Лит.:Справочник по сварке, под ред. Е. В. Соколова, т. 2, М., 1961; Хренов К. К., Сварка, резка и пайка металлов, 4 изд., М., 1973.

  К. К. Хренов.

Термиты

Терми'ты(Isoptera), отряд насекомых, близкий к и ; характеризуются неполным превращением и обществ. образом жизни с выраженным многообразием особей в пределах вида (половой и «кастовый» ) .Т. живут общинами от нескольких сотен до нескольких млн. особей в гнёздах-термитниках. Община состоит из самки и самца - «царской пары» или заменяющих их неотеничных половых особей (см. ) ,крупных и мелких «солдат» и «рабочих» ( рис. 1 ), то есть самцов и самок с редуцированными половыми железами. У низших Т. настоящие рабочие заменены личинками - псевдоэргатами. У некоторых Т. нет «солдат». Длина рабочих особей 2-15 мм,солдат - до 20 мм.Яйцекладущие самки с гипертрофированными яичниками достигают длины 140 мм.Взрослые половые особи с 2 парами удлинённых нежных, перепончатых крыльев, которые сбрасывают после лета; имеют сложные (фасеточные) глаза. У др. глаза недоразвиты или отсутствуют. В кишечнике Т. развиваются симбиотические простейшие (жгутиковые из отряда Hypermastigina), благодаря деятельности которых Т. усваивает древесную клетчатку - основной источник питания большинства из них. Некоторые Т. питаются только грибами, в основном плесневыми, которые разводят в «грибных садах» ( рис. 2 ).

  Община основывается «царской парой». После выкармливания первых рабочих особей самка лишь откладывает яйца. Самец периодически оплодотворяет её. Продолжительность жизни «царской пары» - до нескольких десятилетий, община же может существовать многие десятилетия. Рабочие особи обеспечивают общину пищей, строят гнездо и галереи. Т., входящие в одну общину, постоянно обмениваются пищей (трофаллаксис). Возникновение каст у Т. связано с их делением как на половые и бесполые особи, так и на «рабочих» и «солдат». Обычно ведут скрытный образ жизни. Термитники разнообразны по форме и размерам, достигают у некоторых тропических видов высоты 15 м.У ряда видов гнёзда подземные; др. Т. выгрызают их в древесине. Т. активно регулируют микроклимат гнезда. В термитниках поселяются многие беспозвоночные (термитофилы) - специфические спутники Т., их симбионты: жуки, мокрицы, многоножки, клещи и др. Около 2600 видов Т. объединяют в 6 семейств; обитают главным образом в тропиках, частично в субтропиках; в СССР - 7 видов из 4 семейств: на Ю.-З. УССР, на Черноморском побережье Кавказа, в Средней Азии и на Дальнем Востоке. Т. разрушают древесину и др. материалы, в Африке и Индии повреждают сельскохозяйственные культуры. С вредными Т. ведётся борьба.

  Лит.:Луппова А. Н., Термиты Туркменистана, «Тр. института зоологии и паразитологии (АН Туркм. ССР)», 1958, в. 2; Жизнь животных, т. 3, М., 1969, с. 204-210; Grasse P. P., Ordre des isopteres au termites, в кн.: Traite de zoologie, t. 9, P., 1949; Goetsch W., Vergleichende Biologie der Insecten - Staaten, Lpz., 1953; Harris \V., Termites, their recoghition and control, L., 1961.

  А. А. Захаров.

Рис. 2. «Грибные сады» термитов рода Pseudo-canthotermes.

Рис. 1. Касты термита Bellicositermes bellicosus: 1 - матка («царица»); 2 - самец («царь»); 3 - крупный «солдат»; 4 - мелкий «солдат»; 5 - крупный «рабочий»; 6 - мелкий «рабочий».

Термическая башенная печь

Терми'ческая ба'шенная печь,вертикальная для непрерывной термической обработки металлической полосы. Полоса протягивается с помощью роликов с электрическим приводом (через один или несколько вертикальных проходов). При движении через Т. б. п. полоса проходит через камеры нагрева, выдержки и охлаждения с различными скоростями, благодаря чему может быть проведена термическая обработка по сложному режиму. Камеры Т. б. п. заполнены газом контролируемого состава в зависимости от режима термической или химико-термической обработки. Т. б. п. устанавливают в составе поточной линии, которая, кроме средней (печной) части - собственно Т. б. п., имеет головную и хвостовую части. Головная часть включает разматыватели рулонов, ножницы для обрезки концов, сварочные машины для сварки конца предыдущего рулона с началом последующего, устройства для очистки металла, петлевые устройства - аккумуляторы полосы для обеспечения непрерывности её подачи в печь при сварке концов. Хвостовая часть включает выходное петлевое устройство, устройство для натяжения полосы, сматыватели или участки порезки её на листы.

  Лит.:Справочник конструктора печей прокатного производства, под ред. В. М. Тымчака, т. 2, М., 1970, гл. 32; Аптерман В. Н., Тымчак В. М., Протяжные печи, М., 1969, гл. 1.

  В. М. Тымчак.

Термическая диссоциация

Терми'ческая диссоциа'ция,химическая реакция обратимого разложения вещества, вызываемая повышением температуры. При Т. д. из одного вещества образуется несколько (2Н 2О Ы2Н 2+ О 2, CaCO 3ЫCaO + СО 2) или одно более простое (N 2O 4Ы2NO 2, Cl 2Ы201). Равновесие Т. д. устанавливается по .Оно может быть охарактеризовано или константой равновесия, или степенью диссоциации (отношением числа распавшихся молекул к общему числу молекул). В большинстве случаев Т. д. сопровождается поглощением теплоты (приращение D Н> 0); поэтому в соответствии с нагревание усиливает её, степень смещения Т. д. с температурой определяется абсолютным значением D Н. Давление препятствует Т. д. тем сильнее, чем большим изменением (возрастанием) числа молей (D n) газообразных веществ сопровождается процесс; при D n= 0 (например, в реакции 2HlЫH 2+I 2) степень диссоциации от давления не зависит. Если твёрдые вещества не образуют и не находятся в высокодисперсном состоянии, то давление Т. д. однозначно определяется температурой. Для осуществления Т. д. твёрдых веществ (окислов, кристаллогидратов и прочее) важно знать температуру, при которой давление диссоциации становится равным внешнему (в частности, атмосферному) давлению. Так как выделяющийся газ может преодолеть давление окружающей среды, то по достижении этой температуры процесс разложения сразу усиливается.

  Из различных процессов Т. д. наибольшее практическое значение имеют разложение H 2O, CO 2, дегидрирование некоторых углеводородов (гомогенные реакции), диссоциация карбонатов, сульфидов (гетерогенные реакции). Их протекание связано со многими теплотехническими, химическими и металлургическими процессами, в частности с обжигом известняка, производством цементов и доменным процессом.

  Лит.:Киреев В. А., Курс физической химии, 3 изд., М., 1975; Карапетьянц М. Х., Химическая термодинамика, 3 изд., М., 1975.

  М. Х. Карапетьянц.

Термическая ионизация

Терми'ческая иониза'ция,см. .

Термическая нефтедобыча

Терми'ческая нефтедобы'ча,методы разработки нефтяных месторождений воздействием на нефтяные пласты теплом. Исходные положения для развития Т. н. высказаны Д. И. Менделеевым (1888), Д. В. Голубятниковым (1916), И. М. Губкиным (1928), А. Б. Шейнманом и К. К. Дубровой (1934). Внедрение Т. н. в СССР начато в 30-х гг. Для нагрева пласта при Т. н. применяют электроэнергию, подземное горение, пар, нагретую воду. Практическое значение имеют методы Т. н.: внутрипластовое горение (ВГ), влажное внутрипластовое горение (ВВГ), закачка теплоносителей (ЗТ), электротепловая обработка скважин (ЭТС), термохимическая обработка скважин (ТХС), паровая обработка скважин (ПС). ВГ осуществляется частичным (около 10%) сжиганием остаточной нефти в пласте. Очаг горения, инициируемый различными глубинными нагревательными устройствами (электрическими, огневыми, химическими и т. п.), продвигается по пласту за счёт подачи в пласт воздуха. В пласте достигается повышение температуры (порядка 400- 500 °С). Нефть из пласта извлекается путём вытеснения её газообразными веществами (азот, углекислый газ, пары воды), выпаривания из неё лёгких фракций и переноса их в направлении вытеснения. ВВГ производится путём ввода в пласт воды вместе с окислителем. При этом ускоряется процесс теплопереноса и извлечения нефти. В процессах ЗТ подготовка теплоносителей (пара, подогретой воды) производится на поверхности с применением парогенераторов (котлов) и подогревателей воды. ЗТ обычно применяется на месторождениях с глубиной залегания не более 600-800 миз-за увеличения потерь тепла с увеличением глубины залегания пластов. После того как часть пласта подвергнута воздействию ВГ, ВВГ или ЗТ для экономии затрат, переходят на закачку обычной воды. Прогретая зона («оторочка») при этом перемещается по пласту.

  В процессах ЭТС, ТХС и ПС в призабойной зоне создаётся и поддерживается температура, благоприятная для притока нефти и эксплуатации скважин (улучшение эффективной проницаемости, растворение парафино-асфальтено-смолистых отложений в нефти). Скважины (при 80-150 °С) обрабатывают периодически или непрерывно глубинными, или наземными генераторами тепла.

  Т. н. повышает коэффициент нефтеотдачи на 10-25%, улучшает фильтрацию нефти из пласта, позволяет разрабатывать залежи вязких, смолистых, парафинистых битуминозных нефтей и регулировать тепловой режим пластов, устранять их охлаждение; сокращает период разработки месторождений.

  Лит.:Шейнман А. Б., Малофеев Г. Б., Сергеев А. И., Воздействие на пласт теплом при добыче нефти, М., 1969; Термоинтенсификация добычи нефти, М., 1971; Тепловые методы добычи нефти, М., 1975.

  Ю. П. Желтов, А. Б. Шейнман.

Термическая обработка

Терми'ческая обрабо'ткаметаллов, процесс обработки изделий из металлов и сплавов путём теплового воздействия с целью изменения их структуры и свойств в заданном направлении. Это воздействие может сочетаться также с химическим, деформационным, магнитным и др.

  Историческая справка.Человек использует Т. о. металлов с древнейших времён. Ещё в эпоху ,применяя холодную ковку самородных золота и меди, первобытный человек столкнулся с явлением ,которое затрудняло изготовление изделий с тонкими лезвиями и острыми наконечниками, и для восстановления пластичности кузнец должен был нагревать холоднокованую медь в очаге. Наиболее ранние свидетельства о применении смягчающего наклёпанного металла относятся к концу 5-го тысячелетия до н. э. Такой отжиг по времени появления был первой операцией Т. о. металлов. При изготовлении оружия и орудий труда из железа, полученного с использованием ,кузнец нагревал железную заготовку для горячей ковки в древесноугольном горне. При этом железо науглероживалось, то есть происходила -одна из разновидностей .Охлаждая кованое изделие из науглероженного железа в воде, кузнец обнаружил резкое повышение его твёрдости и улучшение др. свойств. в воде науглероженного железа применялась с конца 2 - начала 1-го тысячелетия до н. э. В «Одиссее» Гомера (8-7 вв. до н. э.) есть такие строки: «Как погружает кузнец раскалённый топор иль секиру в воду холодную, и зашипит с клокотаньем железо - крепче железо бывает, в огне и воде закаляясь». В 5 в. до н. э. этруски закаливали в воде зеркала из высокооловянной бронзы (скорее всего для улучшения блеска при полировке). Цементацию железа в древесном угле или органическом веществе, закалку и стали широко применяли в средние века в производстве ножей, мечей, напильников и др. инструментов. Не зная сущности внутренних превращений в металле, средневековые мастера часто приписывали получение высоких свойств при Т. о. металлов проявлению сверхъестественных сил. До середины 19 в. знания человека о Т. о. металлов представляли собой совокупность рецептов, выработанных на основе многовекового опыта. Потребности развития техники, и в первую очередь развития сталепушечного производства. обусловили превращение Т. о. металлов из искусства в науку. В середине 19 в., когда армия стремилась заменить бронзовые и чугунные пушки более мощными стальными, чрезвычайно острой была проблема изготовления орудийных стволов высокой и гарантированной прочности. Несмотря на то что металлурги знали рецепты выплавки и литья стали, орудийные стволы очень часто разрывались без видимых причин. Д. К. на Обуховском сталелитейном заводе в Петербурге, изучая под микроскопом протравленные шлифы, приготовленные из дул орудий, и наблюдая под лупой строение изломов в месте разрыва, сделал вывод, что сталь тем прочнее, чем мельче её структура. В 1868 Чернов открыл внутренние структурные превращения в охлаждающейся стали, происходящие при определённых температурах. которые он назвал критическими точками аи b.Если сталь нагревать до температур ниже точки а,то её невозможно закалить, а для получения мелкозернистой структуры сталь следует нагревать до температур выше точки b.Открытие Черновым критических точек структурных превращений в стали позволило научно обоснованно выбирать режим Т. о. для получения необходимых свойств стальных изделий.

  В 1906 А. Вильм (Германия) на изобретённом им открыл старение после закалки (см. ) -важнейший способ упрочения сплавов на разной основе (алюминиевых, медных, никелевых, железных и др.). В 30-е гг. 20 в. появилась стареющих медных сплавов, а в 50-е - термомеханическая обработка сталей, позволившая значительно повысить прочность изделий. К комбинированным видам Т. о. относится термомагнитная обработка, позволяющая в результате охлаждения изделий в магнитном поле улучшать их некоторые магнитные свойства (см. , ) .

 Итогом многочисленных исследований изменений структуры и свойств металлов и сплавов при тепловом воздействии явилась стройная теория Т. о. металлов.

  Классификация видов Т. о. основывается на том, какого типа структурные изменения в металле происходят при тепловом воздействии. Т. о. металлов подразделяется на собственно термическую, заключающуюся только в тепловом воздействии на металл, химико-термическую, сочетающую тепловое и химическое воздействия, и термомеханическую, сочетающую тепловое воздействие и пластическую деформацию. Собственно термическая обработка включает следующие виды: отжиг 1-го рода, отжиг 2-го рода, закалку без полиморфного превращения и с полиморфным превращением, старение и отпуск.

  Отжиг 1-го рода(гомогенизационный, рекристаллизационный и для уменьшения остаточных напряжений) частично или полностью устраняет отклонения от равновесного состояния структуры, возникшие при литье, обработке давлением, сварке и др. технологических процессах. Процессы, устраняющие отклонения от равновесного состояния, идут самопроизвольно, и нагрев при отжиге 1-го рода проводят лишь для их ускорения. Основные параметры такого отжига - температура нагрева и время выдержки. В зависимости от того, какие отклонения от равновесного состояния устраняются, различают разновидности отжига 1-го рода. Гомогенизационный отжиг (см. ) предназначен для устранения последствий дендритной ,в результате которой после кристаллизации внутри кристаллитов твёрдого раствора химический состав оказывается неоднородным и, кроме того, может появляться неравновесная фаза, например химическое соединение, охрупчивающее сплав. При гомогенизационном отжиге приводит к растворению неравновесных избыточных фаз, в результате чего сплав становится более гомогенным (однородным). После такого отжига повышаются пластичность и стойкость против коррозии. Рекристаллизационный отжиг устраняет отклонения в структуре от равновесного состояния, возникающие при пластической деформации. При обработке давлением, особенно холодной, металл наклёпывается - его прочность возрастает, а пластичность снижается из-за повышения плотности в кристаллитах. При нагреве наклёпанного металла выше некоторой температуры развивается первичная и затем собирательная ,при которой плотность дислокаций резко снижается. В результате металл разупрочняется и становится пластичнее. Такой отжиг используют для улучшения обрабатываемости давлением и придания металлу необходимого сочетания твёрдости, прочности и пластичности. Как правило, при рекристаллизационном отжиге стремятся получить бестекстурный материал, в котором отсутствует свойств. В производстве листов из трансформаторной стали рекристаллизационный отжиг применяют для получения желательной ,возникающей при рекристаллизации. Отжиг, уменьшающий напряжения, применяют к изделиям, в которых при обработке давлением, литье, сварке, термообработке и др. технологических процессах возникли недопустимо большие остаточные напряжения, взаимно уравновешивающиеся внутри тела без участия внешних нагрузок. Остаточные напряжения могут вызвать искажение формы и размеров изделия во время его обработки, эксплуатации или хранения на складе. При нагревании изделия предел текучести снижается и, когда он становится меньше остаточных напряжений, происходит быстрая их разрядка путём пластического течения в разных слоях металла.

  Отжиг 2-го родаприменим только к тем металлам и сплавам, в которых при изменении температуры протекают фазовые превращения. При отжиге 2-го рода происходят качественные или только количественные изменения фазового состава (типа и объёмного содержания фаз) при нагреве и обратные изменения при охлаждении. Основные параметры такого отжига - температура нагрева, время выдержки при этой температуре и скорость охлаждения. температуру и время отжига выбирают так, чтобы обеспечить необходимые фазовые изменения, например полиморфное превращение (см. ) или растворение избыточной фазы. При этом обычно следят за тем, чтобы не выросло крупное зерно фазы, стабильной при температуре отжига. Скорость охлаждения должна быть достаточно мала, чтобы при понижении температуры успели пройти обратные фазовые превращения, в основе которых лежит диффузия. При отжиге 2-го рода изделия охлаждают вместе с печью или на воздухе. В последнем случае процесс называется .Отжиг 2-го рода применяют чаще всего к стали для общего измельчения структуры, смягчения и улучшения обрабатываемости резанием.

  Закалка без полиморфного превращенияприменима к любым сплавам, в которых при нагревании избыточная фаза полностью или частично растворяется в основной фазе. Важнейшие параметры процесса - температура нагрева, время выдержки и скорость охлаждения. Скорость охлаждения должна быть настолько большой, чтобы избыточная фаза не успела выделиться (процесс выделения фазы обеспечивается диффузионным перераспределением компонентов в твёрдом растворе). Это условие выполняется, если дуралюмин и медные сплавы закаливают в воде; магниевые же сплавы и некоторые аустенитные стали можно закаливать с охлаждением на воздухе. В результате закалки образуется пересыщенный твёрдый раствор. Закалка без полиморфного превращения может как упрочнять, так и разупрочнять сплав (в зависимости от фазового состава и особенностей структуры в исходном и закалённом состояниях). Алюминиевые сплавы с магнием (см. ) закаливают для повышения прочности; у бериллиевой бронзы же после закалки прочность оказывается ниже, а пластичность выше, чем после отжига, и закалку этой бронзы можно использовать для повышения пластичности перед холодной деформацией. Основное назначение закалки без полиморфного превращения - подготовка сплава к старению (см. ниже).

  Закалка с полиморфным превращениемприменима к любым металлам и сплавам, в которых при охлаждении перестраивается .Основные параметры процесса - температура нагрева, время выдержки и скорость охлаждения. Нагрев производят до температуры выше критической точки, чтобы образовалась высокотемпературная фаза. Охлаждение должно идти с такой скоростью, чтобы не происходило «нормального» диффузионного превращения и перестройка решётки протекала по механизму бездиффузионного .При закалке с полиморфным превращением образуется ,и поэтому такую термообработку называют закалкой на мартенсит. Углеродистые стали закаливают на мартенсит в воде, а многие легированные, в которых диффузионные процессы протекают замедленно, можно закаливать на мартенсит с охлаждением в масле и даже на воздухе. Основная цель закалки на мартенсит - повышение твёрдости и прочности, а также подготовка к отпуску. Сильное упрочнение сталей при закалке на мартенсит обусловлено образованием пересыщенного углеродом раствора внедрения на базе a-железа, появлением большего числа двойниковых прослоек и повышением плотности дислокаций при мартенситном превращении, закреплением дислокаций атомами углерода и дисперсными частицами карбида, которые могут выделяться на дислокациях в местах сегрегации углерода. Углеродистые стали при закалке на мартенсит резко охрупчиваются. Основная причина этого - малая подвижность дислокаций в мартенсите. Безуглеродистые железные сплавы после закалки на мартенсит остаются пластичными.

  Старениеприменимо к сплавам, которые были подвергнуты закалке без полиморфного превращения. Пересыщенный твёрдый раствор в таких сплавах термодинамически неустойчив и склонен к самопроизвольному распаду. Старение заключается в образовании путём диффузии внутри зерен твердого раствора участков, обогащенных растворённым элементом (зон Гинье - Престона) и (или) дисперсных частиц избыточных фаз, чаще всего химических соединений. Эти зоны и дисперсные частицы выделившихся фаз тормозят скольжение дислокаций, чем и обусловлено упрочнение при старении. Стареющие сплавы называют поэтому дисперсионно-твердеющими. Основные параметры старения - температура и время выдержки. С повышением температуры ускоряются диффузионные процессы распада пересыщенного твёрдого раствора, и сплав быстрее упрочняется. Начиная с определённой выдержки, при достаточно высокой температуре происходит перестаривание - снижение прочности сплава. Причиной перестаривания является коагуляция дисперсных выделений из раствора, которая заключается в растворении более мелких и росте более крупных частиц выделившейся фазы. В результате коагуляции расстояние между этими частицами возрастает и торможение дислокаций в зёрнах твёрдого раствора уменьшается. Одни сплавы, например дуралюмины, после закалки сильно упрочняются уже во время выдержки при комнатной температуре (естественное старение). Большинство сплавов после закалки нагревают, чтобы ускорить процессы распада пересыщенного твёрдого раствора (искусств. старение). Иногда проводят ступенчатое старение с выдержкой вначале при одной, а затем при другой температуре. Старение применяют главным образом для повышения прочности и твёрдости конструкционных материалов (алюминиевых, магниевых, медных, никелевых сплавов и некоторых легированных сталей), а также для повышения коэрцитивной силы магнитно-твёрдых материалов. Время выдержки для достижения заданных свойств в зависимости от состава сплава и температуры старения колеблется от десятков миндо нескольких сут.

  Отпускуподвергают сплавы, главным образом стали, закалённые на мартенсит. Основные параметры процесса - температура нагрева и время выдержки, а в некоторых случаях и скорость охлаждения (для предотвращения отпускной хрупкости). В сталях мартенсит является пересыщенным раствором, и сущность структурных изменений при отпуске та же, что и при старении, - распад термодинамически неустойчивого пересыщенного раствора. Отличие отпуска от старения связано прежде всего с особенностями субструктуры мартенсита, а также с поведением углерода в мартенсите закалённой стали. Для мартенсита характерно большое число дефектов кристаллического строения (дислокаций и др.). Атомы углерода быстро диффундируют в решётке мартенсита и образуют на дислокациях сегрегации, а возможно и дисперсные частицы карбида сразу после закалки или даже в период закалочного охлаждения. В результате закалённая сталь оказывается в состоянии максимального дисперсного твердения или в близком к нему состоянии. Поэтому при выделении из мартенсита дисперсных частиц карбида во время отпуска прочность и твёрдость стали или вообще не повышаются, или достигается лишь незначительное упрочнение. Уменьшение же концентрации углерода в мартенсите при выделении из него карбида является причиной разупрочнения мартенсита. В итоге отпуск сталей, как правило, приводит к снижению твёрдости и прочности с одновременным ростом пластичности и ударной вязкости. Отпуск безуглеродистых железных сплавов, закалённых на мартенсит, может приводить к сильному дисперсионному твердению из-за выделения из пересыщенного раствора дисперсных частиц интерметаллических соединений. Причина упрочнения при этом та же, что и при старении. Термины «отпуск» и «старение» часто используют как синонимы.