В истории учения о Т. можно выделить три основные системы взглядов на факторы, обусловливающие проявления Т. в поведении. Древнейшими из них являются гуморальные теории, связывающие Т. со свойствами тех или иных жидких сред организма, например в учении - с соотношением между четырьмя жидкостями (греч. krasis - смесь, сочетание, в латинском переводе temperamentum), циркулирующими в человеческом организме, - кровью, жёлчью, чёрной жёлчью и слизью (лимфой, флегмой). Гипотетическое преобладание этих жидкостей в организме и дало названия основным типам Т.: сангвиник, холерик, меланхолик и флегматик. В новое время психологическая характеристика этих типов Т. была систематизирована И. Кантом («Антропология», 1789): сангвинический Т. отличается быстрой сменой эмоций при малой их глубине и силе; холерический - горячностью, вспыльчивостью, порывистостью поступков; меланхолический - глубиной и длительностью переживаний; флегматический - медлительностью, спокойствием и слабостью внешнего выражения чувств. Однако в своих толкованиях Кант допустил смешение черт Т. и характера. Органической основой Т. Кант считал качественные особенности крови. Близко к гуморальным теориям Т. стоит идея П. Ф. о том, что в основе проявлений Т. в конечном счёте лежат свойства системы кровообращения.

  Попытка разработать морфологическую теорию Т. принадлежит немецкому психопатологу Э. Кречмеру (1888-1964), который определял Т. через основные конституциональные типы телосложения. Например, астеническому типу конституции, отличающемуся длинной и узкой грудной клеткой, длинными конечностями, удлинённым лицом, слабой мускулатурой, соответствует, по Кречмеру, шизоидный (шизотимический) Т., которому свойственны особенности, располагающиеся в основном вдоль «психоэстетической» шкалы, - от чрезмерной ранимости, аффективности и раздражительности до бесчувственной холодности и тупого, «деревянного» равнодушия; шизоидам присущи замкнутость, уход во внутренний мир, несоответствие реакций внешним стимулам, контрасты между судорожной порывистостью и скованностью действий. Пикническому типу, характеризующемуся широкой грудью, коренастой фигурой, круглой головой, выступающим животом, отвечает, по Кречмеру, циклоидный (циклотимический) Т., индивидуальные особенности которого располагаются вдоль «диатетической» шкалы, то есть от постоянно повышенного, веселого настроения у маниакальных субъектов до постоянно сниженного, печального и мрачного состояния духа у депрессивных индивидов; циклоидам свойственны соответствие реакций стимулам, открытость, умение слиться с окружающей средой, естественность, мягкость и закруглённость движений. Кречмер преувеличивал роль конституциональных особенностей как факторов психического развития личности.

  В концепции американского психолога У. Шелдона выделяется три основных типа соматической конституции («соматотипа»): эндоморфный, мезоморфный и эктоморфный. Для эндоморфного типа характерны мягкость и округлость внешнего облика, слабое развитие костной и мускульной систем; ему соответствует висцеротонический Т. с любовью к комфорту, чувственными устремлениями, расслабленностью и медленными реакциями. Мезоморфный тип отличается жёсткостью и угловатостью облика, преобладанием костно-мускульной системы, атлетичностью и силой; с ним связан соматотонический Т. с любовью к приключениям, склонностью к риску, жаждой мускульных действий, активностью, смелостью, агрессивностью. Эктоморфному типу конституции свойственны изящество и хрупкость телесного облика, отсутствие выраженной мускулатуры; этому соматотипу соответствует церебротонический Т., характеризующийся малой общительностью, заторможённостью, склонностью к обособлению и одиночеству, повышенной реактивностью. Как и Кречмер, Шелдон проводит мысль о фатальной соматической обусловленности самых разнообразных психических черт личности, в том числе таких, которые целиком определяются условиями воспитания и социальной средой.

  Основным недостатком гуморальных и морфологических теорий является то, что они принимают в качестве первопричины проявлений Т. в поведении такие системы организма, которые не обладают необходимыми для этого свойствами.

  Теоретическое и экспериментальное обоснование ведущей роли центр. нервной системы в динамических особенностях поведения впервые дал И. П. ,выделивший три основных свойства нервной системы: силу, уравновешенность и подвижность возбудительного и тормозного процессов. Из ряда возможных сочетаний этих свойств Павлов выделил четыре комбинации в виде четырёх типов ;проявления их в поведении Павлов поставил в прямую связь с античной классификацией Т. Сильный, уравновешенный и подвижный тип нервной системы рассматривался им как соответствующий Т. сангвиника; сильный, уравновешенный, инертный - Т. флегматика; сильный, неуравновешенный - Т. холерика; слабый - Т. меланхолика. При оценке этой типологии надо иметь в виду, что она была построена применительно к высшей нервной деятельности животных и непосредственно к человеку неприложима без существенных оговорок.

  Советские психологи (Б. М. Теплов, В. Д. Небылицын, В. С. Мерлин) отмечают, что значение работ Павлова по проблеме Т. заключается прежде всего в выяснении роли свойств нервной системы как первичных и самых глубоких параметров психофизиологической организации индивида. На современном этапе развития науки сделать окончательные выводы относительно числа основных ,равно как и числа типичных Т., ещё не представляется возможным. Как показывают исследования, сама структура свойств нервной системы как нейрофизиологических измерений Т. много сложнее, чем это представлялось ранее, а число основных комбинаций этих свойств, видимо, гораздо больше, чем предполагалось Павловым.

  Лит.:Кречмер Э., Строение тела и характер, пер. с нем., 2 изд., М.-Л., 1930; Левитов Н. Д., Вопросы психологии характера, 2 изд., М., 1956; Лейтес Н. С., Опыт психологической характеристики темпераментов, в сборнике: Типологические особенности высшей нервной деятельности человека, [т. 1], М., 1956; Ковалев А. Г. и Мясишев В. Н., Психические особенности человека, т. 1, Л., 1957; Теплов Б. М., Проблемы индивидуальных различий, М., 1961; Мерлин В. С., Очерк теории темперамента, 2 изд., Пермь, 1973; Небылицын В. Д., Основные свойства нервной системы человека, М., 1966; Ананьев Б. Г., Человек как предметпознания, Л.,1969; Klages L., Die Grundlagen der Charakterkunde, Lpz., 1928; Sheldon W. H., The varieties of temperament, N. Y.-L., 1942; Guilfo rd J. P., Zimmerman V. S., Fourteen dimensions of temperament, [Wash.], 1956; Cattell R. B., Personality and motivation structure and measurement, N. Y., [1957]; Diamond S., Personality and temperament, N. Y., 1967; Bourdel L., Les temperaments psychobiologiques, P., 1961; Strelau J., Temperament i typ ukladu nerwowego, Warsz., 1969.

  В. Д. Небылицын.

Температура (в астрофизике)

Температу'рав астрофизике, параметр, характеризующий физическое состояние среды. В астрофизике Т. небесных объектов определяется путём исследований их излучения, основанных на некоторых теоретических предположениях; в частности, допускается, что среда находится в термодинамическом равновесии и к ней применимы законы излучения абсолютно чёрного тела. Поскольку, однако, условия, господствующие в небесных объектах (звёздах, туманностях и др.), сильно отличаются от термодинамического равновесия, результаты определения Т. разными методами могут в значительной степени различаться.

  Применяются следующие виды Т.: эффективная Т. звезды (или другого какого-либо объекта, например солнечной короны) - Т. абсолютно чёрного тела, имеющего те же размеры и дающего тот же полный поток излучения, что и звезда (объект). Яркостная Т. - Т. абсолютно чёрного тела, интенсивность излучения которого в определённой длине волны равна наблюдаемой в данном направлении. Спектрофотометрическая (цветовая) Т. - Т. абсолютно чёрного тела, имеющего наиболее близкое к наблюдаемому относительное распределение интенсивности излучения в рассматриваемом участке спектра. Спектрофотометрическая Т. может быть весьма различной для разных участков спектра. Т. возбуждения - параметр, характеризующий распределение атомов по состояниям возбуждения («населённость» электронных энергетических уровней). Предполагается, что это распределение может быть представлено формулой Больцмана:

  ,

где c 0- потенциал возбуждения, k- постоянная Больцмана, n 0 - число атомов в нормальном, невозбуждённом состоянии, n- число атомов в возбуждённом состоянии. Т. возбуждения в одной и той же среде для разных атомов и энергетических уровней может быть различна. Кинетическая Т. - параметр, характеризующий среднюю кинетическую энергию теплового движения частиц согласно формуле:

 

где m- масса, u - скорость движения частиц.

  Электронная и ионная Т. - кинетическая Т., соответственно, электронов и ионов. Ионизационная Т. - параметр, характеризующий степень ионизации вещества и определяемый по относительной интенсивности спектральных линий в предположении справедливости известных теоретических предположений (ионизационная формула Саха).

  Для состояния термодинамического равновесия все определения Т. приводят к одной и той же величине.

  Лит.:Теоретическая астрофизика, М., 1952.

Температура (в физике)

Температу'ра(от лат. temperatura - надлежащее смешение, соразмерность, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Т. одинакова для всех частей изолированной системы, находящейся в .Если изолированная система не находится в равновесии, то с течением времени переход энергии (теплопередача) от более нагретых частей системы к менее нагретым приводит к выравниванию Т. во всей системе (первый постулат, или нулевое начало ) .Т. определяет: распределение образующих систему частиц по (см. ) и распределение частиц по скоростям (см. ) ;степень ионизации вещества (см. ) ;свойства равновесного электромагнитного излучения тел - спектральную плотность излучения (см. ) ,полную объёмную плотность излучения (см. ) и т. д. Т., входящую в качестве параметра в распределение Больцмана, часто называют Т. возбуждения, в распределение Максвелла - кинетической Т., в формулу Саха - ионизационной Т., в закон Стефана - Больцмана - .Поскольку для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, их называют просто температурой системы. В и др. разделах статистической механики Т. количественно определяется так, что средняя кинетическая энергия поступательного движения частицы (обладающей тремя степенями свободы) равна  кТ,где k- , Т- температура тела. В общем случае Т. определяется как производная от энергии тела в целом по его .Такая Т. всегда положительна (поскольку кинетическая энергия положительна), её называют абсолютной Т. или Т. по термодинамической температурной шкале. За единицу абсолютной Т. в (СИ) принят (К). Часто Т. измеряют по шкале Цельсия ( t) ,значения tсвязаны с Травенством t= Т –273,15 К (градус Цельсия равен Кельвину). Методы измерения Т. рассмотрены в статьях , .

  Строго определённой Т. характеризуется лишь равновесное состояние тел. Существуют, однако, системы, состояние которых можно приближённо охарактеризовать несколькими не равными друг другу температурами. Например, в плазме, состоящей из лёгких (электроны) и тяжёлых (ионы) заряженных частиц, при столкновении частиц энергия быстро передаётся от электронов к электронам и от ионов к ионам, но медленно от электронов к ионам и обратно. Существуют состояния плазмы, в которых системы электронов и ионов в отдельности близки к равновесию, и можно ввести Т. электронов Т эи Т. ионов Т и,не совпадающие между собой.

  В телах, частицы которых обладают ,энергия обычно медленно передаётся от поступательных к магнитным степеням свободы, связанным с возможностью изменения направления магнитного момента. Благодаря этому существуют состояния, в которых система магнитных моментов характеризуется Т., не совпадающей с кинетической Т., соответствующей поступательному движению частиц. Магнитная Т. определяет магнитную часть внутренней энергии и может быть как положительной, так и отрицательной (см. ) .В процессе выравнивания Т. энергия передаётся от частиц (степеней свободы) с большей Т. к частицам (степеням свободы) с меньшей Т., если они одновременно положительны или отрицательны, но в обратном направлении, если одна из них положительна, а другая отрицательна. В этом смысле отрицательная Т. «выше» любой положительной.

  Понятие Т. применяют также для характеристики неравновесных систем (см. ) .Например, яркость небесных тел характеризуют ,спектральный состав излучения - и т. д.

  Л. Ф. Андреев.

Температура замерзания растворов

Температу'ра замерза'ния раство'ров,температура начала кристаллизации твёрдой фазы из раствора. Т. з. р. ниже температуры замерзания чистого растворителя, так как парциальное давление пара растворителя над раствором всегда меньше, чем давление пара над самим растворителем при той же температуре. Постоянной температурой замерзания обладают .Связь Т. з. р. с составом раствора определяется ,графически может быть представлена ,рассматривается, в частности, в .Изучение понижения Т. з. р. составляет предмет .

Температура кипения

Температу'ра кипе'ния(обозначается Т кип, Ts) ,температура равновесного перехода жидкости в пар при постоянном внешнем давлении. При Т. к. давление насыщенного пара над плоской поверхностью жидкости становится равным внешнему давлению, вследствие чего по всему объёму жидкости образуются пузырьки насыщенного пара (см. ) .Т. к. - частный случай первого рода.

Вещество Т кип,°С Вещество Т кип,°С
Водород…………….. Азот…………………. Аргон……………….. Кислород…………… Ацетон………………. Метиловый спирт…. Этиловый спирт…… Азотная кислота…… -252,87 -195,8 -185,7 -182,9 56,5 64,7 78,4 83,3 Йод……………………. Глицерин…………….. Серная кислота…….. Алюминий…………… Медь………………….. Железо……………….. Осмий………………… Тантал………………… 183,0 290,0 330,0 2467 2567 2750 5027±100 5425±100

  В табл. приведены Т. к. ряда веществ при нормальном внешнем давлении (760 мм рт. ст., или 101325 н/м 2).

Температура кипения растворов

Температу'ра кипе'ния раство'ров,температура начала перехода жидкой фазы данного состава в пар. Т. к. р., как правило, ниже температуры конденсации, при которой пар того же состава начинает конденсироваться в жидкую фазу. Исключение составляют ,для которых обе температуры равны. Связь Т. к. р. и температур начала конденсации с составом раствора определяется и и графически представляется .Повышение Т. к. р. по сравнению с температурой кипения чистого растворителя рассматривается в .

Температура плавления

Температу'ра плавле'ния( Т пл), температура равновесного фазового перехода кристаллического (твёрдого) тела в жидкое при постоянном внешнем давлении. Т. п. - частный случай первого рода.

Вещество Т пл,°С Вещество Т пл,°С
Водород…………….. Кислород…………… Азот…………………. Аргон……………….. Этиловый спирт…… Метиловый спирт…. Ацетон………………. Ртуть…….…………… Гликоль………..……. -259,14 -218,4 -209,86 -189,2 -112 -97,8 -94,6 -38,9 -15,6 Нитробензол…….….. Уксусная кислота…… Глицерин…………….. Цезий………………… Нафталин……………. Натрий…….………….. Йод……………………. d-Камфора…………… Алюминий…………… Медь………………….. Железо……………….. Вольфрам……………. 5,7 16,7 17,9 28,5 80,2 97,8 112,9 178,5 660,37 1083,4 1539 3410

  В табл. приведены значения Т. п. ряда веществ при нормальном внешнем давлении (760 мм рт. ст., или 101325 н/м 2).

Температура тела

Температу'ра те'ла,комплексный показатель теплового состояния организма животных и человека. Т. т. - результат сложных отношений между различных органов и тканей и теплообменом между ними и внешней средой. У человека и Т. т. поддерживается специальными механизмами ;находится в пределах от 36 до 39 °С, у птиц - от 40 до 42 °С. Известны физиологические колебания Т. т. в течение суток - :разница между ранне-утренней и вечерней Т. т. у человека достигает 0,5-1,0 °С. Температурные различия между внутренними органами достигают нескольких десятых градуса. Разница между температурой внутренних органов, мышц и кожи может составлять до 5-10 °С, что затрудняет определение средней Т. т., необходимой для определения термического состояния организма в целом. Т. т. измеряют обычно в аксиллярной (подмышечной) области, в прямой кишке, в ротовой полости, в наружном слуховом проходе. У Т. т. мало отличается от температуры окружающей среды и только при интенсивной мышечной деятельности у некоторых видов она может превышать температуру среды.

  Понижение ( ) или повышение ( ) Т. т. на несколько градусов нарушает процессы жизнедеятельности и может привести к или и даже к его гибели. При многих заболеваниях Т. т. повышается до определённых пределов и регулируется организмом на новом уровне, например при .

  Лит.:Бартон А. и Эдхолм О., Человек в условиях холода, пер. с англ., М., 1957; Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967; Hensel Н., Neural processes in thermoregulation, «Physiological Reviews», 1973, v. 5-3, № 4.

  К. П. Иванов.

Температура фазового перехода

Температу'ра фа'зового перехо'да,температура, при которой в физической системе происходит равновесный первого (кипение, плавление) или второго рода (переход в сверхпроводящее состояние и др.). Т. ф. п. зависит от внешнего давления согласно (для фазовых переходов первого рода) и (для фазовых переходов второго рода).

Температурное излучение

Температу'рное излуче'ние,то же, что .

Температурное поле

Температу'рное по'ле,совокупность значений температур во всех точках рассматриваемого пространства в данный момент времени. Математически Т. п. может быть описано уравнением зависимости температур от 3 пространственных координат и от времени (нестационарное трёхмерное Т. п.). Для установившихся (стационарных) режимов Т. п. от времени не зависит. Во многих случаях может рассматриваться зависимость Т. п. от двух, а иногда от одной координаты. Графически Т. п. изображают посредством изотермических поверхностей, соединяющих все точки поля с одинаковой температурой, а для двухмерного поля - посредством семейства .Расстояние между изотермами обратно пропорционально температуры; при этом скалярному Т. п. соответствует векторное поле градиентов температуры (см. ) .

Температурные волны

Температу'рные во'лны,периодические изменения распределения температуры в среде, связанные с периодическими колебаниями плотности потоков теплоты, поступающих в среду (с переменностью источников теплоты). Т. в. испытывают сильное затухание при распространении, для них характерна значительная дисперсия, то есть зависимость скорости от частоты. Обычно коэффициент затухания Т. в. приближённо равен 2p/l, где l - длина волны. Для монохроматической плоской Т. в., распространяющейся вдоль теплоизолированного стержня постоянного поперечного сечения, l связана с периодом колебаний t и коэффициентом c соотношением: ; при этом скорость u перемещения гребней волны равна . Таким образом, чем меньше период колебаний (меньше длина волны), тем Т. в. быстрее распространяются и затухают на меньших расстояниях. Глубина проникновения плоской Т. в., определяемая как расстояние, на котором колебания температуры уменьшаются в е» 2,7 раза, равна , то есть чем меньше период, тем меньше глубина проникновения. Например, глубина проникновения в почву суточных колебаний температуры почти в 20 раз меньше глубины проникновения сезонных колебаний. В технике Т. в. учитывают при расчётах теплопроводности стен зданий, защитной внутренней облицовки печей, блоков двигателей внутреннего сгорания и т. д. В физике изучение Т. в. является одним из методов определения температуропроводности, теплоёмкости и др. тепловых характеристик материалов. Метод Т. в. особенно удобен для измерения характеристик чистых веществ при низких температурах.

  Лит.:Карлслоу Г. С., Егер Д., Теплопроводность твердых тел, пер, с англ., М., 1964.

  И. П. Крылов.

Температурные напряжения

Температу'рные напряже'ния,напряжения, возникающие в теле вследствие неравномерного распределения температуры в различных частях тела и ограничения возможности теплового расширения (или сжатия) со стороны окружающих частей тела или со стороны других тел, окружающих данное. Пример Т. н. - растягивающие напряжения в натянутом между неподвижными опорами проводе при его охлаждении. Т. н. могут оказаться причиной разрушения деталей машин, сооружений и конструкций. Для предотвращения таких разрушений используют так называемые температурные компенсаторы (зазоры между рельсами, зазоры между блоками плотины, катки на опорах моста и т. п.).

Температурные шкалы

Температу'рные шка'лы,системы сопоставимых числовых значений .температура не является непосредственно измеряемой величиной; её значение определяют по температурному изменению какого-либо удобного для измерения физического свойства термометрического вещества (см. ) .Выбрав термометрическое вещество и свойство, необходимо задать начальную точку отсчёта и размер единицы температуры - градуса. Таким образом определяют эмпирические Т. ш. В Т. ш. обычно фиксируют две основные температуры, соответствующие точкам фазовых равновесий однокомпонентных систем (так называемые реперные или постоянные точки), расстояние между которыми называется основным температурным интервалом шкалы. В качестве реперных точек используют: тройную точку воды, точки кипения воды, водорода и кислорода, точки затвердевания серебра, золота и др. Размер единичного интервала (единицы температуры) устанавливают как определённую долю основного интервала. За начало отсчёта Т. ш. принимают одну из реперных точек. Так можно определить эмпирическую (условную) Т. ш. по любому термометрическому свойству х.Если принять, что связь между хи температурой tлинейна, то температура t x= n( x t - х 0) /( x n - x 0) ,где x t , x 0и x n- числовые значения свойства хпри температуре tв начальной и конечной точках основного интервала, ( x n - x 0) / n -размер градуса, п- число делений основного интервала.

  В ,например, за начало отсчёта принята температура затвердевания воды (таяния льда), основной интервал между точками затвердевания и кипения воды разделён на 100 равных частей ( n= 100).

  Т. ш. представляет собой, таким образом, систему последовательных значений температуры, связанных линейно со значениями измеряемой физической величины (эта величина должна быть однозначной и монотонной функцией температуры). В общем случае Т. ш. могут различаться по термометричкому свойству (им может быть тепловое расширение тел, изменение электрического сопротивления проводников с температурой и т. п.), по термометрическому веществу (газ, жидкость, твёрдое тело), а также зависеть от реперных точек. В простейшем случае Т. ш. различаются числовыми значениями, принятыми для одинаковых реперных точек. Так, в шкалах Цельсия (°С), Реомюра (°R) и Фаренгейта (°F) точкам таяния льда и кипения воды при нормальном давлении приписаны разные значения температуры. Соотношение для пересчёта температуры из одной шкалы в другую: