- << Первая
- « Предыдущая
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- Следующая »
- Последняя >>
Гелиодор
Гелиодо'р(HliуdMros; гг. рождения и смерти неизвестны), греческий писатель 3 в. Автор романа «Эфиопская повесть» («Эфиопика»), повествующего о любви и приключениях эфиопской царевны Хариклии и фессалийского юноши Феагена. В Европе роман Г. известен с 1534 (1-е изд.); он послужил образцом для галантно-авантюрных романов 17-18 вв.
Соч.: Les Ethiopiques (Thйagиne et Chariclйe), t. 1-3, P., 1935-43; в рус. пер. - Эфиопика, вступ. ст. и коммент. А. Егунова, М., 1965.
Лит.:История греческой литературы, под ред. С. И. Соболевского [и др.], т. 3, М., 1960, с. 268-71; Oeftering М., Heliodor und seine Bedeutung fьr die Literatur, B., 1901.
Л. А. Фрейберг.
Гелиоконцентратор
Гелиоконцентра'тор(от гелио... и лат. con - с, вместе, в, centrum - центр, средоточие), одно или несколько зеркал или линз, собирающих (фокусирующих) солнечные лучи для повышения плотности солнечной радиации.
Устройства для концентрации солнечных лучей известны давно (например, зажигательные устройства древнегреческого математика и механика Архимеда, французских учёных Т. П. Бюффона, А. Л. Лавуазье). В своём труде «Об оптике» М. В. Ломоносов описывает разработанную им оригинальную оптическую систему, составленную из плоских зеркал и собирательных линз. В СССР первый крупный Г. в виде параболоида диаметром 10 мбыл создан в 1946 (г. Ташкент). Подобные же параболоидные Г. были сооружены во Франции, США и Японии. Во Франции, например, в 1968 начала действовать наиболее крупная солнечная печь с параболоидными Г. диаметром 54 м. Самый крупный Г. составного типа с площадью зеркала 20000 м 2запроектирован в СССР для солнечной теплосиловой станции - СТС (см. Солнечная энергетическая установка ).
Основные элементы Г. - жёсткая несущая конструкция и зеркальная или линзовая часть. С 60-х гг. 20 в. развивается новое направление по изготовлению полужестких и надувных Г. из полимерных прозрачных и металлизированных плёнок. Форма отражательной поверхности и схема Г. могут быть самыми различными ( рис. ): a- параболоидная (параболоцилиндрическая, цилиндрическая); б- коническая; в- тороидальная; г- составная из отдельных плоских зеркал; д- зеркально-линзовая; е- в виде плоских зеркал, следящих за Солнцем, и неподвижного параболоидного концентратора (подвижные плоские зеркала обычно называют ориентаторами или гелиостатами, они служат для направления солнечных лучей на неподвижный Г.). По характеру поверхности Г. делятся на фацетные с прерывистой и гладкие с непрерывной поверхностью зеркала. Составные Г. представляют собой систему подвижных или неподвижных, плоских или искривленных зеркал и линз. Максимальная плотность энергии, достигнутая на высокоточных параболоидных Г., 35 · 10 3 квт/м 2-немного менее половины плотности лучистой энергии на поверхности Солнца (74 · 10 3 квт/м 2).
Лит.:Вейнберг В. Б., Оптика в установках для использования солнечной энергии, М., 1959; Баум В. А., Апариси Р. Р., Тепляков Д. И., Об объективной оценке точности оптических систем солнечных установок, в сборнике: Использование солнечной энергии, М., 1960 (Теплоэнергетика, в. 2); «Гелиотехника», 1965-69; The proceedings of the solar furnace symposium, «Journal of Solar energy Science and Engineering», 1957, v. 1, № 2-3.
Р. Р. Апариси.
Рис. к ст. Гелиоконцентратор.
Гелиолитоидеи
Гелиолитоиде'и(Heliolitoidea), подкласс вымерших колониальных беспозвоночных животных класса коралловых полипов. Были распространены с позднего ордовика до среднего девона. Г. обладали массивным известковым скелетом, состоящим из трубок - кораллитов. Полость каждого кораллита пересечена многочисленными поперечными днищами; внутрь её вдаются 12 вертикальных перегородок (септ). Пространство между отдельными кораллитами заполнял промежуточный скелет - цененцима, состоящая из известковых пузырьков (диссепиментов), мелких трубочек (спфонопор) или вертикальных столбиков (трабекул). Подкласс разделяют на 8 семейств, включающих 30 родов. Жили на мелководье почти всех морей земного шара.
Лит.:Соколов Б. С., Подкласс Heliolitoidea. в кн.: Основы палеонтологии. Губки, археоциаты, кишечнополостные, черви, М., 1962.
Р. Л. Мерклин.
Гелиометр
Гелиоме'тр(от гелио... и ... метр ), астрометрический инструмент для измерения небольших (до 1°) углов на небесной сфере. Идея Г. высказана датским астрономом О. Ремером в 1675, окончательная конструкция осуществлена английским оптиком Дж. Доллондом в 1753. Первоначально Г. применялся для измерения диаметра Солнца, с чем и связано его название, позже - для измерения поперечников Луны, планет, планетоцентрических координат спутников планет, а также для измерения двойных звёзд и для определения параллаксов звёзд. Представляет собой рефрактор , объектив которого разрезан по диаметру. Половинки объектива могут смещаться вдоль разреза с помощью микрометрического винта. При этом изображение небесного объекта в фокальной плоскости объектива раздваивается, и оба изображения смещаются одно относительно другого. Совместив противоположные точки диаметра светила, изображения компонентов двойной звезды и т.п. и измерив взаимное смещение половинок объектива, можно вычислить угловое расстояние между совмещенными точками (на рис. совмещаются изображения левой звезды S 2и правой - T 1). Для установки направления смещения половин объектива параллельно отрезку, соединяющему обе точки, объективная часть может поворачиваться. Точность измерения - несколько десятых долей секунды дуги.
В. В. Подобед.
Рис к ст. Гелиометр.
Гелиомицин
Гелиомици'н, лекарственный препарат из группы антибиотиков . Применяют в виде мази при лечении инфицированных экзем, пиодермии, трещин, пролежней, язв и др. кожных заболеваний с вторичной инфекцией.
Гелиополь (город в Египте)
Гелио'поль(греч. Heliъpolis, буквально - город Солнца, древнеегипетский - Иуну, ныне - Эль-Матария, близ Каира), один из древнейших городов Египта; возник в 4-м тыс. до н. э. Главный центр культа бога Ра-Атума. В Г. находился «ниломер» - сооружение из камня для измерения уровня воды Нила.
Гелиополь (древний город)
Гелио'поль, древний город на территории Ливана; см. Баальбек .
Гелиос
Ге'лиос, Гелий, в древнегреческой мифологии бог Солнца. В древнеримской мифологии Г. соответствовал Соль.
Гелиосварка
Гелиосва'рка(от гелио... и сварка ), способ соединения металлов путём нагрева и расплавления лучами Солнца, сфокусированными в зоне сварки системой зеркал или линз (см. Гелиоустановка ). Свариваемое изделие помещают в камеру с окнами для светового потока. Основное достоинство Г. - абсолютная стерильность процесса, возможность сварки тугоплавких металлов. Сложность установки и нерегулярность солнечного излучения ограничивают применение Г. Она может быть использована в районах со значительной солнечной радиацией.
Гелиоскоп
Гелиоско'п(от гелио... и греч. skopйo - смотрю, наблюдаю), астрономический телескоп, приспособленный для визуальных наблюдений поверхности Солнца. Для уменьшения яркости солнечного диска применяются тёмные светофильтры, посеребрённые объективы и специальные гелиоскопические окуляры, дающие возможность уменьшить количество света, попадающего в глаз. В настоящее время Г. имеют вспомогательное значение, т. к. исследование Солнца ведётся преимущественно фотографическими методами.
Гелиостат
Гелиоста'т( от: гелио...и греч. statуs - стоящий, неподвижный), вспомогательный астрономический прибор. Плоское зеркало Г. поворачивается часовым механизмом так, чтобы направлять солнечные лучи, несмотря на видимое суточное движение Солнца, постоянно в одном направлении. Г. использовались в солнечных телескопах. В применении к наблюдениям звёзд Г. получил название «сидеростат». Г. почти полностью вытеснен более совершенным целостатом .
Гелиотерапия
Гелиотерапи'я(от гелио... и терапия ), то же, что солнцелечение .
Гелиотехника
Гелиоте'хника(от гелио... и техника ), отрасль техники, изучающая преобразование энергии солнечной радиации в др. виды энергии, удобные для практического использования.
Солнце посылает на Землю неистощимый поток лучистой энергии. Плотность этого потока на границе атмосферы достигает 1,4 квт/м 2(см. Солнечная постоянная ), однако значительная часть его поглощается земной атмосферой. На уровне моря плотность прямой солнечной радиации редко превышает 1,0-1,02 квт/м 2. В гелиотехнических расчётах принимают среднее значение этой величины, равное 0,815 квт/м 2. - Попытки использовать энергию солнечного излучения предпринимались ещё в древности, но серьёзного практического применения они не имели. Лишь в 1770 О. Соссюром (Швейцария) была построена гелиоустановка типа «горячий ящик» . Интерес к Г. заметно повысился во 2-й половине 19 в.: появились опытные образцы воздушных и паровых солнечных двигателей А. Мушо (Франция), Дж. Эриксона (Швеция), А. Эниаса (США). В России в 1890 В. К. Цераский провёл серию экспериментов с плавкой различных металлов, помещая их в фокусе параболического зеркала. В 1912 по предложению Ф. Шумана (Германия) и У. Бойса (Великобритания) вблизи Каира (Египет) была сооружена крупная по тому времени солнечная энергетическая установка мощностью около 45 квт. В 30-х гг. 20 в. были разработаны методы инженерного расчёта гелиоустановок, которые всё чаще стали применяться (главным образом в районах с большим числом солнечных дней в году) в качестве источников электроэнергии, для опреснения воды, сушки и т.п. Особенно большое значение приобрели работы по прямому преобразованию лучистой энергии Солнца в электрическую в связи с освоением космического пространства (см. Солнечная батарея ).
Солнечная энергия «даровая», однако её использование далеко не всегда экономически целесообразно из-за высоких капиталовложений при сооружении гелиоустановок. Различные исследователи по-разному оценивают перспективы развития Г. Французский физик Ф. Жолио-Кюри считал вероятным широкое использование солнечной энергии уже в ближайшие десятилетия. Интенсивные научно-исследовательские работы в области Г. ведутся во многих странах. Гелиоустановки изготовляют серийно для практического использования в США, Японии, Франции и др. странах. В Советском Союзе значительны работы Энергетического института им. Г. М. Кржижановского в Москве, сотрудники которого разработали многие основные вопросы теории Г. и создали ряд опытных установок, успешно прошедших испытания. Исследования в области Г. ведутся гелиотехническими лабораториями в Узбекистане, Туркмении, Армении.
Широкому практическому использованию солнечной энергии препятствуют её сравнительно малая плотность и непостоянство поступления. Из-за этого приходится применять большие поверхности, улавливающие радиацию Солнца, либо устанавливать гелиоконцентраторы , с помощью которых повышают плотность потока и получают высокую температуру на приёмной поверхности преобразователя. Непостоянство солнечной энергии заставляет прибегать к аккумулированию энергии (тепловыми, электрическими, химическими и др. аккумуляторами ) и готовой продукции (например, при опреснении минерализованной воды, при водоподъёме из колодцев и т.п.) или использовать схемы потребления со свободным графиком расхода энергии (например, при ирригации и мелиорации).
Наиболее перспективно применение Г. в сельском хозяйстве для многочисленных малоэнергоёмких и рассредоточенных потребителей, когда сооружение дорогостоящих линий электропередачи экономически нецелесообразно, а топливо приходится подвозить издалека.
Такие условия типичны, например, для ряда южных районов СССР. Особое значение Г. имеет для развития животноводства, в частности в Туркменской ССР, где большие пастбищные массивы используются далеко не полностью только из-за отсутствия пресной воды. В таких районах опреснение минерализованных вод с помощью солнечной энергии пока наиболее экономично.
Современные достижения химии и физики, применение дешёвых материалов с высокими техническими характеристиками (конструкционные пластмассы, прозрачные и алюминированные синтетические плёнки, селективные покрытия приёмных поверхностей и т.д.) способствуют повышению производительности гелиоустановок и снижению их стоимости, что существенно расширяет границы практического использования энергии Солнца.
Лит. см. при статьях Гелиоустановка , Гелиоконцентратор .
Б. А. Гарф.
Гелиотроп (геодезический инструмент)
Гелиотро'п(от гелио... и греч. trуpos - поворот, направление), геодезический инструмент, используемый при точных измерениях горизонтальных углов в триангуляции. Важнейшей частью Г. является плоское зеркало, отражающее солнечные лучи с одного геодезического пункта по направлению к другому геодезическому пункту, в котором производятся угломерные измерения теодолитом .
Гелиотроп (поделочный камень)
Гелиотро'п, ценный поделочный камень, разновидность халцедона . Цвет тёмно-зелёный с пятнами ярко-красного цвета. Применяется для изготовления мелких художественных изделий (флаконы, шкатулки, вставки и т.д.).
Гелиотроп (род растений сем. бурачниковых)
Гелиотро'п(Heliotropium), род растений семейства бурачниковых. Кустарники, полукустарники и травы с очередными листьями. Цветки мелкие, собранные в завитки; венчик белый или фиолетовый, с короткой трубочкой и 5-раздельным отгибом. Плод распадается на 4 орешковидные части. Около 220 видов, распространённых в тропических и субтропических областях, реже на юге умеренной зоны. В СССР 22 вида - в Средней Азии (главным образом), на Кавказе, юге Европейской части и Алтае; растут по сухим склонам, часто на солонцах, сорных местах. Некоторые виды Г. (Н. europaeum, Н. lasiocarpum) содержат ядовитый алкалоид циноглоссин, вызывающий у животных поражение нервной системы (паралич). В культуре известны декоративные, с приятным запахом сорта Г., происходящие от дико растущих в Перу полукустарниковых видов - Г. перувианского и Г. щитковидного (Н. peruvianum и Н. corymbosum). В цветках Г. содержится душистое эфирное масло.
Т. В. Егорова.
Гелиотроп перувианский.
Гелиотропизм
Гелиотропи'зм(от гелио... и греч. trуpos - поворот, направление), способность растений принимать определённое положение под влиянием солнечного света. Особенно ярко проявляется Г. у подсолнечника, череды и некоторых др. растений. Термин вытесняется более общим - фототропизм .
Гелиотропин
Гелиотропи'н, пиперонал, соединение с запахом цветов гелиотропа . Г. - бесцветные кристаллы; t пл36,5-37 °С; t kип263 °C; плохо растворим в воде, лучше - в органических растворителях; легко перегоняется с водяным паром. Г. содержится в цветках гелиотропа, стручках ванили и в некоторых эфирных маслах. В промышленности Г. получают из сафрола. Г. применяют в парфюмерии, косметике и производстве туалетных мыл.
Гелиоустановка
Гелиоустано'вка(от гелио... ), устройство для преобразования энергии солнечной радиации в другие, удобные для использования виды энергии (например, тепловую или электрическую). Г. подразделяют на установки с концентраторами и без них. Первые служат для преобразования энергии солнечной радиации после повышения её плотности с помощью гелиоконцентраторов , вторые - при естественной её плотности. Г. различают по назначению, приданному концентратору, характеру преобразовательного процесса и др. признакам или сочетанию признаков (см. Солнечный водонагреватель , Солнечная печь , Солнечная батарея , Термоэлектрический генератор , Солнечная энергетическая установка и т.д.).
Г. без концентраторов используют для подогрева воды или воздуха, сушки фруктов, овощей и материалов, опреснения воды, получения электроэнергии и др. целей. Большинство этих Г. работает по принципу «горячего ящика» .
Г. с концентраторами применяют для получения высоких температур с обеспечением «стерильных» технологических условий. Кпд таких Г. обычно не превышает 0,4-0,6. Для концентрации солнечных лучей чаще используют параболоидные, приближённо параболоидные и параболо-цилиндрические зеркала. Линзы, а также конические и др. зеркала из-за сложности их изготовления и использования применяют редко.
Параболоидные Г. с точным концентратором ( рис. ) позволяют получать температуры до 3600° С. При такой температуре плавятся практически все металлы и огнеупорные материалы (см. Гелиосварка ). Параболоидные Г. с высокой эффективностью применяют в сочетании с различными приёмниками солнечной радиации: высокотемпературной печью, термоэлектрогенератором, термоионным преобразователем, паровым котлом и т.п. С помощью приближённо параболоидных Г. получают пар промышленных параметров для теплофикации, выработки электроэнергии, опреснения воды, охлаждения и т.п. (см. Солнечная энергетическая установка ). Параболо-цилиндрические Г. позволяют получать пар с давлением 0,2-0,4 Мн/м 2(2-4 кгс/см 2), их применяют для опреснения воды, приготовления пищи в автоклавах и др. целей.
Лит.:Апариси Р. Р., Гарф Б. А., Использование солнечной энергии, М., 1958; Использование солнечной энергии при космических исследованиях. Сб. ст., пер. с англ., М., 1964; Соминский М. С., Солнечная электроэнергия, М. - Л., 1965; Тепловые установки для использования солнечной радиации, М., 1966; Ласло Т., Оптические высокотемпературные печи, пер. с англ., М., 1968.
А. Г. Колос.
Параболоидная гелиоустановка с концентратором диаметром 10 м.
Гелиофизика
Гелиофи'зика(от гелио... и физика ), раздел астрофизики, изучающий проблемы физики Солнца. Применение спектроскопических, спектрометрических, фотометрических, фотографических и радиоастрономических методов исследования позволяет получить сведения о температуре, плотности, скоростях движения вещества в атмосфере Солнца, о возбуждении и ионизации атомов химических элементов, об электрических и магнитных полях на Солнце, о положении, размерах и строении активных образований, а также об изменениях этих характеристик со временем. С помощью приборов, поднимаемых на ракетах, изучаются солнечное излучение в далёкой ультрафиолетовой и рентгеновской областях спектра и корпускулярное излучение Солнца. Применение методов теоретических физики для интерпретации этих данных позволяет построить физических модель как всего Солнца, так и отдельных активных образований в его атмосфере.
Лит. см. при ст. Солнце.
М. Н. Гневышев.
Гелиофиты
Гелиофи'ты(от гелио... и греч. phytуn - растение), растения, приспособленные к жизни при полном солнечном освещении, у которых появляются признаки угнетённости в тени. Часто Г. называют светолюбивыми растениями .
Гелиоцентрическая система мира
Гелиоцентри'ческая систе'ма ми'ра(от гелио... и центр ), учение, согласно которому Земля, как и другие планеты, обращается вокруг Солнца и, кроме того, вращается вокруг своей оси. См. Системы мира .
Гелиоцентрические координаты
Гелиоцентри'ческие координа'ты, системы небесных координат , определяющие положения небесных тел относительно центра Солнца. Г. к. употребляются в небесной механике.
Гелихризум
Гелихри'зум(Helichrysum), род растений семейства сложноцветных. Около 500 видов, из них в СССР более 15. Г. больше известен под названием бессмертник , цмин ; цмин песчаный (Н. arenarium) применяется в медицине. Декоративные виды Г. называют также иммортелями.
Гелиэя
Гелиэ'я, гелиея (греч. heliбia), в Древних Афинах суд присяжных. Г. учреждена архонтом Солоном в 6 в. до н. э. В середине 5 в. до н. э., согласно реформе Эфиальта , функции Г. были расширены за счёт ареопага . Перикл ввёл плату членам Г. - гелиастам. Г. состояла из 6000 членов, избиравшихся из числа всех граждан, достигших 30 лет. Г. рассматривала как частные, так и государственные дела, контролировала деятельность высших должностных лиц, утверждала законы, принятые народным собранием. Решения Г. принимались большинством голосов, приговоры были безапелляционны.
С. С. Соловьева.
Геллер
Ге'ллер(чеш. halйY, нем. Heller), 1) разменная монета Чехословакии, равная 1/ 100кроны. В обращении имеются монеты в 50, 25, 10, 5, 3 и 1 Г. 2) Разменная монета южной и западной Германии (13-19 вв.), Австро-Венгрии (с 1892 до её распада в 1918) и затем Австрии (до денежной реформы 1924, когда взамен Г. был введён грош).
Геллерт (гора в Венгрии)
Ге'ллерт(Gellert hegy), гора в Венгрии, в центральной части Будапешта, на правобережье Дуная. высота 220 м. С 1947 на Г. - памятник Освобождения (бронза, гранит; высота 36 м; 1947, скульптор Ж. Кишфалуди-Штробль), который доминирует над городом.
Геллерт Кристиан Фюрхтеготт
Ге'ллерт(Gellert) Кристиан Фюрхтеготт (4.7.1715, Хайнихен, - 13.12.1769, Лейпциг), немецкий писатель. Проповедь религиозного долга и семейных добродетелей содержат его «Лекции о морали» (1770) и «Духовные оды и песни» (1757, рус. пер. 1785). В «Баснях и рассказах» (т. 1-2, 1746-48) в духе умеренного бюргерского просветительства осмеивает дворянскую спесь, ложную учёность. Г. принадлежат первые попытки создания немецкой буржуазной комедии («Больная жена», 1747) и просветительского романа - «Жизнь шведской графини фон Г***» (1746, рус. пер. 1792).
Соч.: Samtliche Schriften, Bd 1-10, В., 1856; Samtliche Fabeln und Erzдhlungen, Bd 1-3, Lpz., 1867; в рус. пер. - Басни и сказки, ч. 1-2, СПБ, 1785-88.
И. В. Ефимов.
Геллерт Хуго
Ге'ллерт(Gellert) Хуго (Хьюго) (р. 3.5.1892, Будапешт), американский график и живописец. Выходец из Венгрии, с 1906 живёт в США, учился в Нью-Йорке в школе прикладных искусств. С 1916 творчество Г. связано с рабочим движением и прогрессивной печатью. С 1929 член Джон-Рид-клуба. Г. - автор графических портретов В. И. Ленина (1924), Дж. Рида (1920), В. В. Маяковского (1925), иллюстраций к «Капиталу» К. Маркса (60 литографий, 1936), росписей рабочих клубов (часть - совместно с А. Рефрежье) и здания профсоюза моряков (1945-47) в Нью-Йорке; известен и как оформитель рабочих празднеств и митингов. Для творчества Г., испытавшего влияние мексиканской гравюры, характерны пластичность манеры, родственная плакату заострённость и символичность образов.
Т. С. Юрьева.
Геллерт Эндре
Ге'ллерт(Gellert) Эндре (1.10.1914, Будапешт, - 1.3.1960, там же) венгерский режиссёр, народный артист ВНР (1954). В 1935 окончил Театральную академию (Будапешт). С 1945 ведущий режиссёр Национального театра в Будапеште. Основатель венгерской реалистической школы режиссуры, пропагандист учения К. С. Станиславского и русской советской драмы. С именем Г. связаны лучшие венгерские постановки пьес Н. В. Гоголя, А. П. Чехова и М. Горького («Ревизор», 1951; «Дядя Ваня», 1952; «Васса Железнова», 1949). Значительна также постановки национальных пьес - «Господский пир» Морица (1948), «Трагедия человека» Мадача (1955). С 1946 руководил кафедрой актёрского мастерства Театрального института в Будапеште (профессор). Премия им. Кошута (1950, 1953).
Лит.:Гершкович А., Современный венгерский театр, М., 1963.
А. А. Гершкович.
Геллеспонт
Геллеспо'нт(Hellspontos), древнегреческое название Дарданелл.
Гелл-Ман Марри
Гелл-Ман(Gell-Mann) Марри (р.15.9.1929, Нью-Йорк), американский физик-теоретик. Окончил Массачусетсский технологический институт (1951). Профессор института ядерных исследований Э. Ферми в Чикаго (с 1953). Основные работы в области квантовой теории поля, физики элементарных частиц, ядерной физики. Г. принадлежат фундаментальные работы по систематике элементарных частиц. Нобелевская премия (1969).