Большие достижения имеет С. в животноводстве. Выведены ценные высокопродуктивные породы крупного рогатого скота - костромская, казахская белоголовая; овец - асканийская (мировой рекорд по годовому настригу шерсти - 30,6 кг) ,красноярская, казахский архаромеринос и др. Благодаря С. получены группы каракульских овец, дающие шкурки различной окраски. В птицеводстве созданы линии, используемые для получения скороспелых гибридов мясного и яичного направлений.

  В СССР все звенья селекционной работы взаимосвязаны и объединены в единую централизованную государственную систему. С. растений занимаются свыше 400 научных учреждений, С. животных - свыше 500 (см. Сельскохозяйственные институты ) .Создано 27 селекцентров по зерновым и кормовым культурам. Руководит селекционной работой Всесоюзная академия с.-х. наук им. В. И. Ленина и министерство сельского хозяйства СССР. В 1966 организовано Всесоюзное общество генетиков и селекционеров им. Н. И. Вавилова (см. Генетиков и селекционеров общество ) .С 1929 выходит журнал «Селекция и семеноводство» (до 1935 - под названием «Семеноводство»). СССР - член Европейской научной ассоциации по селекции растений, проводит селекционные исследования по линии СЭВ.

  Селекция за рубежом.Применяя те же методы, что и в СССР, селекционеры ряда стран добились больших успехов.

  В США селекционная работа сосредоточена в государственных университетах, на эксперимент, опытных станциях (организованы в каждом штате), в с.-х. колледжах и семеноводческих компаниях. В качестве исходного материала используют сорта и гибриды многих стран. Достигнуты значительные успехи в С. короткостебельной стекловидной озимой пшеницы - сорта Гейнз, Ньюгейнз, Кэпрок (последний отличается высокой урожайностью в условиях орошения, иммунностью к бурой ржавчине и мучнистой росе, устойчивостью к полеганию, высокими мукомольными и хлебопекарными качествами). Лучшие яровые сорта - Ред Ривер 68, Вердл Сидз 1502, Вердл Сидз 1877 (районирован в СССР в 1975). Американские селекционеры работают над созданием кормовой многолетней пшеницы, которая характеризовалась бы высокой кустистостью, солевыносливостью, устойчивостью к болезням и значительным содержанием белка, а также гибридной пшеницы. В С. риса большое внимание уделяется выведению скороспелых и среднеспелых высокобелковых сортов, устойчивых к низкой температуре воды, а также двухурожайных сортов. Наиболее распространённые сорта этой культуры - Нато, Нова, Колуза и др. Достигнуты успехи и в С. кукурузы. Получены высокоурожайные гибриды с повышенным содержанием белка, лизина и масла в зерне, а также сорта лопающейся кукурузы с хорошими вкусовыми и технологическими качествами. Ведётся С. кукурузы на неполегаемость, высоту прикрепления початков, холодостойкость, засухоустойчивость, скороспелость. Проводится селекционная работа с кормовыми культурами (люцерной, клевером, донником и др.), хлопчатником (выведены вилтоустойчивыс. раносозревающие, приспособленные к машинной уборке сорта - Дикси, Кинг, Реке, Дель Серро), соей, арахисом, подсолнечником, томатом и др. культурами.

  Мексиканские сорта пшеницы - Сонора 63, Лерма Рохо, Иниа 66, Питик 62 (выведены в Мексиканском международном центре по улучшению пшеницы и кукурузы, работы Н. Э. Борлоуга и др.) получили мировую известность и оказали большое влияние на развитие С. этой культуры в Индии, Японии, Турции, США, Канаде и др. В СССР их используют в качестве исходного материала для С. короткостебельных пшениц.

  В Канаде большое внимание уделяется С. зерновых культур. Основные направления С. пшеницы: выведение короткостебельных сортов, устойчивых к ржавчине (научно-исследовательская станция в Суифт-Карренте, Саскатунский университет и др.), с зерном высокого качества - крупным, с повышенным содержанием белка и каротина, хорошими технологическими свойствами (Саскатунский университет и др.), морозостойких для озимой пшеницы (научно-исследовательские станции в Летбридже и Оттаве). В гибридизации используют сорта из Мексики, США, СССР (Ульяновку Алабасскую, Безостую 1), Индии и других стран. Созданы высокоурожайные сорта мягкой яровой пшеницы - Нипова и Манита (в 1974 занимали 70% площади культуры), твёрдой яровой - Геркулес, Вакума, озимой - Санданс. Получены ценные сорта кормовой пшеницы (лучший из них Гленви), короткостебельные ржано-пшеничные амфидиплоиды с высокой озернённостью колоса. Проводится селекционная работа с овсом (с.-х. станция Манитоба) - выведены короткостебельные высоколизиновые сорта, обладающие комплексной устойчивостью к ржавчине, мучнистой росе, головне и др. болезням, с повышенным содержанием белка и масла, с ячменём (там же) - короткостебельные сорта, неполегающие, иммунные к ржавчине, пригодные для пивоварения. Хорошие результаты наблюдаются в С. корневищных форм люцерны, сои, подсолнечника и других культур.

  В Швеции С. растений занимаются Свалёвский и Вейбульсхольмский институты и их филиалы. При выведении сортов зерновых культур - ячменя и овса - особое внимание обращается на устойчивость к полеганию, осыпанию и прорастанию зерна на корню, иммунность к мучнистой росе, ржавчине и др. болезням, повышенное содержание белка и лизина в зерне. Среди сортов ячменя наибольшие площади (1974) занимают Сингрид и Серпа; из новых сортов (районированы в 1970-71) известны Винг, Акка, Гунилла, Кристина. Лучшие сорта овса - Сельма (выращивают также во многих европ. странах) и Ристо. Основные возделываемые сорта яровой пшеницы (посевы её незначительны) - Помпе и Снаббе (с 1974 районирован в СССР), озимой - Старке 11. В ФРГ, ГДР, Нидерландах, Польше получены гибридные высококрахмалистые сорта картофеля; в Румынии - высокомасличный подсолнечник (на основе сортов из СССР); в ГДР, Венгрии, Чехословакии, Польше - короткостебельные высокоурожайные сорта ржи; в Болгарии - ценные сорта томата, перца и др. овощных культур; в Нидерландах - гибриды огурца для защищенного грунта; в Алжире - сорта твёрдой яровой пшеницы, жаростойкие и устойчивые к осыпанию. Успешно ведётся С. на повышение мясных, молочных качеств животных, яйценоскости, скороспелости и др.

  Лит.:Вавилов Н. И., Избр. соч., М., 1966; Лукьяненко П. П., Избр. труды, М., 1973; Мироновские пшеницы, под ред. В. Н. Ремесло, М., 1972; Пустовоит В. С., Избр. труды, М., 1966; Мазлумов А. Л., Селекция сахарной свеклы, 2 изд., М., 1970; Серебровский А. С., Селекция животных и растений, М., 1969; Букасов С. М., Камераз А. Я., Селекция и семеноводство картофеля, Л., 1972; Дубинин Н. П., Панин В. А., Новые методы селекции растений, М., 1967; Достижения отечественной селекции, [М., 1967]; Гуляев Г. В., Дубинин А. П., Селекция и семеноводство полевых культур с основами генетики, 2 изд., М., 1974; Свалефская селекционная станция, пер. с англ., М., 1955; Брежнев Д. Д., Шмараев Г. Е., Селекция растений в США, М., 1972; Бриггс Ф., Ноулз П., Научные основы селекции растений, пер. с англ., М., 1972; Шмальц Х., Селекция растений, пер. с нем., М., 1973. См. также лит, при статьях Генетика растений , Генетика животных .

  М. М. Якубцинер, В. Ф. Дорофеев, Р. А. Удачин.

Селекция импульсных сигналов

Селе'кция и'мпульсных сигна'лов,выделение из множества электрических видеоимпульсов (сигналов) только таких, которые обладают заданными свойствами. В зависимости от того, какие свойства импульса электрического (последовательности импульсов) являются определяющими, различают С. и. с. по амплитуде, длительности, временному интервалу и признакам кода (см. Импульсная техника ) .При С. и. с. по амплитуде выделяют все те импульсы, амплитуда которых либо превышает заданный уровень (т. н. порог селекции), либо не достигает его, либо находится в заданных пределах ( рис. 1 ). Такая С. и. с. производится специальным устройством - амплитудным селектором (см. Амплитудный дискриминатор ) .С. и. с. по длительности предусматривает выделение импульсов, длительности которых соизмеримы либо больше или меньше заданной ( рис. 2 ). В состав селектора по длительности обычно входят устройство дифференцирования импульса (устройство выделения фронта и среза импульса), линия задержки на время, равное уровню селекции, и логический элемент,выполняющий, например, операции логического умножения, запрета. С. и. с. по временному интервалу - выделение импульсов, положение которых во времени относительно тактовых (синхронизирующих) импульсов либо постоянно, либо изменяется по определённому закону, например селекция сигналов, отражённых от местных предметов или от движущейся цели в когерентно-импульсных радиолокационных станциях.С. и. с. по признакам кода импульсных сигналов (селекция последовательностей) - выделение серии импульсов по некоторому свойству, присущему её импульсам, например: выделение серии импульсов, следующих с одинаковой частотой повторения; выделение каждого следующего импульса, начиная, например, с 3-го импульса входной последовательности; наконец, выделение группы импульсов, последовательность которых соответствует заданному коду ( рис. 3 ). Схемы селекторов последовательностей весьма разнообразны, применяются они преимущественно в устройствах управления различных дискретных систем. Так, например, устройство управления ЦВМ представляет собой селектор кодированных серий импульсов.

  Лит.:Ицхоки Я. С., Овчинников Н. И., Импульсные и цифровые устройства, М., 1972.

  Л. Н. Столяров.

Рис. 1. Схема амплитудной селекции и соответствующие диаграммы сигналов: u вх- входные сигналы; Е пор- заданный пороговый уровень (порог селекции) ограничения амплитуды («снизу»); u вых- выходные сигналы; 1, 2, 3, 4 - порядковые номера импульсов.

Рис. 3. Схема селекции кодированной серии импульсов (следующих с заданными временными интервалами) и соответствующие диаграммы сигналов: ЛЗ - линия задержки; И - логический элемент на 3 входа; u вх- входной сигнал; u вых- выходной сигнал; T 21, T 32- интервалы между импульсами; Т 31, Т 32- время задержки сигналов в ЛЗ 1и ЛЗ 2; 1, 2, 3 - порядковые номера импульсов.

Рис. 2. Схема селекции импульсов заданной длительности и соответствующие диаграммы сигналов; УЦ - устройство дифференцирования импульса («укорачивающая» цепь); ЛЗ - линия задержки; И - логический элемент на 2 входа; u вх- входной сигнал; u вых- выходной сигнал; t ис- заданная длительность сигнала; t и- длительность импульса; Т 3- время задержки сигнала в ЛЗ.

Селемджа

Селемджа',река в Амурской области РСФСР, левый самый крупный приток Зеи. Длина 647 км,площадь бассейна 68,6 тыс. км 2.Берёт начало на стыке хребтов Ям-Алинь и Эзон; в верховьях - горная река (ниже поселка Экимчан долина расширяется); в низовьях река течёт по северной окраине Зейско-Буреинской равнины. Главные притоки: Ульма (слева), Нора (справа). Питание преимущественно дождевое. Средний расход воды 715 м 3/сек,наибольший (июль) 10300 м 3/сек,наименьший (март) 5 м 3/сек.Замерзает в начале ноября, вскрывается в начале мая. Судоходна от устья р. Норы, в высокую воду от Экимчана. В верхнем течении С. - месторождения золота.

Селен

Селе'н(Selenium), Se, химический элемент VI группы периодической системы Менделеева; атомный номер 34, атомная масса 78, 96; преимущественно неметалл.Природный С. представляет собой смесь шести устойчивых изотопов (%) - 74Se (0,87), 76Se (9,02), 77Se (7,58), 78Se (23,52), 80Se (49,82), 82Se (9,19). Из 16 радиоактивных изотопов наибольшее значение имеет 75Se с периодом полураспада 121 сут.Элемент открыт в 1817 И. Берцелиусом (название дано от греч. selene - Луна).

  Распространение в природе. С. - очень редкий и рассеянный элемент, его содержание в земной коре (кларк) 5Ч10 -6 %по массе. История С. в земной коре тесно связана с историей серы.С. обладает способностью к концентрации и, несмотря на низкий кларк, образует 38 самостоятельных минералов - селенидов природных,селенитов, селенатов и др. Характерны изоморфные примеси С. в сульфидах и самородной сере.

  В биосфере С. энергично мигрирует. Источником для накопления С. в живых организмах служат изверженные горные породы, вулканические дымы, вулканические термальные воды. Поэтому в районах современного и древнего вулканизма почвы и осадочные породы нередко обогащены С. (в среднем в глинах и сланцах - 6Ч10 -5 %) .

 Физические и химические свойства. Конфигурация внешней электронной оболочки атома Se 4s 24p 4; у двух р-электронов спины спарены, а у остальных двух - не спарены, поэтому атомы С. способны образовывать молекулы Se 2или цепочки атомов Se n. Цепи атомов С. могут замыкаться в кольцевые молекулы Se 8.Разнообразие молекулярного строения обусловливает существование С. в различных аллотропических модификациях: аморфной (порошкообразный, коллоидный, стекловидный) и кристаллический (моноклинный a-и b-формы и гексагональный g-формы). Аморфный (красный) порошкообразный и коллоидный С. (плотность 4,25 г/см 3при 25 °С) получают при восстановлении из раствора селенистой кислоты H 2SeO 3, быстрым охлаждением паров С. и др. способами. Стекловидный (чёрный) С. (плотность 4,28 г/см 3при 25 °С) получают при нагревании любой модификации С. выше 220 °С с последующим быстрым охлаждением. Стекловидный С. обладает стеклянным блеском, хрупок. Термодинамически наиболее устойчив гексагональный (серый) С. Он получается из других форм С. нагреванием до плавления с медленным охлаждением до 180-210 °С и выдержкой при этой температуре. Решётка его построена из расположенных параллельно спиральных цепочек атомов. Атомы внутри цепей связаны ковалентно. Постоянные решётки а= 4,36 Е, с =4,95 Е, атомный радиус 1,6 Е, ионные радиусы Se 2-1,98 Е и Se 4+0,69 Е, плотность 4,807 г/см 3при 20 °С, t пл217 °С, t kип685 °С. Пары С. желтоватого цвета. В парах в равновесии находятся четыре полимерные формы Se 8Ы Se 6Ы Se 4Ы Se 2. Выше 900 °С доминирует Se 2. Удельная теплоёмкость гексагонального С. 0,19-0,32 кдж/( кгЧ К) ,[0,0463-0,0767 кал/( гЧ°С)] при -198 - +25 °С и 0,34 кдж/( кгЧ К) [0,81 кал/( гЧ °С)] при 217 °С; коэффициент теплопроводности 2,344 вт/( мЧ К) [0,0056 кал/( смЧ секЧ °С)] ,температурный коэффициент линейного расширения при 20 °С: гексагонального монокристаллического С. вдоль с-оси 17,88Ч10 -6, перпендикулярно с-оси 74,09Ч10 -6, поликристаллического 49,27Ч10 -6; изотермическая сжимаемость b 0=11,3Ч 10 -3 кбар -1,коэффициент электрического сопротивления в темноте при 20 °С 10 2 -10 12 ом см.Все модификации С. обладают фотоэлектрическими свойствами. Гексагональный С. вплоть до температуры плавления - примесный полупроводник с дырочной проводимостью. С. - диамагнетик (пары его парамагнитны). На воздухе С. устойчив; кислород, вода, соляная и разбавленная серная кислоты на него не действуют, хорошо растворим в концентрированной азотной кислоте и царской водке, в щелочах растворяется с окислением. С. в соединениях имеет степени окисления -2, +2, +4, +6. Энергия ионизации Se 0®Se 1+®Se 2+®S 3+соответственно 0,75; 21,5; 32 эв.

 С кислородом С. образует ряд окислов: SeO, Se 2O 5, SeO 2, SeO 3. Два последних являются ангидридами селенистой H 2SeO 3и селеновой H 2SeO 4к-т (соли - селениты и селенаты). Наиболее устойчив SeO 2. С галогенами С. даёт соединения SeF 6, SeF 4, SeCl 4, SeBr 4, Se 2Cl 2и др. Сера и теллур образуют непрерывный ряд твёрдых растворов с С. С азотом С. даёт Se 4N 4, с углеродом - CSe 2. Известны соединения с фосфором P 2Se 3, P 4Se 3, P 2Se 5. Водород взаимодействует с С. при t³ 200 °С ,образуя H 2Se; раствор H 2Se в воде называется селеноводородной кислотой. При взаимодействии с металлами С. образует селениды.Получены многочисленные комплексные соединения С. Все соединения С. ядовиты.

  Получение и применение. С. получают из отходов сернокислотного, целлюлозно-бумажного производства и анодных шламов электролитического рафинирования меди. В шламах С. присутствует вместе с серой, теллуром, тяжёлыми и благородными металлами. Для извлечения С. шламы фильтруют и подвергают либо окислительному обжигу (около 700 °С), либо нагреванию с концентрированной серной кислотой. Образующийся летучий SeO 2улавливают в скрубберах и электрофильтрах. Из растворов технический С. осаждают сернистым газом. Применяют также спекание шлама с содой с последующим выщелачиванием селената натрия водой и выделением из раствора С. Для получения С. высокой чистоты, используемого в качестве полупроводникового материала, черновой С. рафинируют методами перегонки в вакууме, перекристаллизации и др.

  Благодаря дешевизне и надёжности С. используется в преобразовательной технике в выпрямительных полупроводниковых диодах, а также для фотоэлектрических приборов (гексагональный), электрофотографических копировальных устройств (аморфный С.), синтеза различных селенидов, в качестве люминофоров в телевидении, оптических и сигнальных приборах, терморезисторах и т. п. С. широко применяется для обесцвечивания зелёного стекла и получения рубиновых стекол; в металлургии - для придания литой стали мелкозернистой структуры, улучшения механических свойств нержавеющих сталей; в химической промышленности - в качестве катализатора; используется С. также в фармацевтической промышленности и других отраслях.

  Г. Б. Абдуллаев.

 С. в организме. Большинство живых существ содержит в тканях от 0,01 до 1 мг/кгС. Концентрируют его некоторые микроорганизмы, грибы, морские организмы и растения. Известны бобовые (например, астрагал, нептуния, акация), крестоцветные, мареновые, сложноцветные, накапливающие С. до 1000 мг/кг(на сухую массу); для некоторых растений С. - необходимый элемент. В растениях-концентраторах обнаружены различные селеноорганические соединения, главным образом селеновые аналоги серусодержащих аминокислот - селенцистатионин, селенгомоцистеин, метилселенметионин. Важную роль в биогенной миграции С. играют микроорганизмы, восстанавливающие селениты до металлического С. и окисляющие селениды. Существуют биогеохимические провинции С .

 Потребность человека и животных в С. не превышает 50-100 мкг/кграциона. Он обладает антиоксидантными свойствами, повышает восприятие света сетчаткой глаза, влияет на многие ферментативные реакции. При содержании С. в рационе более 2 мг/кгу животных возникают острые и хронические формы отравлений. Высокие концентрации С. ингибируют окислительно-восстановительные ферменты, нарушают синтез метионина и рост опорно-покровных тканей, вызывают анемию. С недостатком С. в кормах связывают появление т. н. беломышечной болезни животных, некротической дегенерации печени, экссудативного диатеза; для предупреждения этих заболеваний используют селенит натрия.

  В. В. Ермаков.

  Лит.:Синдеева Н. Д., Минералогия, типы месторождений и основные черты геохимии селена и теллура, М., 1959; Кудрявцев А. А., Химия и технология селена и теллура, 2 изд., М., 1968; Чижиков Д. М., Счастливый В. ГГ., Селен и селениды, М., 1964; Абдуллаjeв Ћ. Б., Селендэ вэ селен дузлэндиоичилэ риндз физики просеслэрин тэдгиги, Бакы, 1959; Селен и зрение, Баку, 1972; Абдуллаев Г. Б., Абдинов Д. Ш., Физика селена, Баку, 1975; Букетов Е. А., Малышев В. П., Извлечение селена и теллура из медеэлектролитных шламов, А.-А., 1969; Recent advances in selenium physics, Oxf. - [a. o.], [1965]; The physics of selenium and tellurium, Oxf. - [a. o.], [1969]; Ермаков В. В., Ковальский В. В., Биологическое значение селена, М., 1974; Rosenfeld I., Beath O. A., Selenium, N. Y. - L., 1964.

Селена (греч. назв. Луны)

Селе'на(греч. selene), название Луны у древних греков.

Селена (мифологич.)

Селе'на,в древнегреческой мифологии богиня Луны; отождествлялась с Артемидой,иногда также с богиней Гекатой, считавшейся покровительницей чародейства и ворожбы. В поэзии (у Сапфо) С. изображалась прекрасной женщиной с факелом в руке, ведущей за собой звёзды.

Селенаты

Селена'ты,соли селеновой кислоты; см. Селен.

Селенга

Селенга',река в МНР и Бурятской АССР; образуется слиянием рр. Идэр и Мурэн, впадает в оз. Байкал, образуя дельту площадью 680 км 2(на С. приходится приблизительно 1/ 2речных вод, поступающих в озеро). Длина от истока р. Идэр 1024 км(в т. ч. 409 кмнижнего течения в СССР), площадь бассейна 447 тыс. км 2.Основные притоки Эгин-Гол, Орхон (в МНР), Джида, Чикой, Хилок, Уда (в СССР). С. имеет преимущественно равнинный облик с чередованием сужений (до 1-2 км) и котловинообразных расширений долины до 20-25 км,где она часто делится на протоки. Водный режим характеризуется низким весенним половодьем, дождевыми паводками летом и осенью и зимней меженью. Средний расход воды вблизи границы МНР и СССР 310 м 3/сек,в 127 кмот устья - 935 м 3/сек.Ледостав с ноября по апрель. Регулярное судоходство до г. Сухэ-Батор (МНР). На С. - столица Бурятской АССР г. Улан-Удэ и поселок городского типа Селенгинск.

  Лит.:Кузнецов Н. Т., Гидрография рек Монгольской Народной Республики, М., 1959; Черкасов А. Е., Водные ресурсы рек бассейна Байкала, их использование и охрана, Иркутск, 1973.

  Н. Т. Кузнецов.

Селенгинск

Селенги'нск,посёлок городского типа в Кабанском районе Бурятской АССР. Расположен на левом берегу р. Селенга (впадает в оз. Байкал), в 3 кмот ж.-д. станции Селенга (на линии Иркутск - Улан-Удэ). Целлюлозно-картонный комбинат, завод железобетонных изделий. Индустриальный техникум, медицинское училище.

Селендума

Селенду'ма,посёлок городского типа в Селенгинском районе Бурятской АССР. Расположен близ впадения р. Темник в Селенгу, в 5 км от ж.-д. станции Селендума (на линии Улан-Удэ - Наушки). Ремонтно-механический завод, овцеводческий совхоз.

Селениды

Селени'ды,химические соединения селена с металлами. С. - аналоги сульфидов и теллуридов.Их получают непосредственным взаимодействием элементов, взаимодействием металлов и их окислов с H 2Se, действием H 2Se на растворы солей металлов и другими способами. Известны нормальные С. и полиселениды, причём более устойчивы первые. С. переходных элементов IV-VIII групп, лантаноидов и актиноидов образуют тугоплавкие (с t пл2000-2500 °С) химически устойчивые соединения. С. металлов подгруппы цинка в основном применяются в резисторах и фотоэлементах. С. галлия применяется в лазерной технике и нелинейной оптике. С. переходных металлов могут использоваться в высокотемпературных полупроводниковых устройствах, диселениды молибдена и вольфрама - в качестве твёрдых смазок в узлах трения машин. Известны органические С. (см. Селенорганические соединения ) .

  Лит.:Чижиков Д. М., Счастливый В. П., Селен и селениды, М., 1964; Оболончик В. А., Селениды, М., 1972; Медведева З. С., Халькогениды элементов III Б подгруппы периодической системы, М., 1968.

Селениды природные

Селени'ды приро'дные,группа минералов, относящихся к соединениям селена с металлами. Известно около 30 минералов С. п., являющихся аналогами сульфидов природных,с которыми они образуют общие структурные типы непрерывных или ограниченных рядов твёрдых растворов. В отличие от S, образующей минералы более чем с 40 элементами, Se соединяется с относительно небольшим числом элементов: Pb (клаусталит PbSe), Hg (тиманнит HgSe), Bi (гуанахуатит Bi 2Se 3), Ag (науманнит Ag 2Se, агвиларит Ag 4SeS), Cu (клокманнит CuSe, берцелианит Cu 2Se, умангит Cu 3Se 2), Со (фребольдит CoSe), Fe (ферроселит FeSe 2, ашавалит FeSe), Ni (блокит NiSe 2), Zn (штиллеит ZnSe), Cd (кадмоселит CdSe), Tl; комплексные С. п. - крукесит (Cu 3TIAg) 2Se, эвкайрит CuAgSe и др.

  Большинство С. п. - редкие и очень редкие минералы. Наибольшие промышленные запасы Se (при сравнительно низких концентрациях) связаны с сульфидными месторождениями, в которых Se изоморфно замещает S в сульфидных минералах. Собственно селеновые минералы образуются при гидротермальных процессах в условиях резко пониженного потенциала S. Гидротермальные месторождения С. п. обычно некрупные, но характеризуются очень высоким содержанием Se (Пахакана в Боливии, месторождения Аргентины, ГДР и др.). Известны также субвулканические (чаще золоторудные) и гипергенные месторождения с селеновой минерализацией. Об использовании С. п. см. в ст. Селен .

  Лит.:Синдеева Н. Д., Минералогия, типы месторождений и основные черты геохимии селена и теллура, М., 1959; Геохимия, минералогия и генетические типы месторождений редких элементов, т. 1, М., 1964; Минералы. Справочник, т. 1, М., 1960.

  А. С. Марфунин.

Селенит

Селени'т(от греч. selene - Луна; в связи с характером света, отражаемого этим минералом), минерал, структурная разновидность