) .Реакцию осуществляют в формах, собранных из листов силикатного стекла, стали или алюминия; между листами помещают эластичные прокладки, толщина которых определяет толщину листа С. о. Чтобы избежать дефектов в листе, вызываемых значительной усадкой (~23%) реакционной массы, процесс проводят следующими способами: вначале получают т. н. форполимер (сиропообразную жидкость с вязкостью 50-200 мн сек/м 3,или спз) ,которую затем заливают в форму и полимеризуют, или полимеризуют в форме раствор полиметилметакрилата в мономере (т. н. сироп-раствор). Пластификаторы, красители, замутнители, стабилизаторы или др. компоненты (в зависимости от назначения С. о.) вводят в форполимер или сироп-раствор, смесь тщательно перемешивают, вакуумируют и фильтруют, заливают в герметизируемые формы, которые помещают в камеры с циркулирующим тёплым воздухом или в ванны с тёплой водой (условия изотермические). По окончании полимеризации листы С. о. извлекают из форм и подвергают окончательной обработке.

  С. о. можно перерабатывать вакуум- и пневмоформованием, штампованном; его можно обрабатывать механически, склеивать и сваривать. С. о. применяют как конструкционный материал в авиа-, автомобиле- и судостроении, для остекления парников и теплиц, куполов, окон, веранд и декоративной отделки зданий, для изготовления деталей приборов и инструментов, протезов - в медицине, линз и призм - в оптике, труб - в пищевой промышленности и др.

  С. о. различных марок производится в СССР; за рубежом выпускается под названием плексиглас (США, ФРГ, Франция), перспекс (Великобритания), кларекс (Япония).

Стеклоблок

Стеклобло'к,стеклянный блок, строительное изделие с герметичной полостью, изготовляемое формованием (из стекломассы) и последующим свариванием двух составляющих элементов (полублоков). Выпускаются С. светорассеивающие и светонаправляющие, из бесцветного и окрашенного стекла, квадратного и прямоугольного сечений, уголковые и др. Светорассеивающий и светонаправляющий эффекты достигаются нанесением на поверхность С. (при формовании) специальных рифлений и узоров. Размеры С. от 200 Х 200 до 400 Х 400 мм,толщина 80-100 мм.Применяются для заполнения световых проёмов в наружных стенах и для устройства светопрозрачных покрытий и перегородок. С. создают мягкое освещение, обладают высокими декоративными качествами, огнестойкостью, тепло - и звукоизолирующей способностью. Коэффициент пропускания света С. (%): бесцветных 50-60, цветных 35-40; коэффициент рассеяния света 25-30%.

Стеклов Владимир Андреевич

Стекло'вВладимир Андреевич [28.12.1863 (9.1.1864), Нижний Новгород, ныне Горький, - 30.5.1926, Крым, похоронен в Ленинграде], советский математик, академик. (1912; член-корреспондент 1902). В 1919-26 вице-президент АН СССР. В 1887 окончил Харьковский университет, где учился у А. М. .В 1889-1906 работал на кафедре механики в Харьковском университете, сначала в качестве ассистента, затем приват-доцента (с 1891) и профессор (с 1896). В 1893-1905 был преподавателем теоретической механики Харьковского технологического института. В 1894 защитил магистерскую диссертацию «О движении твердого тела в жидкости» (изд. 1893), а в 1902 - докторскую диссертацию «Общие методы решения основных задач математической физики» (изд. 1901). В 1906 С. перешёл на работу в Петербургский университет. Вёл большую общественную и научно-организационную работу, особенно в последние годы жизни. По его инициативе организован при АН Физико-математический институт (в 1921), директором которого он состоял до конца своей жизни. В 1926 имя С. было присвоено Физико-математическому институту, который в 1934 разделился на два института (один из них - Математический институт АН СССР сохранил имя С.).

  Основные направления научного творчества С. - приложения математических методов к вопросам естествознания; большая часть его работ относится к математической физике. С. получил ряд существенных результатов, касающихся основных задач теории потенциала. Для функций, обращающихся в нуль на границе области, С. вывел функциональное неравенство типа неравенства Пуанкаре с точной константой. Большинство работ С. посвящено вопросам разложения функций в ряды по наперёд заданным ,обычно к таким системам приводят краевые задачи математической физики. В основе этих исследований лежит введённое С. понятие замкнутости системы ортогональных функций. С. вплотную подошёл к понятию .При исследовании вопросов разложений в ряды С. развил асимптотические методы, среди которых - метод получения асимптотических выражений для классических ортогональных многочленов, называемый методом Лиувилля - Стеклова. Установленные С. теоремы о разложимости в обобщённый ряд Фурье весьма близки к т. н. теоремам «равносходимости». С. ввёл особый метод сглаживания функций, который затем получил большое развитие (см. ) .С. - автор ряда работ по математическому анализу, в частности по теории квадратурных формул, а также по теории упругости и гидромеханике. С. известен как историк математики, философ и писатель. Ему принадлежат книги научно-биографического характера о М. В. Ломоносове и Г. Галилее, очерки и статьи о жизни и деятельности П. Л. Чебышева, Н. И. Лобачевского, М. В. Остроградского, А. М. Ляпунова, А. А. Маркова, А. Пуанкаре, Дж. Томсона и др., работа по философии «Математика и её значение для человечества» (1923), а также книга «В Америку и обратно. Впечатления» (1925).

  Лит.:Памяти В. А. Стеклова. Сб. ст., Л., 1928 (лит.); Смирнов В. И., Памяти Владимира Андреевича Стеклова, «Тр. Математического института им. В. А. Стеклова», 1964, т. 73; Игнациус Г. И., Владимир Андреевич Стеклов, М., 1967; Владимиров В. С., Маркуш И. И., Академик В. А. Стеклов, М., 1973 (лит.).

  В. С. Владимиров.

В. А. Стеклов.

Стеклов Юрий Михайлович

Стекло'в(Ю. Невзоров) Юрий Михайлович (настоящая фамилия Нахамкис) [15(27).8.1873-15.9.1941], участник революционного движения в России с 1888; советский государственный деятель, историк, публицист. Член Коммунистической партии с 1893. Родился в Одессе в мелкобуржуазной семье. В 1894 арестован, сослан в Якутскую область, в 1899 бежал за границу. Входил в социал-демократическую литературную группу «Борьба», сотрудничал в марксистском журнале «Заря». Участник Революции 1905-07 в России, в 1910 выслан за границу, входил в Парижскую секцию большевиков. Был лектором в .В 1909-1914 сотрудничал в большевистских газетах ,« , ,журнале ,участвовал в работе социал-демократической фракции 3-й и 4-й Государственных дум. С 1914 работал в России. Во время Февральской революции 1917 избран членом Исполкома Петроградского совета; занимал позицию ,от которой позднее отказался; один из редакторов газеты «Новая жизнь». Участник Октябрьской революции 1917. С октября 1917 до 1925 редактор газеты «Известия ВЦИК». С 1925 на журналистской, административный и научной работе. С 1929 заместитель председателя Учёного комитета при ЦИК СССР. Работы «Интернационал 1864-1914» (ч. 1-2, 1918), «Карл Маркс. Его жизнь и деятельность (1818-1883)» (1918), «Борцы за социализм» (ч. 1-2, 1923-1924) сыграли известную роль в популяризации марксизма в первые годы Советской власти. По истории российского революционного движения наиболее значительные монографии: «Н. Г. Чернышевский. Его жизнь и деятельность» (т. 1-2, 1928) и «М. А. Бакунин. Его жизнь и деятельность (1814-1876)» (т. 1-4, 1920-27). Работы, написанные на большом фактическом материале, вместе с рядом др. статей по российскому революционному движению, в целом сохраняют своё значение, несмотря на отдельные ошибочные положения и оценки.

  Делегат 7, 8, 10, 12, 13-го съездов партии. Был членом Президиума ВЦИК, член ЦИК СССР.

  Соч.: Избранное, М., 1973; Воспоминания и публицистика, М., 1965 (библ. указатель).

  Лит.:Ленин В. И., Полн. собр. соч., 5 изд. (см. Справочный том, ч. 2, с. 475); Очерки истории исторической науки в СССР, т. 4, М., 1966.

Стеклова функция

Стекло'ва фу'нкция,функция, определяемая для данной функции f( x) равенством

  ,

 где hнастолько мало, что интервал ( x, х+ h) лежит в области определения функции f( x). С. ф. применяются для сглаживания данной функции, т.к. если функция f( x) непрерывна, то Ф( х, h) имеет на одну производную больше, чем f( x) .При этом lim Ф( х, h) = f( x) ,то есть С. ф. могут применяться для приближения непрерывных функций более гладкими. Если функция f( x) интегрируема, то функция Ф( х, h) непрерывна. С. ф. введены В. А. в 1903 и применялись им для решения многих вопросов в математической физике. С. ф. могут быть определены и для нескольких переменных.

Стеклование

Стеклова'ние,процесс перехода жидкости по мере в твёрдое .В отличие от ,при которой переход жидкость - кристалл совершается скачкообразно при температуре плавления Т пл, при С. расплавы некоторых неорганических и органических веществ (кварц, силикаты, фосфаты, бораты, сера и др.), охлаждаясь и постепенно увеличивая вязкость, переходят в твёрдое состояние при температуре С. Т с. При С. жидкость сохраняет (наследует) те элементы структуры, которые были характерны для неё при температурах > Т с(см. ) .

 При увеличении вязкости от 10 8до 10 12 нЧсек/м 2(1 н .сек/м 2=10 пз) в интервале Т пл- Т спроисходит непрерывное изменение и др. физико-химических свойств охлаждаемой жидкости. Например, удельный объём и электропроводность в указанном интервале обнаруживают плавный излом на кривой свойство - температура; температурный коэффициент расширения и показатель преломления изменяются скачкообразно.

  Из-за особенностей изменения свойств в области Т пл- T cеё называют аномальным интервалом. Внутри этого интервала (см. табл.) для стекол характерно пластическое состояние, а ниже T c-хрупкое.

  Аномальный интервал некоторых стёкол

Стекло Т с Т пл
Оконное Сортовое Оптическое Ф-2 Кварцевое 550 530 430 1250 700 630 570 1250

  Лит.см. при ст. .

  Н. М. Павлушкин.

Стеклование полимеров

Стеклова'ние полиме'ров,переход полимера из высокоэластического в твёрдое стеклообразное состояние. По физической природе С. п. не отличается от низкомолекулярных жидкостей, однако механизм процесса характеризуется особенностями, обусловленными спецификой теплового молекулярного движения в стеклообразном и высокоэластическом состояниях полимера.

  В стеклообразном полимере атомы закреплены в точках нерегулярной пространственной решётки и не совершают трансляционных перемещений при воздействии внешних сил, как и в обычных твёрдых телах. В возможно групповое трансляционное движение участков длинных цепных макромолекул и изменение их взаимного пространственного расположения, т. е. структуры полимера, при воздействии внешних сил. Скорость перестройки структуры характеризуется временами релаксации (см. ) ,она уменьшается при охлаждении полимера и ниже некоторой температуры становится столь низкой, что структура «замораживается», т. е. полимер переходит в стеклообразное состояние. Таким образом, С. п. имеет кинетический характер, поскольку обусловлено постепенной потерей подвижности атомов и атомных групп.

  С. п. происходит в интервале температур, который характеризуется условной величиной - температурой стеклования T c,определяемой графически на кривых температурного изменения некоторых физико-химических свойств полимера. Значение T cзависит от химического состава и структуры полимера, его термической предыстории и скорости теплового или механического воздействия. При одной и той же температуре полимер может быть высокоэластичным при медленных механических воздействиях и твёрдым при быстрых. Эффект повышения T cпри увеличении скорости механического воздействия часто называется «механическим стеклованием».

  В. С. Папков.

Стекловаренная печь

Стеклова'ренная печь,предназначается для варки и его подготовки к формованию. В С. п. шихта (сырьевые компоненты) в процессе нагревания (обычно до 1500-1600 °С) проходит стадии силикатообразования, взаимного растворения силикатов и остаточного кремнезёма, осветления (обезгаживания), а затем превращается в стекломассу, пригодную для формования изделий. К периодическим С. п. относятся горшковые, а также небольшие ванные печи. Эти С. п. применяются для варки специальных стекол: ,цветного, ,хрусталя и др., выработка которых производится в основном вручную. Горшковые С. п. обычно вмещают 6-8 горшков (огнеупорные сосуды из шамота, каолина или кварца ёмкостью от 100 до 1000 кгстекломассы), реже 12-16 горшков (при производстве литого стекла). В процессе работы печь нагревают, в горшки засыпают стеклянный бой и шихту, стекломассу варят до готовности, затем стекло вырабатывают, и процесс возобновляется. Горшковые С. п. весьма неэкономичны (кпд около 8%), но в них можно одновременно варить стекла разного состава, причём в горшках сравнительно легко осуществить перемешивание и получить однородную стекломассу, необходимую для изготовления оптического и др. стекла. Более экономичны периодические ванные С. п.; применяющиеся преимущественно для варки тугоплавких, цветных и др. стекол.

  В непрерывно действующих ванных С. п. осуществляется варка массовых промышленных стекол (листовое стекло, тарное и др.), вырабатываемых машинным способом (см. ) .В таких С. п. стадии варки протекают в определенных зонах при последующем перемещении расплава по длине печи. Варочная часть печи объединяет зоны варки, осветления и гомогенизации, выработочная - зоны «студки» и выработки. Конструкции ванных С. п. различаются по направлению пламени (поперечное, подковообразное и др.), способу выделения варочной и выработочной частей в стекольном расплаве (например, плавающих шамотных тел) и способу разделения подсводного газового пространства печи (снижение свода, экран и пр.). Например, для производства листового стекла применяют непрерывно действующие ванные печи с поперечным пламенем; длина бассейна до 60 м,ширина 10 м,глубина до 1,5 м,бассейн вмещает до 2,5 тыс. тстекломассы. Производительность непрерывных ванных С. п. до 300 т/сути более стекломассы. Бассейны ванных печей сооружаются из огнеупоров.

  Лит.:Гинзбург Д. Б., Стекловаренные печи, М., 1967.

  Н. М. Павлушкин.

Стекловатая структура

Стеклова'тая структу'ра,структура вулканических горных пород, состоящих только из или содержащих наряду с ним небольшое количество кристаллов - ,включенных в т. н. основную массу породы. С. с. чаще встречается в породах, богатых кремнезёмом и бедных кальцием, магнием и железом. Образованию С. с. благоприятствует быстрое застывание лавы на земной поверхности. См. , .

Стекловидное тело

Стеклови'дное те'ло,1) прозрачное бессосудистое студенистое вещество, заполняющее полость между сетчаткой и хрусталиком. С. т. - часть диоптрической среды глаза, обеспечивающая прохождение световых лучей к сетчатке. В С. т. взрослого человека отсутствуют кровеносные сосуды. Жидкая часть С. т. состоит из вязкой гиалуроновой кислоты, следов сывороточных белков, аскорбиновой кислоты, солей и др. веществ и заключена в каркас из тонких белковых фибрилл. С. т. окружено гиалиновой плёнкой, прочно скрепленной с цилиарной зоной и зоной жёлтого пятна, а у некоторых животных и с др. участками сетчатки. 2) Лекарственный препарат из С. т. глаз крупного рогатого скота; относится к группе .Применяют в растворах (подкожно) для размягчения и рассасывания рубцовой ткани, при суставов, а также как обезболивающее средство при невралгиях, радикулитах и т.п.

Стекловолокна

Стекловоло'кна,то же, что .

Стеклография

Стеклогра'фия(от греч. grapho - пишу), способ воспроизведения текста и простых рисунков малыми тиражами с использованием принципов .Печатная форма изготовляется на стеклянной пластине, на которую сначала наносят грунт, а затем прижимают машинописный или вычерченный специальными чернилами оригинал. Печатающие элементы образуются в результате химического взаимодействия компонентов слоя грунта и краски оригинала. С. характеризуется простотой технологического процесса, однако из-за малой производительности и низкого качества изображения заменяется печатью на , .

Стеклообразное состояние

Стеклообра'зное состоя'ниенизкомолекулярных соединений, твёрдое аморфное состояние вещества, образующееся при затвердевании его переохлажденного расплава. Обратимость перехода из С. с. в расплав и из расплава в С. с. является особенностью, которая наряду со способом получения отличает С. с. от других твёрдых ,в частности от тонких аморфных металлических плёнок. Постепенное возрастание вязкости расплава препятствует вещества, т. е. переходу к твёрдому состоянию с наименьшей свободной энергией. Например, коэффициент динамической вязкости такого стеклообразующего вещества, как 5102 при температуре плавления Т пл= 1710°С составляет 10 7,7пз(для воды при Т пл= 0 °С -0,02 пз) .Переход расплава в С. с. (процесс ) характеризуется некоторым температурным интервалом. С. с. метастабильно; переход вещества из С. с. в кристаллическое является фазовым переходом 1-го рода.

  В С. с. может находиться значительное число неорганических веществ: простые вещества (S, Se, As, Р); окислы (В 2О 3, SiO 2, GeO 2, As 2O 3, SbO 3, FeO 2, V 2O 5) ,водные растворы H 2O 2, H 2SO 4, H 3PO 4, HClO 4, H 2SeO 4, H 2CrO 4, NH 4OH, КОН, HCl, LiCl: халькогениды мышьяка, германия, фосфора; некоторые галогениды и карбонаты. Многие из этих веществ составляют основу сложных .

 Вещество в С. с. представляет собой жёсткую систему атомов и атомных групп, связь между которыми в большей или меньшей степени определяется ковалентными взаимодействиями. Дифракционные методы исследования ( , , ) позволяют определить упорядоченность в расположении соседних атомов (ближний порядок, см. ) .Измеряя радиусы дифракционных максимумов и их интенсивности, строят т. н. кривую радиального распределения. Максимумы этой кривой соответствуют межатомным расстояниям, а площадь, ограниченная максимумами, даёт информацию о среднем числе атомов, ближайших к данному.

  Вещества в С. с. изотропны, хрупки, имеют раковистый излом при сколе и (в зависимости от состава) прозрачны в некоторых областях спектра (видимой, инфракрасной, ультрафиолетовой, рентгеновской и g-лучей). Механические напряжения (из-за плохого отжига) и неоднородность структуры вещества в С. с. являются причиной ,которое в силу вызывающих его неконтролируемых факторов нестабильно и является «вредным» в оптической технике. Однако применение находит двойное лучепреломление, вызываемое воздействием электрических и магнитных полей (см. ) .Практически все стекла слабо люминесцируют (см. ) .Для усиления этого эффекта в них добавляют активаторы - редкоземельные элементы, уран и др. Используя и специально подобранные активаторы, получают мощное когерентное излучение (см. ) .Вещества в С. с., как правило, диамагнитны, значительные примеси окислов редкоземельных металлов делают вещества в С. с. парамагнитными. Из некоторых стекол специального состава получают ферромагнитные материалы (например, некоторые ) .По электрическим свойствам большинство стекол - (силикатные стекла), но есть большая группа веществ, обладающих в С. с. свойствами полупроводников (халькогенидные стекла, см. ) .

 О С. с. полимеров см. в ст. .

  Лит.:Мотт Н., Дэвис Э., Электронные процессы в некристаллических веществах, пер. с англ., М., 1974; Аппен А. А., Химия стекла, 2 изд., Л., 1974.

  Г. З. Пинскер.

Стеклоочиститель

Стеклоочисти'тель,устройство для очистки переднего (ветрового) стекла транспортных средств (автомобиля, троллейбуса, трамвая и т.д.), а также заднего стекла и стекол фар легкового автомобиля от атмосферной осадков и грязи. Очистка производится качательными движениями резиновых щёток. Наибольшее распространение получили С. с электрическим и пневматическим приводом. В первом случае движение щёток С. обеспечивается кривошипным механизмом с системой рычагов, приводимым через редуктор от электродвигателя. Во втором случае перемещение щёток С. происходит под действием поршневого с ,включенного в пневматическую систему автомобиля через зубчатую передачу.

Стеклопакет

Стеклопаке'т,строительное изделие из двух или более листов стекла, герметично соединённых по периметру рамкой (обоймой). Образующиеся между стеклами замкнутые полости заполняют осушенным воздухом, что исключает образование в них конденсата при низких температурах и запотевание стекол в зимнее время. Соединение стекол производится склеиванием их с металлической рамкой (например, из профилированного алюминия) синтетическим клеем (клеёный С.) или сваркой по периметру со свинцовой полосой (сварной С.). Габариты С., выпускаемых в СССР, 4 X 2 м, толщина стекол 3-6 мм,расстояние между стеклами 12-20 мм,коэффициент теплопередачи 2,8-3,0 вт/( м 2 . К). С. применяют для заполнения световых проёмов общественных, промышленных и жилых зданий, в одиночных переплётах (взамен двойного и тройного остекления в двойных переплётах).

Стеклопластики

Стеклопла'стики,композиционные материалы, состоящие из стеклянного наполнителя и синтетического полимерного связующего. Наполнителем служат в основном стеклянные волокна в виде нитей, жгутов (ровингов), тканей (см. ) ,матов, рубленых волокон; связующим - полиэфирные, феноло-формальдегидные, эпоксидные, кремнийорганические смолы, полиимиды, алифатические полиамиды, поликарбонаты и др. См. также .

 Для С. характерно сочетание высоких прочностных, диэлектрических свойств, сравнительно низкой плотности и теплопроводности, высокой атмосферо-, водо- и химстойкости. Механические свойства С. определяются преимущественно характеристиками наполнителя и прочностью связи его со связующим, а температуры переработки и эксплуатации - связующим. Наибольшей прочностью и жёсткостью обладают С., содержащие ориентированно расположенные непрерывные волокна (см. табл.). Такие С. подразделяются на однонаправленные и перекрёстные; у первых волокна расположены взаимно параллельно, у вторых - под заданным углом друг к другу, постоянным или переменным по изделию. Изменяя ориентацию волокон, можно в широких пределах регулировать механические свойства С.

Типичные свойства некоторых стеклопластиков на основе алюмоборосиликатных волокон

Свойства С ориентированным расположением непрерывных волокон в виде нитей, жгутов С неориентированным расположением коротких волокон*
Однонап- равленные Пере- крёстные (под углом 0° и 90°) Стекло- текстолит пресс-компози- ции ( l= 5-30 мм) премиксы ( l= 5-25 мм) Изготав- ливаемые напыле- нием рубленых волокон ( l= 30-60 мм) на основе матов ( l= 20-70 мм)
Плотность, г/см 3 1,9-2,0 1,8-1,9 1,7-1,8 1,6-1,9 1,7-2,0 1,4-1,6 1,4-1,6
Прочность, Мн/м 2( кгс/мм 2)
при растяже- нии 1300-1700 (130-170) 500-700 (50-70) 400-600 (40-60) 50-150 (5-15) 40-70 (4-7) 90-200 (9-20) 40-150 (4-15)
при статичес- ком изгибе 800-1200 (80-120) 700-900 (70-90) 600-700 (60-70) 140-300 (14-30) 80-120 (8-12) 100-250 (10-25) 50-200 (5-20)
Модуль упругости, Гн/мм 2( кгс/мм 2) 45-50 (4500-5000) 30-35 (3000-3500) 25-30 (2500-3000) 10-15 (1000-1500) 7-10 (700-1000) 6-10 (600-1000) 5-10 (500-1000)

l- длина волокна.

Большей изотропией механических свойств обладают С. с неориентированным расположением волокон: гранулированные и спутанно-волокнистые пресс-материалы; материалы на основе рубленых волокон, нанесённых на форму методом напыления одновременно со связующим, и на основе холстов (матов). С. на основе полиэфирных смол можно эксплуатировать до 60-150 °С, эпоксидных - до 80-200 °C, феноло-формальдегидных - до 150-250 °С, полиимидов - до 200-400 °С. Диэлектрическая проницаемость С. 4-14, тангенс угла диэлектрических потерь 0,01-0,05, причём при нагревании до 350-400 °С показатели более стабильны для С. на основе кремнийорганических и полиимидных связующих.