.Существенное влияние на развитие теории расчёта статически неопределимых систем оказали работы К. О. ,предложившего универсальный метод определения перемещений (формула Мора). Большое научное и практическое значение имели работы по динамике сооружений М. В. ,Дж. ,А. .Благодаря исследованиям Ф. С. ,С. П. ,А. Н. ,Н. В. Корноухова и др. значительное развитие получили методы расчёта сооружений на устойчивость. Крупные успехи в развитии всех разделов С. м. были достигнуты в СССР. Трудами сов. учёных А. Н. ,И. Г. ,Б. Г. ,И. М. ,И. П. Прокофьева, П. Ф. ,А. А. ,Н. С. ,В. З. ,Н. И. Безухова и др. были разработаны методы расчёта сооружений, получившие широкое распространение в проектной практике. В научных учреждениях и вузах СССР созданы и успешно развиваются новые научные направления в области С. м. Важным проблемам С. м. посвящены исследования В. В. Болотина (теория надёжности и статистические методы в С. м.), И. И. Гольденблата (динамика сооружений), А. Ф. (устойчивость и колебания сооружений) и др.

  Проблемы современной С. м.Одной из актуальных задач С. м. является дальнейшее развитие теории надёжности сооружений на основе использования статистических методов обработки данных о действующих нагрузках и их сочетаниях, о свойствах строительных материалов, а также о накоплении повреждений в сооружениях различных типов. Большое значение приобретают исследования по теории ,имеющие целью переход к практическому расчёту сооружений на основе вероятностных методов. Важная задача С. м. - расчёт сооружений как единых пространственных систем, без расчленения их на отдельные конструктивные элементы (балки, рамы, колонны, плиты и т.д.); она связана с необходимостью использования тех запасов несущей способности сооружений, которые не могут быть выявлены при поэлементном расчёте. Такой подход позволяет получать более точную картину распределения внутренних усилий в сооружениях и обеспечивает существенную экономию материалов. Расчёт сооружений как единых пространственных систем требует дальнейшего развития метода конечных элементов; последний даёт возможность рассчитывать весьма сложные сооружения на действие статических, динамических (в т. ч. сейсмических) и др. нагрузок. Большой научный интерес представляют: разработка методов решения физически и геометрически нелинейных задач, которые более полно учитывают реальные условия работы сооружений; изучение вопросов оптимального проектирования строительных конструкций с использованием ЭВМ; проведение исследований, связанных с разработкой теории разрушения сооружений, в частности, вопросов их «живучести»), что особенно важно для строительства в районах, подверженных землетрясениям.

  Лит.:Тимошенко С. П., История науки о сопротивлении материалов с краткими сведениями по истории теории упругости и теории сооружений, пер. с англ., М., 1957; Строительная механика в СССР. 1917-1967, М., 1969; Киселев В. А., Строительная механика, 2 изд., М., 1969; Снитко Н. К., Строительная механика, 2 изд., М., 1972; Болотин В. В., Гольденблат И. И., Смирнов А. Ф., Строительная механика, 2 изд., М., 1972.

  Под редакцией А. Ф. Смирнова.

«Строительная механика и расчёт сооружений»

«Строи'тельная меха'ника и расчёт сооруже'ний»,научно технический журнал, орган Госстроя СССР. Издаётся в Москве с 1959; выходит один раз в два месяца. Освещает актуальные теоретические вопросы расчёта сооружений и строительной механики; публикует рекомендации по внедрению в практику проектирования и строительства научных достижений и методов расчёта, обеспечивающих надёжность сооружений, повышение уровня индустриализации строительства; информирует об отечественном и зарубежном опыте. Тираж (1976) около 7 тыс. экз.

Строительная механика корабля

Строи'тельная меха'ника корабля',научная дисциплина, рассматривающая методы расчёта прочности и жёсткости корпусных конструкций .Изучает воздействие внешних сил на конструкции, исследует напряжения и деформации, возникающие в них под действием заданной системы сил. С. м. к. базируется на положениях теоретической , и , , .

 Вопросы прочности корабля впервые были рассмотрены Л. .Основоположником С. м. к. считается И. Г. .Значительный вклад в развитие С. м. к. внесли советские учёные: А. Н. ,Ю. А. Шиманский, П. Ф. Папкович, В. В. Екимов, В. В. .При решении задач С. м. к. обычно рассматривает упрощённую схему конструкции судна. Вследствие случайного характера внешних воздействий на судно в море (ветер, волны) в С. м. к. при определении расчётных внешних сил и обосновании коэффициента запаса прочности используются методы теории вероятностей, математической статистики и теории случайных процессов, базирующиеся на статистическом материале, накопленном в результате долговременных измерений нагрузок, напряжений и деформаций корпусных конструкций в рабочих условиях.

  Методы С. м. к. используются при проектировании военных кораблей и составляют основу соответствующих разделов Правил постройки судов ,регламентирующих прочность корпусов гражданских судов.

  Лит.:Папкович П. Ф., Труды по строительной механике корабля, т. 1-4, М., 1962-63; Короткий Я. И., Ростовцев Д. М., Сивере Н. Л., Прочность корабля, Л., 1974.

  А. Н. Максимаджи.

Строительная светотехника

Строи'тельная светоте'хника,см. в ст. .

Строительная теплотехника

Строи'тельная теплоте'хника,строительная теплофизика, научная дисциплина, рассматривающая процессы передачи тепла, переноса влаги и проникновения воздуха в здания и их конструкции и разрабатывающая инженерные методы расчёта этих процессов; раздел .В С. т. используются данные смежных научных областей (теории тепло- и массообмена, физической химии, термодинамики необратимых процессов и др.), методы и теории подобия (в частности, для инженерных расчётов переноса тепла и вещества), обеспечивающие достижение практического эффекта при разнообразных внешних условиях и различных соотношениях поверхностей и объёмов в зданиях. Большое значение в С. т. имеют натурные и лабораторные исследования полей температуры и влажности в зданий, а также определение теплофизических характеристик строительных материалов и конструкций.

  Методы и выводы С. т. используются при проектировании ограждающих конструкций, которые предназначены для создания необходимых температурно-влажностных и санитарно-гигиенических условий (с учётом действия систем отопления, вентиляции и кондиционирования воздуха) в жилых, общественных и производственных зданиях. Значение С. т. особенно возросло в связи с ,значительных увеличением масштабов применения (в разнообразных климатических условиях) облегчённых конструкций и новых .

 Задача обеспечения необходимых теплотехнических качеств наружных ограждающих конструкций решается приданием им требуемых теплоустойчивости и сопротивления теплопередаче. Допустимая проницаемость конструкций ограничивается заданным сопротивлением воздухопроницанию. Нормальное влажностное состояние конструкций достигается уменьшением начального влагосодержания материала и устройством ,а в слоистых конструкциях, кроме того, - целесообразным расположением конструктивных слоев, выполненных из материалов с различными свойствами.

  Сопротивление теплопередаче должно быть достаточно высоким, с тем чтобы в наиболее холодный период года обеспечивать гигиенически допустимые температурные условия на поверхности конструкции, обращенной в помещение. Теплоустойчивость конструкций оценивается их способностью сохранять относительное постоянство температуры в помещениях при периодических колебаниях температуры воздушной среды, граничащей с конструкциями, и потока проходящего через них тепла. Степень теплоустойчивости конструкции в целом в значительной мере определяется физическими свойствами материала, из которого выполнен внешний слой конструкции, воспринимающий резкие колебания температуры. При расчёте теплоустойчивости применяются методы С. т., основанные на решении дифференциальных уравнений для периодически изменяющихся условий теплообмена. Нарушение одномерности передачи тепла внутри ограждающих конструкций в местах теплопроводных включений, в стыках панелей и углах стен вызывает нежелательное понижение температуры на поверхностях конструкций, обращенных в помещение, что требует соответствующего повышения их теплозащитных свойств. Методы расчёта в этих случаях связаны с численным решением дифференциального уравнения двумерного температурного поля ( ) .

 Распределение температур в ограждающих конструкциях зданий изменяется и при проникновении внутрь конструкций холодного воздуха. Фильтрация воздуха происходит в основном через окна, стыки конструкций и др. неплотности, но в некоторой степени и сквозь толщу самих ограждений. Разработаны соответствующие методы расчёта изменений температурного поля при установившейся фильтрации воздуха. Сопротивление воздухопроницанию у всех элементов ограждений должно быть больше нормативных величин, установленных .

 При изучении влажностного состояния ограждающих конструкций в С. т. рассматриваются процессы переноса влаги, происходящие под влиянием разности потенциалов переноса. Перенос влаги в пределах гигроскопической влажности материалов происходит в основном вследствие диффузии в парообразной фазе и в адсорбированном состоянии; за потенциал переноса в этом случае принимается парциальное давление водяного пара в воздухе, заполняющем поры материала. В СССР получил распространение графоаналитический метод расчёта вероятности и количества конденсирующейся внутри конструкций влаги при диффузии водяного пара в установившихся условиях. Более точное решение для нестационарных условий может быть получено решением дифференциальных уравнений переноса влаги, в частности с помощью различных устройств вычислительной техники, в том числе использующих методы физической аналогии (гидравлические интеграторы).

  Лит.:Лыков А. В., Теоретические основы строительной теплофизики, Минск, 1961; Богословский В. Н., Строительная теплофизика, М., 1970; Фокин К. Ф., Строительная теплотехника ограждающих частей зданий, 4 изд., М., 1973; Ильинский В. М., Строительная теплофизика, М., 1974.

  В. М. Ильинский.

Строительная физика

Строи'тельная фи'зика,совокупность научных дисциплин (разделов прикладной ) ,рассматривающих физические явления и процессы, связанные со строительством и эксплуатацией зданий и сооружений, и разрабатывающих методы соответствующих инженерных расчётов. Основными и наиболее развитыми разделами С. ф. являются , ,строительная светотехника (см. ) ,изучающие закономерности переноса тепла, передачи звука и света (т. е. явлений, непосредственно воспринимаемых органами чувств человека и определяющих гигиенические качества окружающей его среды) с целью обеспечения в зданиях (сооружениях) необходимых температурно-влажностных, акустических и светотехнических условий. Получают развитие и др. разделы С. ф. - теория долговечности строительных конструкций и материалов, строительная климатология, строительная аэродинамика. Вопросы прочности, жёсткости и устойчивости зданий и сооружений рассматриваются в особом разделе прикладной физики - .

 При решении задач С. ф. используются: теоретические расчёты на основе устанавливаемых общих закономерностей; методы ,с помощью которых исследуемые процессы воспроизводятся или в измененном масштабе, или на базе известных аналогий; лабораторные испытания элементов конструкций (например, в камерах искусственного климата); натурные наблюдения и измерения в сооруженных объектах. Развитие С. ф. обеспечивается наличием теоретических и экспериментальных данных современной физики и .

 Данные С. ф. служат основой для рационального проектирования строительных объектов, обеспечивающего соблюдение требуемых эксплуатационных условий в течение заданного срока их службы. Разрабатываемые в С. ф. методы расчёта и испытаний позволяют дать оценку качеству строительства (как на стадии проектирования, так и после возведения зданий и сооружений).

  Становление С. ф. как науки относится к началу 20 в. До этого времени вопросы С. ф. обычно решались инженерами и архитекторами на основе практического опыта. В СССР первые научные лаборатории этого профиля были организованы в конце 20-х - начале 30-х гг. при Государственном институте сооружений (ГИС) и Центральном научно-исследовательском институте промышленных сооружений (ЦНИПС). В последующие годы важнейшие научно-исследовательские работы по основным разделам С. ф. были сосредоточены в Институте строительной техники (ныне - ) .Особенно интенсивное развитие С. ф. получила в связи со значительным увеличением объёмов строительства различных по назначению зданий с применением индустриальных облегчённых конструкций и новых материалов, требующих предварительной оценки их свойств. Советскими учёными впервые были разработаны теория теплоустойчивости зданий (О. Е. Власов), методы расчёта влажностного состояния конструкций (К. Ф. Фокин) и их воздухопроницаемости, выполнен ряд др. фундаментальных исследований по важнейшим проблемам С. ф., имеющим большое значение для современного строительства.

  Расширение масштабов потребовало проведения комплексных исследований в области строительных конструкций и материалов. Происходящие в конструкциях процессы неустановившегося, изменяющегося по направлению теплообмена и, в гораздо большей степени, явления перемещения и замерзания влаги вызывают постепенное изменение структурно-механических свойств материалов, что проявляется в их набухании, усадке, образовании микротрещин и постепенном необратимом разрушении. Температурные напряжения при неустановившемся теплообмене, фазовые переходы и особенно объёмно-напряжённое состояние материалов (при неравномерном распределении влаги) являются основными причинами процесса постепенного нарушения прочности строительных конструкций и в значительном мере определяют их долговечность. Чрезмерное увлажнение материалов и конструкций содействует их ускоренному разрушению от мороза, коррозии, биологических процессов (см. , ) .

 Расчётные методы С. ф., а также основные положения ,изучающей влияние физико-химических процессов на деформации твёрдых тел, являются необходимым фундаментом для создания материалов с заданными свойствами и развития теории долговечности, особенно важной при массовом применении новых материалов и облегчённых индустриальных конструкций, не проверенных опытом многолетней эксплуатации. Структурно-механические свойства строительных материалов (бетонов, кирпича и др.) зависят от процессов переноса тепла и влаги при обжиге, сушке, тепловлажностной обработке. Изменяя режимы технологических процессов в соответствии с закономерностями целесообразного переноса тепла и вещества, можно существенно повысить качество материалов. Т. о., расчётные методы С. ф. служат научной основой и для совершенствования технологии производства строительных материалов и изделий.

  Разработка методов инженерного расчёта долговременного сопротивления конструкций зданий разрушающим физико-химическим воздействиям внутренней и наружной атмосферы связана с необходимостью изучения закономерностей изменения внутреннего микроклимата помещений и внешних климатических условий. Внешние воздействия на здания и их конструкции рассматриваются самостоятельным разделом С. ф. - строительной климатологией, развивающейся на основе достижений физики атмосферы и общей .В большинстве случаев воздействие климата является комплексным (совместное влияние температуры и ветра, осадков и ветра и т.п.). Интенсивному развитию строительной климатологии способствует увеличение объёмов строительства в разнообразных климатических условиях.

  Отдельным разделом С. ф., изучающим воздействие на здания и сооружения ветра и др. потоков воздуха, возникающих при разности температур и давлений, является строительная аэродинамика. Учёт распределения аэродинамических давлений на внешних поверхностях важен для проектирования естественной и искусственной (механической) вентиляции, предотвращения местных снежных заносов (например, на кровле здания), а также для установления ветровых нагрузок на здания и сооружения. Особенности внутреннего климата помещений зависят от их размещения в здании и аэродинамических характеристик последнего, поскольку распределение температур и влажности в помещениях связано с условиями естественного воздухообмена. Изучение аэродинамических характеристик объектов строительства с различными геометрические очертаниями и объёмами позволяет обеспечить хорошие эксплуатационные качества производственных и общественных зданий, а также установить рациональные типы городской застройки при различных климатических условиях.

  Перспективы дальнейшего развития С. ф. связаны с использованием новых средств и методов научных исследований. Так, например, структурно-механические характеристики материалов и их влажностное состояние в конструкциях зданий изучаются с помощью ультразвука, лазерного излучения, гамма-лучей, с применением радиоактивных изотопов и т.д. При создании эффективных средств отопления и кондиционирования воздуха, а также ограждающих конструкций, характеризующихся малыми потерями тепла, находит применение полупроводниковая техника. Распределение температур на поверхностях конструкций, в воздушной среде помещений и потоках воздуха исследуется методами моделирования и на основе закономерностей интерференции света при различном тепловом состоянии среды.

  Лит.:Строительная физика. Состояние и перспективы развития, М., 1961; Ильинский В. М., Проектирование ограждающих конструкций зданий (с учетом физико-климатических воздействий), 2 изд., М., 1964; Реттер Э. И., Стриженов С. И., Аэродинамика зданий, М., 1968. См. также лит. при статьях , , .

  В. М. Ильинский.

Строительного и дорожного машиностроения институт

Строи'тельного и доро'жного машинострое'ния институ'тВсесоюзный научно-исследовательский (ВНИИстройдормаш), находится в Москве, в ведении министерства строительного, дорожного и коммунального машиностроения СССР. Создан в 1947. Осуществляет научно-исследовательские и опытно-конструкторские работы по созданию строительных и дорожных машин и оборудования, а также координацию разработок в этой области. В составе института филиал в г. Красноярске, центральный научно-испытательный полигон-филиал и опытный завод в г. Ивантеевке Московский области. Институт имеет аспирантуру; учёному совету предоставлено право приёма к защите кандидатских диссертаций. Издаёт «Сборники трудов».

Строительное образование

Строи'тельное образова'ние,высшее, среднее и профессионально-техническое образование, имеющее целью подготовку специалистов для проектирования, конструирования, строительства и эксплуатации зданий и сооружений различного назначения.

  Строительное искусство зародилось в глубокой древности. Подготовка строителей вначале осуществлялась под руководством мастеров непосредственно в процессе строительства различных сооружений, в Древней Греции и Древнем Риме появились специальные школы (см. ) .

 Истоки С. о. в России относятся к 10 в. Обучение мастеров-строителей осуществлялось непосредственно на стройке.

  В 1724 по предписанию Петра I в Москве было создано несколько т. н. архитектурных команд, ученики которых изучали арифметику, черчение, рисование и получали практические навыки по архитектуре, ремонту и перестройке зданий. По мере совершенствования мастерства их производили в сержанты (что давало право проектировать и строить), из сержантов - в гезели (производители работ).

  М. Ф. основал в Москве архитектурную команду, которая в 1788-89 была реорганизована в Первое архитектурное училище, а с 1814- в Московское дворцовое архитектурное училище.

  В 1773 в Петербурге учреждено горное училище (ныне ) ,студенты которого изучали проектирование и строительство каменных и деревянных плотин, шлюзов, фундаментов и т.д. В училище в начале 19 в. преподавал И. И. Свиязев - автор первого русского руководства по архитектуре (с основами строительного искусства).

  В Урала, особенно в Екатеринбургском училище, кроме горного производства, изучались также механика, архитектура, фортификация и др. предметы строительного искусства.

  Для подготовки инженеров по строительству дороги искусственных сооружений в 1809 в Петербурге основан институт корпуса инженеров путей сообщения (ныне ) .В институте изучались математика, геодезия, рисовальное искусство и архитектура, производство строительных работ, основы механики и гидравлики, составление проектов и смет и др., проводилась практика по строительству. Институт окончили ставшие впоследствии известными учёными и инженерами, построившими крупные сооружения и создавшими научно-педагогические школы: М. С. Волков (строительное искусство), С. В. Кербедз и Н. Ф. Ястржембский (организаторы механической лаборатории по испытанию материалов), Ф. С. Ясинский (теория упругости), П. П. Мельников (прикладная механика), П. И. Собко, Д. И. Журавский и Н. А. Белелюбский (строительная механика).

  Первым специализированным высшим учебным заведением по подготовке кадров для строительства инженерных сооружений было училище гражданских инженеров, основанное в 1832 в Петербурге, с 1882 - институт гражданских инженеров (ныне ) .Изучение теоретических курсов сочеталось с практическими и лабораторными работами, курсовым проектированием, практикой на строительных объектах. В институте были созданы научно-педагогической школы по проектированию и строительству жилых, гражданских и промышленных зданий, санитарно-технических устройств и др. (В. В. Эвальд, С. Б. Лукашевич, В. А. Косяков, И. А. Евневич, А. К. Павловский и др.). В начале 20 в. началась специализация в подготовке инженеров строительного профиля, и с 1905 институт стал выпускать инженеров-архитекторов, инженеров санитарной техники и дорожников.

  В 1907 в Петербургском политехническом институте открылось инженерно-строительное отделение (с гидротехническим и сухопутно-дорожным подотделениями), где сформировались научно-педагогические школы в области механики сыпучих тел, гидравлики и гидротехники (С. П. Белзецкий, В. Л. Кирпичёв, Б. Г. Галёркин, К. Г. Ризенкампф, Б. А. Бахметсв, Н. Н. Павловский).

  В 1902 в Москве академик И. А. Фомин организовал первые женские строительные курсы, а в 1905 профессор Н. В. Марковников открыл женские техническо-строительные курсы. В 1909 эти курсы объединились и в 1916 были преобразованы в женский политехнический институт с архитектурными и инженерно-строительными отделениями (после Октябрьской революции 1917 - Московский политехнический институт, затем Московский институт гражданский инженеров). Выпускникам института присваивались звания инженера-архитектора или инженера-строителя.

  Существенную роль в становлении С. о. сыграли основанные в Москве в 1905 среднее строительное училище и в 1907 среднее строительное училище Товарищества инженеров и педагогов, членами которого были В. Н. Образцов, Е. Р. Бриллинг, И. В. Рыльский, А. Е. Ильин и др. (в 1921 на базе этих училищ создан Московский практический строительный институт, объединённый затем с Московским институтом гражданских инженеров).

  В 1907 в Московском высшем техническом училище (МВТУ) введено преподавание курса архитектуры (проектирование, конструирование и строительство зданий и инженерных сооружений), в 1918 открылся инженерно-строительный факультет с архитектурным отделением (в 1924 в состав факультета влился Московский институт гражданских инженеров), который стал центром подготовки инженеров-строителей. Значительный вклад в развитие С. о. внёс основанный в 1896 Московский институт инженеров ж.-д. транспорта (МИИТ).

  В 30-е гг. созданы самостоятельные и в ряде политехнических институтов - строительные факультеты; началась подготовка инженеров-строителей на вечерних и заочных факультетах. Учебные планы строительных специальностей (промышленное и гражданское строительство, гидротехническое строительство речных сооружений, гидроэлектростанций, портов и водных путей, теплогазоснабжение и вентиляция, водоснабжение и канализация, строительство ж.-д. путей и путевое хозяйство, автомобильные дороги, мосты и тоннели, производство строительных изделий и конструкций и др.) включают общенаучные дисциплины (общественные науки - история КПСС, марксистско-ленинская философия, политическая экономия, научный коммунизм; основы советского права, иностранный язык, высшая математика, физика, химия, теоретическая механика и др.), общеинженерные (инженерная геодезия, сопротивление материалов, строительная механика, электротехника, теплотехника, гидравлика и др.) и специальные (архитектура, строительные конструкции, водоснабжение, канализация, теплогазоснабжение, вентиляция, технология строительного производства, организация, планирование и экономика строительства, автоматика и автоматизированные системы управления, вычислительная техника и т.д.). За время обучения студенты выполняют 15-20 курсовых проектов и работ в зависимости от специализации, проходят учебную и производственную практику (до 25 недель). Обучение заканчивается защитой дипломного проекта (дипломной работы). Сроки обучения - 5-6 лет. Выпускники вузов проходят по месту работы стажировку сроком до одного года.