Лит.:Скуратов С. М., Колесов В. П., Воробьев А. Ф., Термохимия, ч. 1-2, М., 1964-66; Мищенко К. П., Полторацкий Г. М., Вопросы термодинамики и строения водных и неводных растворов электролитов, [Л.], 1968; Experimental thermochemistry, v. 1-2, N. Y.-L., 1956-62; Кальве Э., Пратт А., Микрокалориметрия, пер. с франц., М., 1963; Мортимер К., Теплоты реакций и прочность связей, пер. с англ., М., 1964; Бенсон С., Термохимическая кинетика, пер. с англ., М., 1971; Сталл Д., Вестрам Э., Зинке Г., Химическая термодинамика органических соединений, пер. с англ., М., 1971. См. также лит. при ст. , , .
М. Х. Карапетьянц.
Термоцепторы
Термоце'пторы,то же, что .
Термочувствительные краски
Термочувстви'тельные кра'ски,термоиндикаторные краски, краски, содержащие различные химические соединения, которые способны изменять свой цвет при определённой температуре. Изменение цвета может происходить, например, вследствие разложения термочувствительного соединения (гидроокиси железа, карбоната кадмия) или образования нового соединения в результате реакции термоиндикаторных компонентов краски (например, образование сульфида свинца из тиомочевины и свинцового сурика). Различают обратимые (одно- или многократно восстанавливающие свой первоначальный цвет) и необратимые Т. к. С помощью Т. к., которые выпускаются в виде паст или карандашей, могут быть измерены температуры в интервале 35-1600 °С с точностью от ±0,5 до ±10 °С. Применяют Т. к. в тех случаях, когда использование обычных средств термометрии затруднено или невозможно.
Термоэдс
Термоэдс,электродвижущая сила, возникающая в электрической цепи, состоящей из нескольких разнородных проводников, имеющих в местах контактов различную температуру (см. , ) .
Термоэластопласты
Термоэластопла'сты,термопластичные эластомеры, синтетические полимеры, которые при обычных температурах обладают свойствами резин, а при повышенных размягчаются, подобно термопластам. Сочетание таких свойств обусловлено тем, что Т. являются ,в макромолекулах которых эластичные блоки (например, полибутадиеновые) чередуются в определённой последовательности с термопластичными (например, полистирольными). В отличие от каучуков, Т. перерабатываются в резиновые изделия (например, обувь), минуя стадию .
Термоэлектрическая дефектоскопия
Термоэлектри'ческая дефектоскопи'я,см. в ст. .
Термоэлектрические явления
Термоэлектри'ческие явле'ния,совокупность физических явлений, обусловленных взаимосвязью между тепловыми и электрическими процессами в металлах и полупроводниках. Т. я. являются эффекты Зеебека, Пельтье и Томсона. состоит в том, что в замкнутой цепи, состоящей из разнородных проводников, возникает эдс (термоэдс), если места контактов поддерживают при разных температурах. В простейшем случае, когда электрическая цепь состоит из двух различных проводников, она называется ,или .Величина термоэдс зависит только от температур горячего T 1 и холодного T 2контактов и от материала проводников. В небольшом интервале температур термоэдс Еможно считать пропорциональной разности ( T 1– T 2) ,то есть Е= a( T 1– Т 2). Коэффициент aназывается термоэлектрической способностью пары (термосилой, коэффициента термоэдс, или удельной термоэдс). Он определяется материалами проводников, но зависит также от интервала температур; в некоторых случаях с изменением температуры a меняет знак. В таблице приведены значения а для некоторых металлов и сплавов по отношению к Pb для интервала температур 0-100 °С (положительный знак aприписан тем металлам, к которым течёт ток через нагретый спай). Однако цифры, приведённые в таблице, условны, так как термоэдс материала чувствительна к микроскопическим количествам примесей (иногда лежащим за пределами чувствительности химического анализа), к ориентации кристаллических зёрен, термической или даже холодной обработке материала. На этом свойстве термоэдс основан метод отбраковки материалов по составу. По этой же причине термоэдс может возникнуть в цепи, состоящей из одного и того же материала при наличии температурных перепадов, если разные участки цепи подвергались различным технологическим операциям. С др. стороны, эдс термопары не меняется при последовательном включении в цепь любого количества др. материалов, если появляющиеся при этом дополнительные места контактов поддерживают при одной и той же температуре.
Материал | a, мкв/°С | Материал | a, мкв/°С |
Сурьма…………… Железо……..…… Молибден ………. Кадмий ………….. Вольфрам……..… Медь……………... Цинк……………… Золото…………… Серебро ………… Свинец…………… Олово…………….. Магний ………….. Алюминий………. | +43 +15 +7,6 +4,6 +3,6 +3,2 +3,1 +2,9 +2,7 0,0 -0,2 -0,0 -0,4 | Ртуть……….…... Платина……….. Натрий ………… Палладий ……… Калий…………… Никель…………. Висмут…………. Хромель……….. Нихром………… Платинородий… Алюмель……….. Константан…….. Копель………….. | -4,4 -4,4 -6,5 -8,9 -13,8 -20,8 -68,0 +24 +18 +2 -17,3 -38 -38 |
обратен явлению Зеебека: при протекании тока в цепи из различных проводников, в местах контактов, в дополнение к теплоте Джоуля, выделяется или поглощается, в зависимости от направления тока, некоторое количество теплоты Q n, пропорциональное протекающему через контакт количеству электричества (то есть силе тока Iи времени t) : Q n= П lt.Коэффициент П зависит от природы находящихся в контакте материалов и температуры (коэффициент Пельтье).
У. (Кельвин) вывел термодинамическое соотношение между коэффициентом Пельтье и Зеебека ( a), которое является частным проявлением симметрии кинетического коэффициента (см. ): П = aТ,где Т -абсолютная температура, и предсказал существование третьего Т. я. - .Оно заключается в следующем: если вдоль проводника с током существует перепад температуры, то в дополнение к теплоте Джоуля в объёме проводника выделяется или поглощается, в зависимости от направления тока, дополнительное количество теплоты Q t(теплота Томсона): Q t = t( T 2 - T 1) lt,где t - коэффициент Томсона, зависящий от природы материала. Согласно теории Томсона, удельная термоэдс пары проводников связана с их коэффициентом Томсона соотношением: da/dT=( t 1 - t 2)/ Т.
Эффект Зеебека объясняется тем, что средняя энергия электронов проводимости зависит от природы проводника и по-разному растет с температурой. Если вдоль проводника существует градиент температур, то электроны на горячем конце приобретают более высокие энергии и скорости, чем на холодном; в полупроводниках в дополнение к этому концентрация электронов проводимости растет с температурой. В результате возникает поток электронов от горячего конца к холодному и на холодном конце накапливается отрицательный заряд, а на горячем остаётся нескомпенсированный положительный заряд. Процесс накопления заряда продолжается до тех пор, пока возникшая разность потенциалов не вызовет поток электронов в обратном направлении, равный первичному, благодаря чему установится равновесие. Алгебраическая сумма таких разностей потенциалов в цепи создаёт одну из составляющих термоэдс, которую называют объёмной.
Вторая (контактная) составляющая - следствие температурной зависимости .Если оба контакта термоэлемента находятся при одной и той же температуре, то контактная и объёмная термоэдс исчезают.
Вклад в термоэдс даёт также эффект увлечения электронов фононами. Если в твёрдом теле существует градиент температуры, то число ,движущихся от горячего конца к холодному, будет больше, чем в обратном направлении. В результате столкновений с электронами фонолы могут увлекать за собой последние и на холодном конце образца будет накапливаться отрицательный заряд (на горячем - положительный) до тех пор, пока возникшая разность потенциалов не уравновесит эффект увлечения; эта разность потенциалов и представляет собой 3-ю составляющую термоэдс, которая при низких температурах может быть в десятки и сотни раз больше рассмотренных выше. В магнетиках наблюдается дополнительная составляющая термоэдс, обусловленная эффектом увлечения электронов .
В концентрация электронов проводимости велика и не зависит от температуры. Энергия электронов также почти не зависит от температуры, поэтому термоэдс металлов очень мала. Сравнительно больших значений достигает термоэдс в и их сплавах, где концентрация носителей значительно меньше и зависит от температуры, а также в некоторых переходных металлах и их сплавах (например, в сплавах Pd с Ag термоэдс достигает 86 мкв/°С) .В последнем случае концентрация электронов велика. Однако термоэдс велика из-за того, что средняя энергия электронов проводимости сильно отличается от энергии Ферми. Иногда быстрые электроны обладают меньшей диффузионной способностью, чем медленные, и термоэдс в соответствии с этим меняет знак. Величина и знак термоэдс зависят также от формы поверхности Ферми. В металлах и сплавах со сложной различные участки последней могут давать в термоэдс вклады противоположного знака и термоэдс может быть равна или близка к нулю. Знак термоэдс некоторых металлов меняется на противоположный при низких температурах в результате увлечения электронов фононами.
В дырочных на холодном контакте скапливаются дырки, а на горячем - остаётся нескомпенсированный отрицательный заряд (если только аномальный механизм рассеяния или эффект увлечения не приводят к перемене знака термоэдс). В термоэлементе, состоящем из дырочного и электронного полупроводников, термоэдс складываются. В полупроводниках со смешанной проводимостью к холодному контакту диффундируют и электроны и дырки, и их заряды взаимно компенсируются. Если концентрации и подвижности электронов и дырок равны, то термоэдс равна нулю.
В условиях, когда вдоль проводника, по которому протекает ток, существует градиент температуры, причём направление тока соответствует движению электронов от горячего конца к холодному, при переходе из более горячего сечения в более холодное, электроны передают избыточную энергию окружающим атомам (выделяется теплота), а при обратном направлении тока, проходя из более холодного участка в более горячий, пополняют свою энергию за счёт окружающих атомов (теплота поглощается). Этим и объясняется (в первом приближении) явление Томсона. В первом случае электроны тормозятся, а во втором - ускоряются полем термоэдс, что изменяет значение t, а иногда и знак эффекта.
Причина возникновения явления Пельтье заключается в том, что средняя энергия электронов, участвующих в переносе тока, зависит от их энергетического спектра (зонной структуры материала), концентрации электронов и механизма их рассеяния, и поэтому в разных проводниках различна. При переходе из одного проводника в другой электроны либо передают избыточную энергию атомам, либо пополняют недостаток энергии за их счёт (в зависимости от направления тока). В первом случае вблизи контакта выделяется, а во втором - поглощается теплота Пельтье. Рассмотрим случай, когда направление тока соответствует переходу электронов из полупроводника в металл. Если бы электроны, находящиеся на примесных уровнях полупроводника, могли бы точно так же перемещаться под действием электрического поля, как электроны проводимости, и в среднем энергия электронов равнялась бы энергии Ферми в металле, то прохождение тока через контакт не нарушало бы теплового равновесия ( Q n= 0). Но в полупроводнике электроны на примесных уровнях локализованы, а энергия электронов проводимости значительно выше уровня Ферми в металле (и зависит от механизма рассеяния). Перейдя в металл, электроны проводимости отдают свою избыточную энергию; при этом и выделяется теплота Пельтье. При противоположном направлении тока из металла в полупроводник могут перейти только те электроны, энергия которых выше дна зоны проводимости полупроводника. Тепловое равновесие в металле при этом нарушается и восстанавливается за счёт тепловых .При этом поглощается теплота Пельтье. На контакте двух полупроводников или двух металлов также выделяется (или поглощается) теплота Пельтье вследствие того, что средняя энергия участвующих в токе электронов по обе стороны контакта различна.
Таким образом, причина всех Т. я. - нарушение теплового равновесия в потоке носителей (то есть отличие средней энергии электронов в потоке от энергии Ферми). Абсолютные значения всех термоэлектрических коэффициентов растут с уменьшением концентрации носителей; поэтому в полупроводниках они в десятки и сотни раз больше, чем в металлах и сплавах.
Лит.:Жузе В. П., Гусенкова Е. И., Библиография по термоэлектричеству, М.- Л., 1963; Иоффе А. Ф., Полупроводниковые термоэлементы, М.- Л., 1960; Займан Дж., Электроны и фононы, пер. с англ., М., 1962; Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954; Стильбанс Л. С., Физика полупроводников, М., 1967.
Л. С. Стильбанс.
Термоэлектрический генератор
Термоэлектри'ческий генера'тор(ТЭГ), термоэлектрогенератор, устройство для прямого преобразования тепловой энергии в электрическую, принцип действия которого основан на эффекте Зеебека (см. ) .В состав ТЭГ входят: термобатареи, набранные из полупроводниковых ,соединённых последовательно или параллельно; теплообменники горячих и холодных спаев термобатарей. ТЭГ подразделяются: по интервалу рабочих температур - на низко-, средне и высокотемпературные (диапазоны температур 20-300, 300-600, 600-1000 °С; материалы термоэлементов - соответственно твёрдые растворы на основе халькогенидов элементов V группы, IV группы периодической системы Д. И. Менделеева и твёрдые растворы Si-Ge); по области применения - на космические, морские, наземные и т. д.; по типу источника тепла - на изотопные, солнечные (см. ) ,газовые и т. д. Кпд лучших ТЭГ составляет ~ 15%, мощность достигает нескольких сотен квт.
ТЭГ обладают рядом преимуществ перед традиционными электромашинными преобразователями энергии, например ,отсутствием движущихся частей, высокой надёжностью, простотой обслуживания. ТЭГ применяются для энергоснабжения удалённых и труднодоступных потребителей электроэнергии (автоматических маяков, навигационных буев, метеорологических станций, активных ретрансляторов, космических аппаратов, станций антикоррозионной защиты газо- и нефтепроводов и т. п.). К недостаткам современных ТЭГ относятся низкий кпд и относительно высокая стоимость.
Лит.:см. при ст. .
Н. В. Коломоец, Н. С. Лидоренко.
Термоэлектрический пирометр
Термоэлектри'ческий пиро'метр,прибор для измерения .Состоит из ,в качестве чувствительного элемента, подключенных к термопаре компенсационных и соединительных проводов и электроизмерительного прибора (милливольтметра, автоматического потенциометра и др.). Подробнее см. в ст. .
Термоэлектрический прибор
Термоэлектри'ческий прибо'ризмерительный, прибор для измерения силы переменного тока, реже электрического напряжения, мощности. Представляет собой сочетание магнитоэлектрического измерителя с одним или несколькими термопреобразователями. Термопреобразователь состоит из (или нескольких термопар) и нагревателя, по которому протекает измеряемый ток ( рис. ). Под действием тепла, выделяемого нагревателем, между свободными концами термопары возникает термоэдс, измеряемая магнитоэлектрическим измерителем. Для расширения пределов измерения термопреобразоватслей (по току от 1 аи выше) используют высокочастотные тока.
Т. п. обеспечивают сравнительно большую точность измерений в широком диапазоне частот и независимость показаний от формы кривой тока, протекающего через нагреватель. Их основные недостатки - зависимость показаний от температуры окружающей среды, значительное собственное потребление мощности, недопустимость больших перегрузок (не более чем в 1,5 раза). Применяются преимущественно для измерения действующего значения силы переменного тока (от единиц мкадо нескольких десятков а) в диапазоне частот от нескольких десятков гцдо нескольких сотен Мгцс погрешностью 1-5%.
Лит.:Червякова В. И., Термоэлектрические приборы, М.- Л., 1963; Электрические измерения, под ред. А. В. Фремке, 4 изд., Л., 1973; Шкурин Г. П., Справочник по электро- и электронно-измерительным приборам, М., 1972.
Схемы термоэлектрических приборов для измерения тока: а - контактная, с одной термопарой; б, в - бесконтактные, с одной и с несколькими включенными последовательно термопарами; г - с включением через высокочастотный трансформатор тока ТТ; I x- измеряемый ток; r н- нагреватель; r t- термопара; ИМ - магнитоэлектрический измеритель.
Термоэлектрическое охлаждение
Термоэлектри'ческое охлажде'ние,поглощение теплоты при прохождении электрического тока через .Сущность Т. о. заключается в появлении разности температур в спаях термоэлемента; при этом на холодном спае происходит поглощение теплоты из охлаждаемого вещества, передача её к горячему спаю и далее в окружающую среду (см. ) .Одновременно с генерацией холода в цепи термоэлемента выделяется теплота (см. ) и передаётся к холодному спаю путём теплопроводности. Результирующей характеристикой охлаждающей способности термоэлемента, используемого для Т. о., является так называемая эффективность , где a - термоэлектрический коэффициент, l - удельная теплопроводность, r -удельное электрическое сопротивление. Обычно при изготовлении термоэлементов для Т. о. используют ( Z= 1,5-3,5 град -1) ,например тройные сплавы сурьмы, теллура, висмута и селена (см. ) .Установки с Т. о. просты по конструкции, не имеют движущихся частей и ,безопасны в эксплуатации, но малоэкономичны (удельный расход электроэнергии в 6- 8 раз выше, чем у парокомпрессионных ) .Обычно Т. о. используется в установках с до 100 вт,которые находят практическое применение в радиоэлектронике, вакуумной технике, приборостроении, медицине и т. д.
В. А. Гоголин.
Термоэлектронная эмиссия
Термоэлектро'нная эми'ссия,Ричардсона эффект, испускание электронов нагретыми телами (твёрдыми, реже - жидкостями) в вакуум или в различные среды. Впервые исследована О. У. в 1900- 1901. Т. э. можно рассматривать как процесс испарения электронов в результате их теплового возбуждения. Для выхода за пределы тела (эмиттера) электронам нужно преодолеть у границы тела; при низких температурах тела количество электронов, обладающих достаточной для этого энергией, мало; с увеличением температуры их число растет и Т. э. возрастает (см. ) .
Главной характеристикой тел по отношению к Т. э. является величина плотности термоэлектронного тока насыщения j o( рис. 1 ) при заданной температуре. При Т. э. в вакуум однородных (по отношению к ) эмиттеров в отсутствии внешних электрических полей величина j 0определяется формулой Ричардсона - Дэшмана:
. (1)
Здесь А -постоянная эмиттера (для металлов в модели свободных электронов : А = А 0= 4p ek 2 m/h 3 =120,4 а/К 2 см 2, где е- заряд электрона, m -его масса, k - , h - ) , Т -температура эмиттера в К, -средний для термоэлектронов разных энергий коэффициент отражения от потенциального барьера на границе эмиттера; ej -работа выхода. Испускаемые электроны имеют начальных скоростей, соответствующее температуре эмиттера.
При Т. э. в вакуум электроны образуют у поверхности эмиттера объёмный заряд, электрическое поле которого задерживает электроны с малыми начальными скоростями. Поэтому для получения тока насыщения между эмиттером (катодом) и коллектором электронов (анодом) создают электрическое поле, компенсирующее поле объёмного заряда. На рис. 1 показан вид вольтамперной характеристики вакуумного диода с термоэлектронным катодом. Плотность тока насыщения j 0достигается при разности потенциалов V 0 ,величина которой определяется .При V< V 0ток ограничен полем объёмного заряда у поверхности эмиттера. Слабое увеличение jпри V> V 0связано с . Рис. 1 показывает, что термоэлектронный ток может протекать и в отсутствии внешних эдс. Это указывает на возможность создания вакуумных термоэлектронных преобразователей тепловой энергии в электрическую. Во внешних электрических полях с напряжённостью Е³ 10 6- 10 7 в/смк Т. э. добавляется и Т. э. переходит в термоавтоэлектронную эмиссию.
Величину jдля и собственных можно считать линейно зависящей от Тв узких интервалах температур D Tвблизи выбранного T 0: j( T) = j( T 0) + a( T- T 0) ,где a- температурный коэффициент jв рассматриваемом интервале температур D T. В этом случае формула (1) может быть написана в виде:
j 0= A p T 2 ехр (- еj р/ кТ) , (2)
где A p= А(1- ) ехр (- ea /k) называется ричардсоновской постоянной эмиттера (однородного по отношению к работе выхода); еj р= j( Т 0) - a T 0; еj 0называется ричардсоновской работой выхода. Так как в интервале температур от Т= 0 до Т= Т 0aне сохраняет постоянной величины, то ричардсоновская работа выхода отличается от истинной работы выхода электронов при температуре Т= 0 К. Величины A pи еj рнаходят по прямолинейным графикам зависимости: In ( j 0/T 2) = f(1 /T) (графикам Ричардсона). У примесных полупроводников зависимость j( T) более сложная, и формула для j 0отличается от (2).
Чтобы исключить входящие в формулу (1) неизвестные для большинства эмиттеров величины Аи ,зависящие не только от материала эмиттера, но и от состояния его поверхности (определяются экспериментально), формулу приводят к виду:
j = A 0 T 2exp [ -ej пт ( Т) /кТ] . (3)
Работа выхода еj пт( Т) мало отличается по величине от истинной работы выхода эмиттера ej( T), но легко определяется по измеренным величинам j 0и Т;её называют работой выхода по полному току эмиссии. Величина еj пт( Т) является единственной характеристикой термоэмиссионных свойств эмиттера, и её знания достаточно для нахождения j 0( T) ( рис. 2 ).
Однородными по j эмиттерами являются грани идеальных монокристаллов как чистые, так и покрытые однородными плёнками др. вещества. Большинство употребляемых в практике эмиттеров не однородны, а состоят из «пятен» с различными j (эмиттеры поликристаллического строения; со структурными дефектами; двухфазные плёночные и др.). между пятнами приводят к появлению над эмиттирующей поверхностью контактных полей пятен. Эти поля создают дополнительные барьеры для эмиссии электронов с пятен, где работа выхода меньше, чем средняя по поверхности, и вызывают аномальный эффект Шотки. Для описания Т. э. неоднородных эмиттеров в формулу (1) вводят усреднённые эмиссионные характеристики.
Для получения токов больших плотностей, постоянных во времени, требуются эмиттеры с малыми jи с большими материала; в ряде случаев к термоэлектронным эмиттерам предъявляются специальные требования (химическая пассивность, коррозионная стойкость и др.). Высокой термоэмиссионной способностью обладают так называемые эффективные катоды (оксиднобариевые, оксидноториевые, гексабориды щелочноземельных и редкоземельных металлов и др.) и некоторые металлоплёночные катоды (например, тугоплавкие металлы с плёнкой щелочных, щёлочноземельных и редкоземельных металлов).
Т. э. лежит в основе действия многих электровакуумных и газоразрядных приборов и устройств.
Лит.:Рейман А. Л., Термоионная эмиссия, пер. с англ., М.- Л., 1940; Гапонов В. И., Электроника, т. 1, М., 1960; Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Кноль М., Эйхмейер И., Техническая электроника, пер. с нем., т. 1, М., 1971; Херинг К., Николье М., Термоэлектронная эмиссия, пер. с англ., М., 1950; 3андберг Э. Я., Ионов Н. И., Поверхностная ионизация, М., 1969; Фоменко В. С., Эмиссионные свойства материалов, К., 1970.