Первый и важнейший вопрос, который здесь возникает, - это вопрос об отношении физической науки к математике. С общепринятой точки зрения считается признанным, что математика изучает количественные взаимоотношения в том же самом мире вещей и явлений, который изучают физические науки. Отсюда вытекают ещё два положения: первое - что каждое математическое выражение должно иметь физический эквивалент, хотя в данный момент он, возможно, ещё не открыт; и второе - что любое физическое явление можно выразить математически. На самом же деле ни одно из этих положений не имеет ни малейшего основания; принятие их в качестве аксиом задерживает прогресс науки и мышления как раз по тем линиям, где такой прогресс более всего необходим. Но об этом мы поговорим позднее. В следующем ниже обзоре физических наук мы остановимся только на физике. А в физике особое внимание нам необходимо обратить на механику: приблизительно с середины XVIII века механика занимала в физике господствующее положение, в силу чего до недавнего времени считалось возможным и даже вероятным найти способ объяснения всех физических явлений как явлений механических, т.е. явлений движения. Некоторые учёные пошли в этом направлении ещё дальше: не довольствуясь допущением о возможности объяснить физические явления как явления движения, они уверяли, что такое оюъяснение уже найдено и что оно объясняет не только физические явления, но также биологические и мыслительные процессы. В настоящее время нередко делят физику на старую и новую; это деление, в общем, можно принять, однако не следует понимать его слишком буквально. Теперь я попробую сделать краткий обзор фундаментальных идей старой физики, которые привели к необходимости построения 'новой физики', неожиданно разрушившей старую; а затем перейду к идеям новой физики, которые приводят к возможности построения 'новой модели вселенной', разрушающей новую физику точно так же, как новая физика разрушила старую. Старая физика просуществовала до открытия электрона. Но даже электрон понимался ею как существующий в том же искусственном мире, управляемом аристотелевскими и ньютоновскими законами, в котором она изучала видимые явления; иначе говоря, электрон был воспринят как нечто, существующее в том же мире, где существуют наши тела и другие соизмеримые с ними объекты. Физики не поняли, чьл электрон принадлежит другому миру. Старая физика базировалась на некоторых незыблемых основагиях. Время и пространство старой физики обладали вполне определёнными свойствами. Прежде всего, их можно было рассматривать и вычислять отдельно, т.е. как если бы положение какой-либо вещи в пространстве никоим образом не влияло на её положение во времени и не касалось его. Далее, для всего существующего имелось одно пространство, в котором и происходили все явления. Время также было одним и тем же для всего существующего в мире; оно всегда и для всего измерялось по одной шкале. Иными словами, считалось допустимым, чтобы все движения, возвожные во вселенной, измерялись одной мерой. Краеугольным камнем понимания законов вселенной в целом был принцип Аристотеля, утверждавший единство законов во вселенной. Этот принцип в его современном понимании можно сформулировать следующим образом: во всей вселенной и при всех возможных условиях законы природы обязаны быть одинаковыми; иначе говоря, закон, установленный в одном месте вселенной, должен иметь силу и в любом другом её месте. На этом основании наука при исследовании явлений на Земле и в Солнечной системе предполагает существование одинаковых явлений на других планетах и в других звёздных системах. Данный принцип, приписываемый Аристотелю, на самом деле никогда не понимался им самим в том смысле, какой он приобрёл в наше время. Вселенная Аристотеля сильно отличалась от того, как мы представляем её сейчас. Человеческое мышление во времена Аристотеля не было похоже на человеческое мышление нашего времени. Многие фундаментальные принципы и отправные точки мышления, которые мы считаем твёрдо установленными, Аристотелю ещё приходилось доказывать и устанавливать. Аристотель стремился установить принцип единства законов, выступая против суеверий, наивной магии, веры в чудеса и т.п. Чтобы понять 'принцип Аристотеля', необходимо уяснить себе, что ему ещё приходилось доказывать, что если все собаки вообще не способны говорить на человеческом языке, то и одна отдельная собака, скажем, где-то на острове Крите, также не может говорить; или если деревья вообще не способны самостоятельно передвигаться, то и одно отдельное дерево также не может передвигаться - и т.д. Всё это, разумеется, давно забыто; теперь к принципу Аристотеля сводят идею о постоянстве всех физических понятий, таких как движение, скорость, сила, энергия и т.п. Это значит: то, что когда-то считалось движением, всегда остаётся движением; то, что когда-то считалось скоростью, всегда остаётся скоростью - и может стать 'бесконечной скоростью'. Разумный и необходимый в своём первоначальном смысле, принцип Аристотеля представляет собой не что иное, как закон общей согласованности явлений, относящийся к логике. Но в его современном понимании принцип Аристотеля целиком ошибочен. Даже для новой физики понятие бесконечной скорости, которое проистекает исключительно из 'принципа Аристотеля', стало невозможным; необходимо отбросить этот принцип, прежде чем заниматься построением новой модели вселенной. Позже я вернусь к этому вопросу. Если говорить о физике, то придётся прежде всего подвергнуть анализу само определение этого предмета. Согласно школьным определениям, физика изучает 'материю в пространстве и явления, происходящие в этой материи'. Здесь мы сразу же сталкиваемся с тем, что физика оперирует неопределёнными и неизвестными величинами, которые для удобства (или из-за трудности определния) принимает за известные, даже за понятия, не требующие определения. В физике формально различаются: во-первых, 'первичные' величины, идея которых считается присущей всем людям. Вот как перечисляет эти 'первичные величины' в своём 'Курсе физики' Хвольсон: 'Протяжённость - линейная, пространственная и объёмная, т.е. длина отрезка, площадь какой-то части поверхности и объём какой-то части пространства, ограниченной поверхностями; протяжённость, таким образом, является мерой величины и расстояния. Время. Скорость равномерного прямолинейного движения.' Естественно, это лишь примеры, и Хвольсон не настаивает на полноте перечня. На самом деле, такой перечень очень длинен: он включает понятия пространства, бесконечности, материи, движения, массы и т.д. Одним словом, почти все понятия, которыми оперирует физика, относятся к неопределённым и не подлежащим определению. Конечно, довольно часто не удаётся избежать оперирования неизвестными величинами. Но традиционный 'научный' метод состоит в том, чтобы не признавать ничего неизвестного, а также считать 'величины', не поддающиеся определению, 'первичными', идея которых присуща каждому человеку. Естественным результатом такого подхода оказывается то, что всё огромное здание науки, возведённое с колоссальными трудностями, стало искусственным и нереальным. В определении физики, приведённом выше, мы встречаемся с двумя неопределёнными понятиями: пространство и материя. Я уже упоминал о пространстве на предыдущих страницах. Что же касается материи, то Хвольсон пишет: 'Употребление термина 'материя' было ограничено исключительно материей, которая способна более или менее непосредственно воздействовать на наши органы осязания'. Далее материя подразделяется на органическую (из которой состоят живые организмы - животные и растения) и неорганическую. Такой метод разделения вместо определения применяется в физике всюду, где определение оказывается невозможным или трудным, т.е. по отношению ко всем фундаментальным понятиям. Позднее мы часто с этим встретимся. Различие между органической и неорганической материей обусловлено только внешними признаками. Происхождение органической материи считается неизвестным. Переход от неорганической материи к органической можно наблюдать в процессах питания и роста; полагают, что такой переход имеет место только в присутствии уже существующей органической материи и совершается благодаря её воздействию. Тайна же первого перехода остаётся сокрытой (Хвольсон). С другой стороны, мы видим, что органическая материя легко переходит в неорганическую, теряя те неопределённые свойства, которые мы называем жизнью. Было сделано немало попыток рассмотреть органическую материю как частный случай неорганической и объяснить все явления, происходящие в органической материи (т.е. явления жизни) как комбинацию физических явлений. Но все эти попытки, как и попытки искусственного создания органической материи из материи неорганической, ни к чему не привели. Тем не менее, они наложили заметный отпечаток на обще-философское 'научное' понимание жизни, с точки зрения которого 'искусственное создание жизни' признаётся не только возможным, но и уже частично достигнутым. Последователи этой философии считают, что название 'органическая химия', т.е. химия, изучающая органическую материю, имеет лишь историческое значение; они определяют её, как 'химию углеродистых соединений', хотя и не могут не признать особого положения химии углеродистых соединений и её отличия от неорганической химии. Неорганическая материя, в свою очередь, делится на простую и сложную (и принадлежит к области химии). Сложная материя состоит из так называемых химических соединений несколько простых видов материи. Материю каждого вида можно разделить на очень малые части, называемые 'частицами'. Частица - это мельчайшее количество данного вида материи, которое способно проявлять, по крайней мере, главные свойства этого вида. Дальнейшие подразделения материи - молекула, атом, электрон настолько малы, что, взятые в отдельности, не обладают уже никакими материальными свойствами, хотя на последний факт никогда не обращали достаточного внимания. Согласно современным научным идеям, неорганическая материя состоит из 92 элементов, или единиц простой материи, хотя не все они ещё открыты. Существует гипотеза, что атомы разных элементов суть не что иное, как сочетания определённого количества атомов водорода, который в данном случае считается фундаментальной, первичной материей. Есть несколько теорий о возможности или невозможности перехода одного элемента в другой; в некоторых случаях такой переход был установлен - что опять-таки противоречит 'принципу Аристотеля'. Органическая материя или 'углеродистые соединения', в действительности состоит из четырёх элементов: водорода, кислорода, углерода и азота, а также из незначительных примесей других элементов. Материя обладает многими свойствами, такими как масса, объём, плотность и т.п., которые в большинстве случаев поддаются определению лишь в их взаимосвязи. Температура тела признаётся зависящей от движения молекул. Считается, что молекулы находятся в постоянном движении; как это определяется в физике, они непрерывно сталкиваются друг с другом и разлетаются во всех направлениях, а затем возвращаются обратно. Чем интенсивнее их движение, тем сильнее толчки при столкновениях и тем выше температура тела; такое движение называется броуновским. Если бы подобное явление действительно имело место, это означало бы примерно следующее: несколько сотен автомобилей, движущихся в разных направлениях по большой городской площади, ежеминутно сталкиваются друг с другом и разлетаются в разные стороны, оставаясь неповреждёнными. Любопытно, что быстро движущаяся кинолента вызывает аналогичеую иллюзию. Движущиеся объекты утрачивают свою индивидуальность; кажется, что они сталкиваются друг с другом и разлетаются в разных направлениях или проходят друг сквозь друга. Автор видел однажды кинофильм, на котором была снята площадь Согласия в Париже с автомобилями, летящими отовсюду и во всевозможных направлениях. Впечатление такое, будто автомобили каждое мгновение с силой сталкиваются друг с другом и разлетаются в стороны, всё время оставаясь в пределах площади и не покидая её. Как может быть, чтобы материальные тела, обладающие массой, весом и очень сложной структурой, сталкивались с огромной скоростью и разлетались в стороны, не разбиваясь и не разрушаясь, - физика не объясняет. Одним из важнейших завоеваний физики было установление принципа сохранения материи. Этот принцип состоит в признании того, что материя никогда, ни при каких физических или химических условиях не создаётся заново и не исчезает: общее её количество остаётся неизменным. С принципом сохранения материи связаны установленные впоследствии принципы сохранения энергии и сохранения массы. Механика - это наука о движении физических тел и о причинах, от которых может зависеть характер этого движения в отдельных частных случаях (Хвольсон). Однако так же, как и в случае иных физических понятий, само движение не имеет в физике определения. Физика только устанавливает свойства движения: длительность, скорость, направление, без которых какое-либо явление нельзя назвать движущимся. Разделение (и порой определение) вышеназванных свойств подменяет собой определения движения, причём установленные признаки относят к самому движению. Так, движение разделяется на прямолинейное и криволинейное, непрерывное и прерывистое, ускоренное и замедленное, равномерное и неравномерное. Установление принципа относительности движения привело к целой серии выводов; вощник вопрос если движение материальной точки можно определить только её положением относительно других тел и точек, как определить это движение в том случае, когда другие тела и точки тоже движутся? Этот вопрос стал особенно сложным, когда было установлено (не просто философски, в смысле гераклитовского panta ret, но вполне научно, с вычислениями и диаграммами), что во вселенной нет ничего неподвижного, что всё без исключения так или иначе движется, что одно движение можно установить лишь относительно другого. Вместе с тем, были установлены и случаи кажущейся неподвижности. Так, выяснилось, что отдельные составные части равномерно движущейся системы тел сохраняют одинаковое положение по отношению друг к другу, как если бы вся система была неподвижной. Таким образом, предметы внутри ьыстро движущегося вагона ведут себя совершенно так же, как если бы этот вагон стоял неподвижно. В случае двух или более движущихся систем, например, в случае двух поездов, которые идут по разным путям в одинаковом или противоположном направлениях, оказывается, что их относительная скорость равна разности между скоростями или их сумме в зависимости от направления движения. Так, два поезда, движущиеся навстречу друг другу, будут сближаться со скоростью, равной сумме их скоростей. Для одного поезда, который обгоняет другой, второй поезд будет двигаться в направлении, противоположном его собственному, со скоростью, равной разности между скоростями поездов. То, что обычно называют скоростью поезда, есть скорость, приписываемая поезду, наблюдаемому во время его передвижения между двумя объектами, которые для него являются неподвижными, например, между двумя станциями, и т.п. Изучение движения вообще, и колебательного и волнового движения в частности, оказало на развитие физики огромное влияние. В волновом движении увидели универсальный принцип; были предприняты попытки свести все физические явления к колебательному движению.
   Одним из фундаментальных методов физики является метод измерения величин. Измерение величин базируется на определённых принципах; важнейший из них принцип однородности, а именно: величины, принадлежащие к одному и тому же порядку и отличающиеся друг от друга лишь в количественном отношении, называются однородными величинами; считается доступным сравнивать их и измерять одну по отношению к другой. Что же касается различных по порядку величин, то измерять одну из них по отношению к другой признано невозможным. К несчастью, как уже было сказано выше, в физике лишь немногие величины определяются; обычно же определения заменяются наименованием. Но поскольку всегда могут возникнуть ошибки в наименованиях и качественно различные величины получают одинаковые наименования, и наоборот, качественно идентичные величины будут названы по-разному, физические величины оказываются ненадёжными. Это тем более так, что здесь чувствуется влияние принципа Аристотеля, т.е. величина, однажды признанная в качестве величины определённого порядка, всегда оставалась величиной этого порядка. Разные формы энергии перетекали одна в другую, материя переходила из одного состояния в другое; но пространство (или часть пространства) всегда оставалось пространством, время - временем, движение всегда оставалось движением, скорость - скоростью и т.п. На этом основании было решено считать несоизмеримыми такие величины, которые являются качественно разнородными. Величины, отличающиеся только количественно, считаются соизмеримыми. Продолжая рассматривать измерение величин, необходимо указать, что единицы измерения, которыми пользуются в физике, довольно случайны и не связаны с измеряемыми величинами. Единицы измерения обладают только одним общим свойством - все они откуда-то заимствованы. Ни разу ещё самое характерное свойство данной величины не принималось за его меру. Искусственность мер в физике, конечно, ни для кого не секрет, и с пониманием этой искусственности связаны, например, попытки установить единицей длины часть меридиана. Естественно, эти попытки ничего не меняют; брать ли в качестве единицы измерения какую-то часть человеческого тела, 'фут', или часть меридиана, 'метр', обе они одинаково случайны. Но в действительности вещи содержат в себе свои собственные меры; и найти их значит, понять мир. Физика лишь смутно об этом догадывается, но до сих пор к таким мерам даже не приблизилась. В 1900 году проф. Планк создал систему 'абсолютных единиц', в основу которой положены 'универсальные константы', а именно: первая - скорость света в вакууме; вторая - гравитационная постоянная; третья - постоянная величина, которая играет важную роль в термодинамике (энергия, делённая на температуру); четвёртая - постоянная величина, называемая 'действием' (энергия, умноженная на время), которая представляет собой наименьшее возможное количество работы, её 'атом'. Пользуясь этими величинами, Планк получил систему единиц, которую считает абсолютной и совершенно независимой от произвольных решений человека; он принимает свою систему за натуральную. Планк утверждает, что эти величины сохраняют своё естественное значение до тех пор, пока остаются неизменными закон всемирного тяготения, скорость распространения света в вакууме и два основных принципа термодинамики; они будут одними и теми же для любых разумных существ при любых методах определения. Однако закон всемирного тяготения и закон распространения света в вакууме - два самых слабых пункта в физике, поскольку на самом деле они являются вовсе не тем, за что их принимают. Поэтому вся система мер, предложенная Планком, весьма ненадёжна. Интересен здесь не столько результат, сколько сам принцип, т.е. признание необходимости отыскать естественные меры вещей. Закон всемирного тяготения был сформулирован Ньютоном в его книге 'Математические принципы натуральной философии', которая вышла в Лондоне в 1687 году. Этот закон с самого начала известен в двух формулировках: научной и популярной. Научная формулировка такова: 'Между двумя телами в пространстве наблюдаются явления, которые можно описать, предполагая, что два тела притягивают друг друга с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.' А вот популярная формулировка: 'Два тела притягивают друг друга с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.' Во второй формулировке совершенно забыто то, что сила притяжения представляет собой фиктивную величину, принятую лишь для удобства описания явлений. И сила притяжения считается реально существующей, как между Солнцем и Землёй, так и между Землёй и брошенным камнем. (Последняя электромагнитная теория гравитационных полей догматизирует вторую точку зрения.) Проф. Хвольсон пишет в своём 'Курсе физики': 'Колоссальное развитие небесной механики, полностью основанной на законе всемирного тяготения, признанного как факт, заставило учёных забыть чисто описательный характер этого закона и увидеть в нём окончательную формулировку действительно существующего физического явления.' В законе Ньютона особенно важно то, что он даёт очень простую математическую формулу, которую можно применять во всей вселенной и на основании которой с поразительной точностью вычислять любые движения, в том числе движения планет и небесных тел. Конечно, Ньютон никогда не утверждал, что он выражает факт действительного притяжения тел друг к другу; не определил он и того, почему они притягивают друг друга и посредством чего. Каким образом Солнце может влиять на движение Земли через пустое пространство? Как вообще понимать возможность действия через пустое пространство? Закон тяготения не даёт ответа на этот вопрос, и сам Ньютон вполне это понимал. И он сам, и его современники Гюйгенс и Лейбниц предостерегали против попыток видеть в законе Ньютона решение проблемы действия через пустое пространство; для них этот закон был просто формулой для вычислений. Тем не менее, огромные достижения физики и астрономии, возможные благодаря использованию закона Ньютона, стали причиной того, что учёные забыли эти предостережения; и постепенно укрепилось мнение, что Ньютон открыл силу притяжения. Хвольсон пишет в своём 'Курсе физики': 'Термин 'действие на расстоянии' обозначает одну из самых вредных доктрин, когда-либо возникавших в физике и тормозивших её прогресс; эта доктрина допускает возможность мгновенного воздействия одного предмета на другой, находящийся на таком расстоянии от него, что непосредственный их контакт оказывается невозможным. В первой половине XIX века идея действия на расстоянии господствовала в науке безраздельно. Фарадей был первым, кто указал на недопустимость воздействия какого-то тела на некоторую точку, в которой это тело не расположено, без промежуточной среды. Оставив в стороне вопрос о всемирном тяготении, он обратил особое внимание на явления электричества и магнетизма и указал на чрезвычайно важную роль в этих явлениях 'промежуточной среды', которая заполняет пространство между телами, как будто бы действующими друг на друга непосредственно. В настоящее время убеждение о недопустимости действия на расстоянии в любой сфере физических явлений получило всеобщее признание'. Однако старая физика смогла отбросить действие на расстоянии лишь после того, как приняла гипотезу универсальной среды, или эфира. Эта гипотеза оказалась необходимой и для теории световых и электрических явлений, как они понимались старой физикой. В XVIII веке световые явления объяснялись гипотезой излучения, выдвинутой в 1704 году Ньютоном. Эта гипотеза предполагала, что светящиеся тела излучают во всех направлениях мельчайшие частицы особой световой субстанции, которые распространяются в пространстве с огромной скоростью и, попадая в глаз, вызывают в нём ощущение света. В этой гипотезе Ньютон развивал идеи древних; у Платона, например, часто встречается выражение: 'свет наполнил мои глаза'. Позднее, главным образом в XIX веке, когда внимание исследователей обратилось на те последствия световых явлений, которые невозможно объяснить гипотезой излучения, широкое распространение получила другая гипотеза, а именно, гипотеза волновых колебаний эфира. Впервые она была выдвинута голландским физиком Гюйгенсом в 1690 году, однако в течение долгого времени не принималась наукой. Впоследствии исследование дифракции всё-таки качнуло чашу весов в пользу гипотезы световых вон и против гипотезы излучения; а последующие труды физиков в области поляризации света завоевали этой гипотезе всеобщее признание. В волновой гипотезе световые явления объясняются по аналогии со звуковыми. Подобно тому, как звук есть результат колебаний частиц звучащего тела и распространяется благодаря колебаниям частиц воздуха или иной упругой среды, так, согласно этой гипотезе, и свет есть результат колебаний молекул светящегося тела, а его распространение происходит благодаря колебаниям чрезвычайно упругого эфира, заполняющего как межзвёздные, так и межмолекулярные пространства. В XIX веке теория колебаний постепенно стала основанием всей физики. Электричество, магнетизм, тепло, свет, даже мышление и жизнь (правда, чисто диалектически) объяснялась с точки зрения теории колебаний. Нельзя отрицать, что для явлений света и электромагнетизма теория колебаний давала очень удобные и простые формулы для вычислений. На основе теории колебаний был сделан целый ряд блестящих открытий и изобретений. Но для теории колебаний требовался эфир. Гипотеза об эфире возникла для объяснения самых разнородных явлений, и потому эфир приобрёл довольно странные и противоречивые свойства. Он вездесущ; он заполняет всю вселенную, пронизывает все её точки, все атомы и межатомные пространства.