Страница:
Но, говоря о теории Маха, необходимо помнить, что психика строит 'формы' мира (т.е. делает его таким, каким мы его воспринимаем) из чего-то другого, до чего мы никогда не можем добраться. Голубой цвет неба нереален, зелёный цвет луга - тоже. Очевидно, в 'небе', т.е. в атмосферном воздухе, есть нечто, заставляющее его казаться голубым, точно так же как в траве на лугу есть нечто, заставляющее её казаться зелёной.
Без этого дополнения человек, основываясь на идеях Маха, легко мог бы сказать: это яблоко есть комплекс моих ощущений, значит, оно только кажется, а не существует в действительности.
Это неверно. Яблоко существует, и человек самым реальным образом может в этом убедиться. Но оно - не то, чем кажется нам в трёхмерном мире.
Психическое (если рассматривать его как противоположность физическому, или трёхмерному) очень похоже на то, что должно существовать в четвёртом измерении, и мы вправе сказать, что мысль движется в четвёртом измерении.
Для неё нет преград и расстояний. Она проникает внутрь непроницаемых предметов, представляет себе строение атомов, химический состав звёзд, население морского дна, жизнь народа, исчезнувшего десять тысяч лет тому назад...
Никакие стены, никакие физические условия не стесняют нашей фантазии, нашего воображения.
Разве не покидали в своём воображении шлиссельбургские бастионы Морозов и его товарищи? Разве сам Морозов не путешествовал во времени и пространстве, когда, читая Апокалипсис в Алексеевском равелине Петропавловской крепости, видел грозовые тучи, несшие над греческим островом Патмос в пять часов вечера 30 сентября 395 года?
Разве во сне мы не живём в фантастическом, сказачном царстве, где всё способно превращаться, где нет устойчивости физического мира, где один человек может стать другим или сразу двумя, где самые невероятные вещи кажутся простыми и естественными, где события часто идут в обратном порядке, от конца к началу, где мы видим символические изображения идей и настроений, где мы разговариваем с умершими, летаем по воздуху, проходим сквозь стены, тонем, сгораем, умираем и всё-таки остаёмся живыми?
Сопоставляя всё это, мы видим, что нет надобности считать четырёхмерными существами только духов, появляющихся или не появляющихся на спиритических сеансах. С неменьшим основанием можно сказать, что мы сами - четырёхмерные существа и обращены к третьему измерению только одной своей стороной, т.е. лишь небольшой частью своего существа. Только эта часть живёт в трёх измерениях, и мы сознаём только эту часть. Большая же часть нашего существа живёт в четырёх измерениях, но эту большую часть мы не сознаём. Или ещё правильнее сказать, что мы живём в четырёхмерном мире, но сознаём себя в трёхмерном. Это значит, что мы живём в условиях одного рода, а представляем себя в других. К такому же заключению приводят нас и выводы психологии. Психология, хотя и очень робко, говорит о возможности пробуждения нашего сознания, т.е. о возможности особого его состояния, когда оно видит и ощущает себя в реальном мире, не имеющем ничего общего с миром вещей и явлений - в мире мыслей, образов и идей.
Рассматривая свойства четвёртого измерения, я упомянул о том, что тессаракт, т.е. a4, может быть получен движением куба в пространстве, причём двигаться должны все точки куба.
Следовательно, если предположить, что из каждой точки куба идёт линия, по которой происходит это движение, то комбинация этих линий составит проекцию четырёхмерного тела. Это тело, т.е. тессаракт, можно рассматривать как бесконечное число кубов, как бы вырастающих из первого.
Посмотрим теперь, не известны ли нам примеры такого движения, при котором двигались бы все точки данного куба.
Молекулярное движение, т.е. движение мельчайших частиц материи, усиливающееся при нагревании и ослабевающее при охлаждении - самый подходящий пример движения в четвёртом измерении, несмотря на все ошибочные представления физиков об этом движении.
В статье 'Можно ли надеяться увидеть молекулы?' Д.А. Гольдхаммер говорит, что, согласно современным возрениям, молекулы суть тельца с линейгыми размерами между одной миллионной и одной десятимиллионной долей миллиметра. Вычислено, что в одной миллиардной доле кубического миллиметра, т.е. в одном микроне, при температуре в 0 градусов Цельсия и при обычном давлении, находится около тридцати миллионов молекул кислорода. Молекулы движутся очень быстро; так, большинство молекул кислорода при нормальных условиях имеет скорость около 450 метров в секунду. Несмотря на столь большие скорости, молекулы не разлетаются мгновенно во все стороны только потому, что часто сталкиваются друг с другом и меняют от этого направление движения. Путь молекулы имеет вид очень запутанного зигзага, - в сущности, она топчется, так сказать, на одном месте.
Оставим пока в стороне запутанный зигзаг и теорию столкновения молекул (броуновское движение), и попытаемся установить, какие результаты производит молекулярное движение в видимом мире.
Чтобы указать пример движения в четвёртом измерении, мы должны найти такое движение, при котором данное тело действительно двигалось бы, а не оставалось на одном месте (или в одном состоянии).
Рассматривая все известные нам виды движения, мы должны признать, что лучше всего подходят к поставленным условиям расширение и сокращение тел.
Расширение газов, жидкостей и твёрдых тел означает, что молекулы отдаляются одна от другой. Сокращение твёрдых тел, жидкостей и газов означает, что молекулы приближаются одна к другой и расстояние между ними уменьшается. Здесь есть некоторое пространство и некоторое расстояние. Не лежит ли это пространство в четвёртом измерении?
Мы знаем, что при движении по этому пространству двигаются все точки данного геометрического тела, т.е. все молекулы данного физического тела. Фигура, полученная от движения в пространстве куба при расширении и сокращении будет иметь для нас вид куба, и мы можем представить её себе в виде бесконечного числа кубов.
Можно ли предположить, что комбинация линий, проведённых из всех точек куба, как на поверхности, так и внутри линий, по которым точки отдаляются одна от другой и приближаются одна к другой, составит проекцию четырёхмерного тела?
Чтобы ответить на это, нужно выяснить, что же это за линии и что за направление? Линии соединяют все точки данного тела с его центром. Следовательно, направление найденного движения - от центра по радиусам.
При исследовании путей движения точек (молекул) тела при расширении и сокращении мы обнаруживаем в них много интересного.
Расстояние между молекулами мы видеть не можем. В твёрдых телах, в жидкостях и газах мы не в состоянии его увидеть, потому что оно крайне мало; в сильно разрежённой материи, например, в круксовых трубках, где это расстояние, вероятно, увеличивается до ощутимых нашими аппаратами размеров, мы не можем его видеть, потому что сами частицы, молекулы, слишком малы и недоступны нашему наблюдению. В упомянутой выше статье Гольдхаммер говорит, что при определённых условиях молекулы можно сфотографировать, если бы их удалось сделать светящимися. Он пишет, что при ослаблении давления в круксовой трубке до одной миллионной доли атмосферы в одном микроне содержится всего тридцать молекул кислорода. Если бы они светились, их можно было бы сфотографировать на экране. Насколько возможно такое фотографирование - это другой вопрос. В данном же рассуждении молекула как некое реальное количество в отношении к физическому телу представляет собой точку в её отношении к геометрическому телу.
Все тела обладают молекулами и, следовательно, должны иметь некоторое, хотя бы очень малое межмолекулярное пространство. Бех этого мы не можем представить себе реальное тело, а разве что воображаемые геометрические тела. Реальное тело состоит из молекул и обладает некоторым межмолекулярным пространством.
Это означает, что разница между кубом трёх измерений a3 и кубом четырёх измерений a4 заключается в том, что куб четырёх измерений состоит из молекул, тогда как куб трёх измерений в действительности не существует и является проекцией четырёхмерного тела на трёхмерное пространство.
Но, расширяясь или сокращаясь, т.е. двигаясь в четвёртом измерении, если принять предыдущие рассуждения, куб или шар постоянно остаются для нас кубом или шаром, изменяясь только в размерах. В одной из своих книг Хинтон совершенно справедливо замечает, что происхождение куба высшего измерения через наше пространство воспринималось бы нами как изменение свойств его материи. Он добавляет, что идея четвёртого измерения может возникнуть при наблюдении серии прогрессивно увеличивающихся или уменьшающихся шаров или кубов. Здесь он вплотную приближается к правильному определению движения в четвёртом измерении.
Один из наиболее важных, ясных и понятных видов движения в четвёртом измерении в этом смысле есть рост, в основе которого лежит расширение. Почему это так - объяснить нетрудно. Всякое движение в пределах трёхмерного пространства есть в то же время движение во времени. Молекулы, или точки, расширяющегося куба при сокращении не возвращаются на прежнее место. Они описывают определённую кривую, возвращаясь не в ту точку времени, из которой вышли, а в другую. А если предположить, что они вообще не возвращаются, то их расстояние от первоначального момента времени будет всё более и более возрастать. Представим себе такое внутреннее движение тела, при котором его молекулы, отдалившись одна от другой, не сближаются, а расстояние между ними заполняется новыми молекулами, в свою очередь расходящимися и уступающими место новым. Такое внутреннее движение тела будет его ростом, по крайней мере, геометрической схемой роста. Если сравнить крохотную зелёную завязь яблока с большим красным плодом, висящим на этой же ветке, мы поймём, что молекулы завязи не могли создать яблоко, двигаясь только по трёхмерному пространству. Кроме непрерывного движения во времени, им нужно непрерывное уклонение в пространство, лежащее вне трёхмерной сферы. Завязь отделена от яблока временем. С этой точки зрения, яблоко - это три-четыре месяца движения молекул в четвёртом измерении. Представим себе весь путь от завязи до яблока, мы увидим направление четвёртого измерения, т.е. таинственный четвёртый перпендикуляр - линию, перпендикулярную ко всем трём перпендикулярам нашего пространства.
Хинтон так близко стоит к правильному решению вопроса о четвёртом измерении, что иногда угадывает место 'четвёртого измерения' в жизни, даже когда не в состоянии точно определить это место. Так, он говорит, что симметрию строения живых организмов можно объяснить движением их частиц в четвёртом измерении.
Всем известен, говорит Хинтон, способ получения на бумаге изображений, похожих на насекомых. На бумагу капают чернила и складывают её пополам. Получается очень сложная симметричная фигура, похожая на фантастическое насекомое. Если бы ряд таких изображений увидел человек, совершенно не знакомый со способом их приготовления, то он, рассуждая логически, должен был бы прийти к заключению, что они получены путём складывания бумаги, т.е. что их симметрично расположенные точки соприкасались. Точно также и мы, рассматривая и изучая формы строения живых существ, напоминающие фигуры на бумаге, полученные описанным способом, можем заключить, что симметричные формы насекомых, листьев, птиц и т.п. создаются процессом, аналогичным складыванию. Симметричное строение живых тел можно объяснить если не складыванием пополам в четвёртом измерении, то, во всяком случае, таким же, как при складывании, расположением мельчайших частиц, из которых строятся эти тела. В природе существует очень любопытный феномен, создающий совершенно правильные чертежи четвёртого измерения - нужно только уметь их читать. Они видны в фантастически разнообразных, но всегда симметричных фигурах снежинок, в рисунках цветов, звёзд, папоротников и кружев морозных узоров на стекле. Капельки воды, осаждаясь на холодное стекло или лёд, немедленно начинают замерзать и расширяться, оставляя следы своего движения в четвёртом измерении в виде причудливых рисунков. Морозные узоры и снежинки - это фигуры четвёртого измерения, таинственные a4. Воображаемое в геометрии движение низшей фигуры для получения высшей осуществляется здесь на деле, и полученная фигура действительно является следом движения благодаря тому, что мороз сохраняет все моменты расширения замерзающих капелек воды.
Формы живых тел, цветы, папоротники созданы по тому же принципу, хотя и более сложно. Общий вид дерева, постепенно расширяющегося в ветвях и побегах, есть как бы диграмма четвёртого измерения, a4. Голые деревья зимой и ранней весной нередко представляют собой очень сложные и чрезвычайно интересные диаграммы четвёртого измерения. Мы проходим мимо них, ничего не замечая, так как думаем, что дерево существует в трёхмерном пространстве. Такие же замечательные диаграммы можно увидеть в узорах водорослей, цветов, молодых побегов, некоторых семян и т.д. и т.п. Иногда достаточно немного увеличить их, чтобы обнаружить тайны Великой Лаборатории, скрытой от наших глаз.
В книге проф. Блоссфельдта * о художественных формах в природе читатель может найти несколько превосходных иллюстраций к приведённым выше положениям.
Живые организмы, тела животных и людей построены по принципу симметричного движения. Чтобы понять эти принципы, возьмём простой схематический пример симметричного движения: представим себе куб, состоящий из двадцати семи кубиков, и будем мысленно воображать, что этот куб расширяется и сокращается. При расширении все двадцать шесть кубиков, расположенные вокруг центрального, будут удаляться от него, а при сокращении опять к нему приближаться. Для удобства рассуждения и для большего сходства нашего куба с телом, состоящим из молекул, предположим, что кубики измерения не имеют, что это просто точки. Иначе говоря, возьмём только центры двадцати семи кубиков и мысленно соединим их линиями как с центром, так и между собой.
Рассматривая расширение куба, состоящего из двадцати семи кубиков, мы можем сказать, что каждый из этих кубиков, чтобы не столкнуться с другими и не помешать их движению, должен двигаться, удаляясь от центра, т.е. по линии, соединяющей его центр с центром центрального кубика. Это - первое правило:
При расширении и сокращении молекулы движутся по линиям, соединяющим из с центром.
Далее мы виим в нашем кубе, что не все линии, соединяющие двадцать шесть точек с центром, равны. Линии, которые идут к центру от точек, лежащих на углах куба, т.е. от центра угловых кубиков, длиннее линий, которые соединяют с центром точки, лежащие в центрах шести квадратов на поверхностях куба. Если мы предположим, что межмолекулярное пространство удваивается, то одновременно увеличиваются вдвое все линии, соединяющие двадцать шесть точек с центром. Линии эти не равны, следовательно молекулы движутся не с одинаковой скоростью, - одни медленнее, другие быстрее, при этом находящиеся дальше от центра движутся быстрее, находящиеся ближе - медленнее. Отсюда можно вывести второе правило:
Скорость движения молекул при расширении и сокращении тела пропорциональна длине линий, соединяющих эти молекулы с центром.'
Наблюдая расширение куба, мы видим, что расстояние между всеми двадцатью семью кубиками увеличилось пропорционально прежнему.
Назовём а - отрезки, соединяющие 26 точек с центром, и б - отрезки, соединяющие 26 точек между собой. Построив внутри расширяющегося и сокращающегося куба несколько треугольников, мы увидим, что отрезки б удлиняются пропорционально удлинению отрезков а. Из этого можно вывести третье правило:
Расстояние между молекулами при расширении увеличивается пропорционально их удалению от центра.
Иными словами, если точки находятся на равном расстоянии от центра, они и останутся на равном расстоянии от него; а две точки, находившиеся на равном расстоянии от третьей, останутся от ней на равном расстоянии. При этом, если смотреть на движение не со стороны центра, а со стороны какой-нибудь из точек, будет казаться, что эта точка и есть центр, от которого идёт расширение, будет казаться, что все другие точки отдаляются от неё или приближаются к ней, сохраняя прежнее отношение к ней и между собой, а она сама остаётся неподвижной. 'Центр везде'!
Последнее правило лежит в основе законов симметрии в строении живых организмов. Но живые организмы строятся не одним расширением. Сюда входит элемент движения во времени. При росте каждая молекула описывает кривую, получающуюся из комбинации двух движений в пространстве и времени. Рост идёт в том же направлении, по тем же линиям, что и расширение. Поэтому законы роста должны быть аналогичны законам расширения. Законы расширения, в частности, третье правило, гарантируют свободно расширяющимся телам строгую симметрию: если точки, находившиеся на равном расстоянии от центра, будут всегда оставаться от него на равном расстоянии, тело будет расти симметрично.
В фигуре, полученной из растёкшихся чернил на сложенном пополам листке бумаги, симметрия всех точек получилась благодаря тому, что точки одной стороны соприкасались с точками другой стороны. Любой точке на одной стороне соответствовала точка на другой стороне, и когда бумагу сложили, эти точки соприкоснулись. Из третьего правила вытекает, что между противоположными точками четырёхмерного тела существует какое-то соотношение, какая-то связь, которой мы до сих пор не замечали. Каждой точке соответствует одна или несколько других, с которыми она каким-то непонятным образом связана. Именно, она не может двигаться самостоятельно, её движение зависит от движения соответствующих ей точек, занимающих аналогичные места в расширяющемся или сокращающемся теле. Это и будут противоположные ей точки. Она как бы соприкасается с ними, соприкасается в четвёртом измерении. Расширяющееся тело точно складывается в разных направлениях, и этим устанавливается загадочная связь между его противоположными точками.
Попробуем рассмотреть, как происходит расширение простейшей фигуры. Рассмотрим её даже не в пространстве, а на плоскости. Возьмём квадрат и соединим с центром четыре точки, лежащие в его углах. Затем соединим с центром точки, лежащие на серединах сторон, и, наконец, точки, лежащие на половинном расстоянии между ними. Первые четыре точки, т.е. точки, лежашие в углах, назовём точками А; точки, лежащие по серединам сторон квадрата, точками В; наконец, точки, лежащие между ними (их будет восемь), точками С.
Точки А, В и C лежат на разных расстояниях от центра; поэтому при расширении они будут двигаться с неодинаковой скоростью, сохраняя своё отношение к центру. Кроме того, все точки A связаны между собой, как связаны между собой точки B и C. Между точками каждой группы существует таинственная внутренняя связь. Они должны оставаться на равном расстоянии от центра.
Предположим теперь, что квадрат расширяется, т.е. все точки A, B и C движутся, удаляясь от центра по радиусам. Пока фигура расширяется свободно, движение точек происходит по указанным правилам, фигура остаётся квадратом и сохраняет симметричность. Но предположим, что на пути движения одной из точек C вдруг оказалось какое-то препятствие, заставившее эту точку остановиться. Тогда происходит одно из двух: или остальные точки будут двигаться, как будто ничего не произошло, или же точки, соответствующие точке C, тоже остановятся. Если они будут двигаться, симметрия фигуры нарушится. Если остановятся, то это подтвердит вывод из правила третьего, согласно которому точки, находившиеся на равном расстоянии от центра, при расширении остаются на равном расстоянии от него. И действительно, если все точки C, повинуясь таинственной связи между ними и точкой C, которая встретилась с препятствием, остановятся в то время, как точки A и B движутся, из нашего квадрата получится правильная симметричная звезда. Возможно, что при росте растений и живых организмов именно это и происходит. Возьмём более сложную фигуру, у которой центр, от которого происходит расширение, не один, а несколько, и все они расположены на одной линии - точки, удаляющиеся от этих центров при расширении, расположены по обеим сторонам центральной линии. Тогда при аналогичном расширении получится не звезда, а нечто вроде зубчатого листа. Если мы возьмём подобную фигуру не на плоскости, а в трёхмерном пространстве и предположим, что центры, от которых идёт расширение, лежат не на одной оси, а на нескольких, то получим при расширении фигуру, которая напоминает живое тело с симметричными конечностями и пр. А если мы предположим, что атомы фигуры движутся во времени, то получится 'рост' живого тела. Законы роста, т.е. движения, начинающегося от центра по радиусам при расширении и сокращении, выдвигают теорию, способную объяснить причины симметричного строения живых тел.
Определения состояний материи в физике становятся всё более и более условными. Одно время к трём известным состояниям (твёрдому, жидкому, газообразному) пытались добавить ещё и 'лучистую материю', как называли сильно разрежённые газы в круксовых трубках. Существует теория, которая считает коллоидное, желеобразное состояние материи - состоянием, отличающимся от твёрдого, жидкого и газообразного. Согласно этой теории, органическая материя есть разновидность коллоидной материи или формируется из неё. Понятие материи в этих состояниях противопоставляется понятию энергии. Затем возникла электронная теория, в которой понятие материи почти не отличается от понятия энергии; позднее появились различные теории строения атома, которые дополнили понятие материи множеством новых идей.
Но как раз в этой области более чем в какой-либо другой научные теории отличаются от понятий обыденной жизни. Для непосредственной ориентировки в мире феноменов нам необходимо отличать материю от энергии, а также различать три состояния материи: твёрдое, жидкое и газообразное. Вместе с тем, приходится признать, что даже эти три известные нам состояния материи различаются ясно и неоспоримо только в таких 'классических' формах, как кусок железа, вода в реке, воздух, которым мы дышим. А переходные формы бывают разными и совпадают друг с другом; поэтому мы не всегда знаем точно, когда одно перешло в другое, не можем провести чёткой разграничительной линии, не можем сказать, когда твёрдое тело превратилось в жидкость, а жидкость - в газ. Мы предполагаем, что разные состояния материи зависят от разной силы сцепления молекул, от быстроты и свойств молекулярного движения, но мы различаем эти состояния только по внешним признакам, очень непостоянным и зачастую перемешиваюшимся между собой.
Можно определённо утверждать, что каждое более тонкое состояние материи является более энергетическим, т.е. заключающим в себе как бы меньше массы и больше движения. Если материю противопоставить времени, то можно сказать, что чем тоньше состояние материи, тем больше в нём времени и меньше материи. В жидкости больше 'времени', чем в твёрдом теле; в газе больше 'времени', чем в воде.
Если мы допустим существование ещё более тонких состояний материи, они должны быть более энергетическими, чем признаваемые физикой; согласно вышесказанному, в них должно быть больше времени и меньше пространства, больше движения и меньше времени. Логически необходимость энергетических состояний материи давно уже принятия в физике и доказывается очень понятными рассуждениями.
'Что такое, в сущности, субстанция? - пишет Ш. Фрейсинэ в 'Очерках по философии науки'. - Определение субстанции никогда не отличалось большей ясностью и сделалось ещё менее ясным после открытий современной науки. Можно ли, например, назвать субстанцией тот таинственный агент, к которому прибегают физики для объяснения явления теплоты и света? Этот агент, эта среда, этот механизм - назовите, как угодно - существует, так как проявляется в неопровержимых действиях. Однако он лишён тех качеств, без которых трудно представить себе субстанцию. Он не имеет веса, у него, возможно, нет и массы; он не производит непосредственного впечатления ни на один из наших органов чувств; одним словом, у него нет ни одного признака, который указывал бы на то, что некогда называли 'материальным'. С другой стороны, это не дух, по крайней мере, никому не приходило в голову называть его таким образом. Но неужели только потому, что его нельзя подвести под категорию субстанции, его реальность следует отрицать?
Можно ли по той же причине отрицать реальность того механизма, благодаря которому тяготение передаётся в глубину пространства со скоростью, несравненно большей скорости света (Лаплас считал её мгновенной)? Великий Ньютон полагал невозможным обойтись без этого агента. Тот, кому принадлежит открытие всемирного тяготения, писал Бентли: 'Чтобы тяготение было прирождено и присуще, свойственно материи в том смысле, что одно тело могло бы действовать на другое на расстоянии через пустое пространство, без посредства чего-либо, при помощи чего и сквозь что могли бы передаваться действие и сила от одного тела к другому, мне кажется таким абсурдом, что, я думаю, ни один человек, способный философски рассуждать, не впадёт в него. Тяготение должно производиться агентом, обнаруживающим своё непрерывное влияние на тела по известным законам; но материален этот агент или не материален? Этот вопрос и представляется оценке моих читателей' (3-е письмо к Бентли от 25 февраля 1692 года).
Без этого дополнения человек, основываясь на идеях Маха, легко мог бы сказать: это яблоко есть комплекс моих ощущений, значит, оно только кажется, а не существует в действительности.
Это неверно. Яблоко существует, и человек самым реальным образом может в этом убедиться. Но оно - не то, чем кажется нам в трёхмерном мире.
Психическое (если рассматривать его как противоположность физическому, или трёхмерному) очень похоже на то, что должно существовать в четвёртом измерении, и мы вправе сказать, что мысль движется в четвёртом измерении.
Для неё нет преград и расстояний. Она проникает внутрь непроницаемых предметов, представляет себе строение атомов, химический состав звёзд, население морского дна, жизнь народа, исчезнувшего десять тысяч лет тому назад...
Никакие стены, никакие физические условия не стесняют нашей фантазии, нашего воображения.
Разве не покидали в своём воображении шлиссельбургские бастионы Морозов и его товарищи? Разве сам Морозов не путешествовал во времени и пространстве, когда, читая Апокалипсис в Алексеевском равелине Петропавловской крепости, видел грозовые тучи, несшие над греческим островом Патмос в пять часов вечера 30 сентября 395 года?
Разве во сне мы не живём в фантастическом, сказачном царстве, где всё способно превращаться, где нет устойчивости физического мира, где один человек может стать другим или сразу двумя, где самые невероятные вещи кажутся простыми и естественными, где события часто идут в обратном порядке, от конца к началу, где мы видим символические изображения идей и настроений, где мы разговариваем с умершими, летаем по воздуху, проходим сквозь стены, тонем, сгораем, умираем и всё-таки остаёмся живыми?
Сопоставляя всё это, мы видим, что нет надобности считать четырёхмерными существами только духов, появляющихся или не появляющихся на спиритических сеансах. С неменьшим основанием можно сказать, что мы сами - четырёхмерные существа и обращены к третьему измерению только одной своей стороной, т.е. лишь небольшой частью своего существа. Только эта часть живёт в трёх измерениях, и мы сознаём только эту часть. Большая же часть нашего существа живёт в четырёх измерениях, но эту большую часть мы не сознаём. Или ещё правильнее сказать, что мы живём в четырёхмерном мире, но сознаём себя в трёхмерном. Это значит, что мы живём в условиях одного рода, а представляем себя в других. К такому же заключению приводят нас и выводы психологии. Психология, хотя и очень робко, говорит о возможности пробуждения нашего сознания, т.е. о возможности особого его состояния, когда оно видит и ощущает себя в реальном мире, не имеющем ничего общего с миром вещей и явлений - в мире мыслей, образов и идей.
Рассматривая свойства четвёртого измерения, я упомянул о том, что тессаракт, т.е. a4, может быть получен движением куба в пространстве, причём двигаться должны все точки куба.
Следовательно, если предположить, что из каждой точки куба идёт линия, по которой происходит это движение, то комбинация этих линий составит проекцию четырёхмерного тела. Это тело, т.е. тессаракт, можно рассматривать как бесконечное число кубов, как бы вырастающих из первого.
Посмотрим теперь, не известны ли нам примеры такого движения, при котором двигались бы все точки данного куба.
Молекулярное движение, т.е. движение мельчайших частиц материи, усиливающееся при нагревании и ослабевающее при охлаждении - самый подходящий пример движения в четвёртом измерении, несмотря на все ошибочные представления физиков об этом движении.
В статье 'Можно ли надеяться увидеть молекулы?' Д.А. Гольдхаммер говорит, что, согласно современным возрениям, молекулы суть тельца с линейгыми размерами между одной миллионной и одной десятимиллионной долей миллиметра. Вычислено, что в одной миллиардной доле кубического миллиметра, т.е. в одном микроне, при температуре в 0 градусов Цельсия и при обычном давлении, находится около тридцати миллионов молекул кислорода. Молекулы движутся очень быстро; так, большинство молекул кислорода при нормальных условиях имеет скорость около 450 метров в секунду. Несмотря на столь большие скорости, молекулы не разлетаются мгновенно во все стороны только потому, что часто сталкиваются друг с другом и меняют от этого направление движения. Путь молекулы имеет вид очень запутанного зигзага, - в сущности, она топчется, так сказать, на одном месте.
Оставим пока в стороне запутанный зигзаг и теорию столкновения молекул (броуновское движение), и попытаемся установить, какие результаты производит молекулярное движение в видимом мире.
Чтобы указать пример движения в четвёртом измерении, мы должны найти такое движение, при котором данное тело действительно двигалось бы, а не оставалось на одном месте (или в одном состоянии).
Рассматривая все известные нам виды движения, мы должны признать, что лучше всего подходят к поставленным условиям расширение и сокращение тел.
Расширение газов, жидкостей и твёрдых тел означает, что молекулы отдаляются одна от другой. Сокращение твёрдых тел, жидкостей и газов означает, что молекулы приближаются одна к другой и расстояние между ними уменьшается. Здесь есть некоторое пространство и некоторое расстояние. Не лежит ли это пространство в четвёртом измерении?
Мы знаем, что при движении по этому пространству двигаются все точки данного геометрического тела, т.е. все молекулы данного физического тела. Фигура, полученная от движения в пространстве куба при расширении и сокращении будет иметь для нас вид куба, и мы можем представить её себе в виде бесконечного числа кубов.
Можно ли предположить, что комбинация линий, проведённых из всех точек куба, как на поверхности, так и внутри линий, по которым точки отдаляются одна от другой и приближаются одна к другой, составит проекцию четырёхмерного тела?
Чтобы ответить на это, нужно выяснить, что же это за линии и что за направление? Линии соединяют все точки данного тела с его центром. Следовательно, направление найденного движения - от центра по радиусам.
При исследовании путей движения точек (молекул) тела при расширении и сокращении мы обнаруживаем в них много интересного.
Расстояние между молекулами мы видеть не можем. В твёрдых телах, в жидкостях и газах мы не в состоянии его увидеть, потому что оно крайне мало; в сильно разрежённой материи, например, в круксовых трубках, где это расстояние, вероятно, увеличивается до ощутимых нашими аппаратами размеров, мы не можем его видеть, потому что сами частицы, молекулы, слишком малы и недоступны нашему наблюдению. В упомянутой выше статье Гольдхаммер говорит, что при определённых условиях молекулы можно сфотографировать, если бы их удалось сделать светящимися. Он пишет, что при ослаблении давления в круксовой трубке до одной миллионной доли атмосферы в одном микроне содержится всего тридцать молекул кислорода. Если бы они светились, их можно было бы сфотографировать на экране. Насколько возможно такое фотографирование - это другой вопрос. В данном же рассуждении молекула как некое реальное количество в отношении к физическому телу представляет собой точку в её отношении к геометрическому телу.
Все тела обладают молекулами и, следовательно, должны иметь некоторое, хотя бы очень малое межмолекулярное пространство. Бех этого мы не можем представить себе реальное тело, а разве что воображаемые геометрические тела. Реальное тело состоит из молекул и обладает некоторым межмолекулярным пространством.
Это означает, что разница между кубом трёх измерений a3 и кубом четырёх измерений a4 заключается в том, что куб четырёх измерений состоит из молекул, тогда как куб трёх измерений в действительности не существует и является проекцией четырёхмерного тела на трёхмерное пространство.
Но, расширяясь или сокращаясь, т.е. двигаясь в четвёртом измерении, если принять предыдущие рассуждения, куб или шар постоянно остаются для нас кубом или шаром, изменяясь только в размерах. В одной из своих книг Хинтон совершенно справедливо замечает, что происхождение куба высшего измерения через наше пространство воспринималось бы нами как изменение свойств его материи. Он добавляет, что идея четвёртого измерения может возникнуть при наблюдении серии прогрессивно увеличивающихся или уменьшающихся шаров или кубов. Здесь он вплотную приближается к правильному определению движения в четвёртом измерении.
Один из наиболее важных, ясных и понятных видов движения в четвёртом измерении в этом смысле есть рост, в основе которого лежит расширение. Почему это так - объяснить нетрудно. Всякое движение в пределах трёхмерного пространства есть в то же время движение во времени. Молекулы, или точки, расширяющегося куба при сокращении не возвращаются на прежнее место. Они описывают определённую кривую, возвращаясь не в ту точку времени, из которой вышли, а в другую. А если предположить, что они вообще не возвращаются, то их расстояние от первоначального момента времени будет всё более и более возрастать. Представим себе такое внутреннее движение тела, при котором его молекулы, отдалившись одна от другой, не сближаются, а расстояние между ними заполняется новыми молекулами, в свою очередь расходящимися и уступающими место новым. Такое внутреннее движение тела будет его ростом, по крайней мере, геометрической схемой роста. Если сравнить крохотную зелёную завязь яблока с большим красным плодом, висящим на этой же ветке, мы поймём, что молекулы завязи не могли создать яблоко, двигаясь только по трёхмерному пространству. Кроме непрерывного движения во времени, им нужно непрерывное уклонение в пространство, лежащее вне трёхмерной сферы. Завязь отделена от яблока временем. С этой точки зрения, яблоко - это три-четыре месяца движения молекул в четвёртом измерении. Представим себе весь путь от завязи до яблока, мы увидим направление четвёртого измерения, т.е. таинственный четвёртый перпендикуляр - линию, перпендикулярную ко всем трём перпендикулярам нашего пространства.
Хинтон так близко стоит к правильному решению вопроса о четвёртом измерении, что иногда угадывает место 'четвёртого измерения' в жизни, даже когда не в состоянии точно определить это место. Так, он говорит, что симметрию строения живых организмов можно объяснить движением их частиц в четвёртом измерении.
Всем известен, говорит Хинтон, способ получения на бумаге изображений, похожих на насекомых. На бумагу капают чернила и складывают её пополам. Получается очень сложная симметричная фигура, похожая на фантастическое насекомое. Если бы ряд таких изображений увидел человек, совершенно не знакомый со способом их приготовления, то он, рассуждая логически, должен был бы прийти к заключению, что они получены путём складывания бумаги, т.е. что их симметрично расположенные точки соприкасались. Точно также и мы, рассматривая и изучая формы строения живых существ, напоминающие фигуры на бумаге, полученные описанным способом, можем заключить, что симметричные формы насекомых, листьев, птиц и т.п. создаются процессом, аналогичным складыванию. Симметричное строение живых тел можно объяснить если не складыванием пополам в четвёртом измерении, то, во всяком случае, таким же, как при складывании, расположением мельчайших частиц, из которых строятся эти тела. В природе существует очень любопытный феномен, создающий совершенно правильные чертежи четвёртого измерения - нужно только уметь их читать. Они видны в фантастически разнообразных, но всегда симметричных фигурах снежинок, в рисунках цветов, звёзд, папоротников и кружев морозных узоров на стекле. Капельки воды, осаждаясь на холодное стекло или лёд, немедленно начинают замерзать и расширяться, оставляя следы своего движения в четвёртом измерении в виде причудливых рисунков. Морозные узоры и снежинки - это фигуры четвёртого измерения, таинственные a4. Воображаемое в геометрии движение низшей фигуры для получения высшей осуществляется здесь на деле, и полученная фигура действительно является следом движения благодаря тому, что мороз сохраняет все моменты расширения замерзающих капелек воды.
Формы живых тел, цветы, папоротники созданы по тому же принципу, хотя и более сложно. Общий вид дерева, постепенно расширяющегося в ветвях и побегах, есть как бы диграмма четвёртого измерения, a4. Голые деревья зимой и ранней весной нередко представляют собой очень сложные и чрезвычайно интересные диаграммы четвёртого измерения. Мы проходим мимо них, ничего не замечая, так как думаем, что дерево существует в трёхмерном пространстве. Такие же замечательные диаграммы можно увидеть в узорах водорослей, цветов, молодых побегов, некоторых семян и т.д. и т.п. Иногда достаточно немного увеличить их, чтобы обнаружить тайны Великой Лаборатории, скрытой от наших глаз.
В книге проф. Блоссфельдта * о художественных формах в природе читатель может найти несколько превосходных иллюстраций к приведённым выше положениям.
Живые организмы, тела животных и людей построены по принципу симметричного движения. Чтобы понять эти принципы, возьмём простой схематический пример симметричного движения: представим себе куб, состоящий из двадцати семи кубиков, и будем мысленно воображать, что этот куб расширяется и сокращается. При расширении все двадцать шесть кубиков, расположенные вокруг центрального, будут удаляться от него, а при сокращении опять к нему приближаться. Для удобства рассуждения и для большего сходства нашего куба с телом, состоящим из молекул, предположим, что кубики измерения не имеют, что это просто точки. Иначе говоря, возьмём только центры двадцати семи кубиков и мысленно соединим их линиями как с центром, так и между собой.
Рассматривая расширение куба, состоящего из двадцати семи кубиков, мы можем сказать, что каждый из этих кубиков, чтобы не столкнуться с другими и не помешать их движению, должен двигаться, удаляясь от центра, т.е. по линии, соединяющей его центр с центром центрального кубика. Это - первое правило:
При расширении и сокращении молекулы движутся по линиям, соединяющим из с центром.
Далее мы виим в нашем кубе, что не все линии, соединяющие двадцать шесть точек с центром, равны. Линии, которые идут к центру от точек, лежащих на углах куба, т.е. от центра угловых кубиков, длиннее линий, которые соединяют с центром точки, лежащие в центрах шести квадратов на поверхностях куба. Если мы предположим, что межмолекулярное пространство удваивается, то одновременно увеличиваются вдвое все линии, соединяющие двадцать шесть точек с центром. Линии эти не равны, следовательно молекулы движутся не с одинаковой скоростью, - одни медленнее, другие быстрее, при этом находящиеся дальше от центра движутся быстрее, находящиеся ближе - медленнее. Отсюда можно вывести второе правило:
Скорость движения молекул при расширении и сокращении тела пропорциональна длине линий, соединяющих эти молекулы с центром.'
Наблюдая расширение куба, мы видим, что расстояние между всеми двадцатью семью кубиками увеличилось пропорционально прежнему.
Назовём а - отрезки, соединяющие 26 точек с центром, и б - отрезки, соединяющие 26 точек между собой. Построив внутри расширяющегося и сокращающегося куба несколько треугольников, мы увидим, что отрезки б удлиняются пропорционально удлинению отрезков а. Из этого можно вывести третье правило:
Расстояние между молекулами при расширении увеличивается пропорционально их удалению от центра.
Иными словами, если точки находятся на равном расстоянии от центра, они и останутся на равном расстоянии от него; а две точки, находившиеся на равном расстоянии от третьей, останутся от ней на равном расстоянии. При этом, если смотреть на движение не со стороны центра, а со стороны какой-нибудь из точек, будет казаться, что эта точка и есть центр, от которого идёт расширение, будет казаться, что все другие точки отдаляются от неё или приближаются к ней, сохраняя прежнее отношение к ней и между собой, а она сама остаётся неподвижной. 'Центр везде'!
Последнее правило лежит в основе законов симметрии в строении живых организмов. Но живые организмы строятся не одним расширением. Сюда входит элемент движения во времени. При росте каждая молекула описывает кривую, получающуюся из комбинации двух движений в пространстве и времени. Рост идёт в том же направлении, по тем же линиям, что и расширение. Поэтому законы роста должны быть аналогичны законам расширения. Законы расширения, в частности, третье правило, гарантируют свободно расширяющимся телам строгую симметрию: если точки, находившиеся на равном расстоянии от центра, будут всегда оставаться от него на равном расстоянии, тело будет расти симметрично.
В фигуре, полученной из растёкшихся чернил на сложенном пополам листке бумаги, симметрия всех точек получилась благодаря тому, что точки одной стороны соприкасались с точками другой стороны. Любой точке на одной стороне соответствовала точка на другой стороне, и когда бумагу сложили, эти точки соприкоснулись. Из третьего правила вытекает, что между противоположными точками четырёхмерного тела существует какое-то соотношение, какая-то связь, которой мы до сих пор не замечали. Каждой точке соответствует одна или несколько других, с которыми она каким-то непонятным образом связана. Именно, она не может двигаться самостоятельно, её движение зависит от движения соответствующих ей точек, занимающих аналогичные места в расширяющемся или сокращающемся теле. Это и будут противоположные ей точки. Она как бы соприкасается с ними, соприкасается в четвёртом измерении. Расширяющееся тело точно складывается в разных направлениях, и этим устанавливается загадочная связь между его противоположными точками.
Попробуем рассмотреть, как происходит расширение простейшей фигуры. Рассмотрим её даже не в пространстве, а на плоскости. Возьмём квадрат и соединим с центром четыре точки, лежащие в его углах. Затем соединим с центром точки, лежащие на серединах сторон, и, наконец, точки, лежащие на половинном расстоянии между ними. Первые четыре точки, т.е. точки, лежашие в углах, назовём точками А; точки, лежащие по серединам сторон квадрата, точками В; наконец, точки, лежащие между ними (их будет восемь), точками С.
Точки А, В и C лежат на разных расстояниях от центра; поэтому при расширении они будут двигаться с неодинаковой скоростью, сохраняя своё отношение к центру. Кроме того, все точки A связаны между собой, как связаны между собой точки B и C. Между точками каждой группы существует таинственная внутренняя связь. Они должны оставаться на равном расстоянии от центра.
Предположим теперь, что квадрат расширяется, т.е. все точки A, B и C движутся, удаляясь от центра по радиусам. Пока фигура расширяется свободно, движение точек происходит по указанным правилам, фигура остаётся квадратом и сохраняет симметричность. Но предположим, что на пути движения одной из точек C вдруг оказалось какое-то препятствие, заставившее эту точку остановиться. Тогда происходит одно из двух: или остальные точки будут двигаться, как будто ничего не произошло, или же точки, соответствующие точке C, тоже остановятся. Если они будут двигаться, симметрия фигуры нарушится. Если остановятся, то это подтвердит вывод из правила третьего, согласно которому точки, находившиеся на равном расстоянии от центра, при расширении остаются на равном расстоянии от него. И действительно, если все точки C, повинуясь таинственной связи между ними и точкой C, которая встретилась с препятствием, остановятся в то время, как точки A и B движутся, из нашего квадрата получится правильная симметричная звезда. Возможно, что при росте растений и живых организмов именно это и происходит. Возьмём более сложную фигуру, у которой центр, от которого происходит расширение, не один, а несколько, и все они расположены на одной линии - точки, удаляющиеся от этих центров при расширении, расположены по обеим сторонам центральной линии. Тогда при аналогичном расширении получится не звезда, а нечто вроде зубчатого листа. Если мы возьмём подобную фигуру не на плоскости, а в трёхмерном пространстве и предположим, что центры, от которых идёт расширение, лежат не на одной оси, а на нескольких, то получим при расширении фигуру, которая напоминает живое тело с симметричными конечностями и пр. А если мы предположим, что атомы фигуры движутся во времени, то получится 'рост' живого тела. Законы роста, т.е. движения, начинающегося от центра по радиусам при расширении и сокращении, выдвигают теорию, способную объяснить причины симметричного строения живых тел.
Определения состояний материи в физике становятся всё более и более условными. Одно время к трём известным состояниям (твёрдому, жидкому, газообразному) пытались добавить ещё и 'лучистую материю', как называли сильно разрежённые газы в круксовых трубках. Существует теория, которая считает коллоидное, желеобразное состояние материи - состоянием, отличающимся от твёрдого, жидкого и газообразного. Согласно этой теории, органическая материя есть разновидность коллоидной материи или формируется из неё. Понятие материи в этих состояниях противопоставляется понятию энергии. Затем возникла электронная теория, в которой понятие материи почти не отличается от понятия энергии; позднее появились различные теории строения атома, которые дополнили понятие материи множеством новых идей.
Но как раз в этой области более чем в какой-либо другой научные теории отличаются от понятий обыденной жизни. Для непосредственной ориентировки в мире феноменов нам необходимо отличать материю от энергии, а также различать три состояния материи: твёрдое, жидкое и газообразное. Вместе с тем, приходится признать, что даже эти три известные нам состояния материи различаются ясно и неоспоримо только в таких 'классических' формах, как кусок железа, вода в реке, воздух, которым мы дышим. А переходные формы бывают разными и совпадают друг с другом; поэтому мы не всегда знаем точно, когда одно перешло в другое, не можем провести чёткой разграничительной линии, не можем сказать, когда твёрдое тело превратилось в жидкость, а жидкость - в газ. Мы предполагаем, что разные состояния материи зависят от разной силы сцепления молекул, от быстроты и свойств молекулярного движения, но мы различаем эти состояния только по внешним признакам, очень непостоянным и зачастую перемешиваюшимся между собой.
Можно определённо утверждать, что каждое более тонкое состояние материи является более энергетическим, т.е. заключающим в себе как бы меньше массы и больше движения. Если материю противопоставить времени, то можно сказать, что чем тоньше состояние материи, тем больше в нём времени и меньше материи. В жидкости больше 'времени', чем в твёрдом теле; в газе больше 'времени', чем в воде.
Если мы допустим существование ещё более тонких состояний материи, они должны быть более энергетическими, чем признаваемые физикой; согласно вышесказанному, в них должно быть больше времени и меньше пространства, больше движения и меньше времени. Логически необходимость энергетических состояний материи давно уже принятия в физике и доказывается очень понятными рассуждениями.
'Что такое, в сущности, субстанция? - пишет Ш. Фрейсинэ в 'Очерках по философии науки'. - Определение субстанции никогда не отличалось большей ясностью и сделалось ещё менее ясным после открытий современной науки. Можно ли, например, назвать субстанцией тот таинственный агент, к которому прибегают физики для объяснения явления теплоты и света? Этот агент, эта среда, этот механизм - назовите, как угодно - существует, так как проявляется в неопровержимых действиях. Однако он лишён тех качеств, без которых трудно представить себе субстанцию. Он не имеет веса, у него, возможно, нет и массы; он не производит непосредственного впечатления ни на один из наших органов чувств; одним словом, у него нет ни одного признака, который указывал бы на то, что некогда называли 'материальным'. С другой стороны, это не дух, по крайней мере, никому не приходило в голову называть его таким образом. Но неужели только потому, что его нельзя подвести под категорию субстанции, его реальность следует отрицать?
Можно ли по той же причине отрицать реальность того механизма, благодаря которому тяготение передаётся в глубину пространства со скоростью, несравненно большей скорости света (Лаплас считал её мгновенной)? Великий Ньютон полагал невозможным обойтись без этого агента. Тот, кому принадлежит открытие всемирного тяготения, писал Бентли: 'Чтобы тяготение было прирождено и присуще, свойственно материи в том смысле, что одно тело могло бы действовать на другое на расстоянии через пустое пространство, без посредства чего-либо, при помощи чего и сквозь что могли бы передаваться действие и сила от одного тела к другому, мне кажется таким абсурдом, что, я думаю, ни один человек, способный философски рассуждать, не впадёт в него. Тяготение должно производиться агентом, обнаруживающим своё непрерывное влияние на тела по известным законам; но материален этот агент или не материален? Этот вопрос и представляется оценке моих читателей' (3-е письмо к Бентли от 25 февраля 1692 года).