссылался, - не решаются количественные проблемы в физике атома. Но провокации тщеславия были сильнее доводов логики.) Эта маленькая история осталась, кажется, единственным темным пятнышком на блистательной судьбе открытия Мозли.
Между прочим, сравнивая спектры кобальта и никеля, Мозли тотчас увидел, что Менделеев был абсолютно прав, когда поставил более тяжелый кобальт перед никелем: для заряда кобальтового ядра получилось число +27, а для заряда никеля +28. Такого рода подробности производят особенно сильное впечатление на современников. А работа Мозли была полна такими деталями. Она была принята и признана сразу - всеми и повсеместно. Бор написал об этом так:
В новейшей истории физики и химии немногие события привлекали к себе с самого начала такое всеобщее внимание, как совершенное Мозли открытие простого закона, позволяющего однозначно приписать атомный номер элементу по его высокочастотному спектру. Это было немедленно осознано не только как решительное подтверждение атомной модели Резерфорда, но и как потрясающе выразительное свидетельство силы интуиции Менделеева, заставившей его в определенных местах периодической таблицы отступить от последовательности возрастающих атомных весов.
Бор мог бы добавить, что открытие закона атомного номера было осознано и как выдающийся успех только что родившейся квантовой теории атома.
А в декабре 13-го года Мозли был уже в Оксфорде.
Нехотя оставил он Манчестерскую лабораторию, повинуясь, очевидно, материнской воле. Через неделю он написал Резерфорду из дому пространное письмо - полуделовое, полулирическое. Там были строки:
Дела здесь движутся медленно по сравнению с Манчестером… Однако я, естественно, и не ожидал найти тут такие же хорошие условия для работы, какие созданы в Манчестерской лаборатории; да, впрочем, я уверен, что и во всей Англии бесполезно было бы искать нечто подобное.
Я хочу, чтобы вы знали, сколько радости доставили мне три года, проведенные у вас… Мне особенно хочется поблагодарить вас и м-сис Резерфорд за вашу доброту и заинтересованность в моей судьбе и хочется сказать, сколь многим я обязан вам за то, что вы «собственноручно» учили меня, как должно делать исследовательскую работу.