.Образовавшаяся смесь воды и конденсирующегося пара прогоняется в водяной (конденсационный) конус 2, а из него в нагнетательный конус 3 и далее через обратный клапан 7 в паровой котёл. Так как конус 3 расширяющийся, то скорость воды в нём уменьшается, давление растет и становится достаточным для преодоления давления в паровом котле и нагнетания питательной воды в котёл. Излишек воды, образующийся в начале работы И., сбрасывается через клапан 8 так называемой «вестовой» трубы 4. Температура воды, поступающей в И., не должна превышать 40 °С, а высота всасывания 2,5 м. И. устанавливают вертикально или горизонтально. И., предназначенные для отсасывания газов, паров или жидкостей, называются эжекторами .

  Г. Е. Холодовский.

Схема работы инжектора: 1 - паровой конус; 2 - водяной конус; 3 - нагнетательный конус; 4 - вестовая труба; 5 - паропровод; 6 - труба; 7, 8 - клапаны; 9 - бак.

Инжекционный лазер

Инжекцио'нный ла'зер, полупроводниковый лазер , в котором используется инжекция (впрыскивание) электронов и дырок в область электронно-дырочного перехода.Отличается малыми размерами (объём ~ 1 мм 3) .И. л. созданы на большом числе полупроводниковых материалов и излучают в широком диапазоне длин волн - от видимого света до инфракрасного излучения.

Инженер

Инжене'р(франц. ingйnieur, от лат. ingenium - способность, изобретательность), специалист с высшим техническим образованием , первоначально - название лиц, управлявших военными машинами. Понятие гражданский И. появилось в 16 в. в Голландии применительно к строителям мостов и дорог, затем в Англии и др. странах. Первые учебные заведения для подготовки И. были созданы в 17 в. в Дании, в 18 в. - в Великобритании, Франции, Германии, Австрии и др. В России первая инженерная школа основана Петром I в 1712 в Москве. В Петербурге были открыты Горное училище, приравненное к академиям (1773), Институт инженеров путей сообщения (1809), Училище гражданских инженеров (1832, с 1882 - Институт гражданских инженеров), Инженерная академия (1855). С 19 в. за рубежом стали различать И.-практиков, или профессиональных И. (по существу специалистов, имевших квалификацию техника), и дипломированных И., получивших высшее техническое образование (Civil Engineer).

  Подготовка И. осуществляется в различного типа и профиля высших учебных заведениях , в СССР по следующим отраслям технического образования: геологическое, горное, энергетическое, металлургическое, машиностроительное и приборостроительное, радиоэлектронное, лесоинженерное, химико-технологическое, технологическое, строительное, геодезическое, гидрометеорологическое, транспортное, инженерно-экономическое (см. статьи об отраслях образования, например Геодезическое образование и др. ). В 1971 в советской системе высшего технического образования свыше 230 инженерных специальностей и 360 специализаций. Современный научно-технический прогресс обусловил необходимость подготовки И. комплексных профилей - И.-физик, И.-математик и др. Учебный план каждой инженерной специальности рассчитан на 5-6 лет и состоит из трёх циклов учебных дисциплин: общенаучных - высшая математика, физика, химия, политическая экономия, марксистско-ленинская философия, научный коммунизм, история КПСС, иностранный язык и др.; общеинженерных - теоретическая механика, детали машин, теория механизмов и машин, начертательная геометрия и черчение, технология металлов, материаловедение, сопротивление материалов, электротехника, гидравлика, теплотехника, техника безопасности, экономика и организация производства, вычислительная техника и др.; специальных - в зависимости от специальности и специализации (например, для инженерной геодезии профилирующими являются геодезия, высшая геодезия, инженерная геодезия, инженерное изыскание, фотограмметрия, практическая астрономия и картография и др.). Общенаучные и общеинженерные дисциплины обеспечивают подготовку специалистов широкого профиля, общеспециальные дисциплины (например, теория технологических процессов, теория расчёта и конструирование машин и приборов и др.) закладывают научные основы специальной подготовки будущего И. Общеинженерная подготовка, как правило, осуществляется на младших курсах, специальная - на 3-5 курсах. В процессе обучения будущие И. выполняют ряд расчётно-графических и учебно-исследовательских работ и курсовых проектов , проходят учебную и производственную практику. Выпускники втузов защищают дипломный проект , сдают государственные экзамены и получают квалификацию И. (в соответствии с избранной специальностью - механика, электрика, технолога, экономиста и др.), по научному уровню эквивалентную квалификации, которая присваивается выпускникам высших технических учебных заведений США, Великобритании, Франции и др. стран, защитившим диссертационную работу на соискание 2-й профессиональной академической степени, например магистра наук.

  В 1971 на инженерных специальностях в вузах СССР обучалось около 3 млн. чел. Выпуск И. в СССР и США (в тыс. чел.) составил соответственно: в 1950 - 37 и 61, в 1960 - 120 и 43, в 1965 - 170 и 41, в 1970 - 257 и 50.

  В 1970 выпуск И. в СССР по группам специальностей распределялся (в тыс. чел.): геология и разведка месторождений полезных ископаемых - 5,1; разработка месторождений полезных ископаемых - 6,3; энергетика - 10,5; металлургия - 6,5; машиностроение и приборостроение - 69,0; электронная техника, электроприборостроение и автоматика - 40,5; радиотехника и связь - 19,8; химическая технология - 16,1; лесоинженерное дело и технология древесины, целлюлозы и бумаги - 3,3; технология продовольственных продуктов - 7,9; технология товаров широкого потребления - 5,4; строительство - 30,3; геодезия и картография - 1,0; гидрология и метеорология - 1,1; транспорт - 14,9; экономика - 20,0. Численность дипломированных И., занятых в хозяйстве СССР и США соответственно (в тыс. чел.): в 1950 - 400 и 310, в 1960 - 1135 и 590, в 1965 - 1631 и 735, в 1970 - 2486 и 905.

  Научные и научно-педагогические кадры в области техники готовятся в системе аспирантуры втузов и научно-исследовательских учреждений. В 1970 в СССР насчитывалось около 40 тыс. аспирантов и около 410 тыс. научных работников в области технических наук, в том числе 4,7 тыс. докторов и 63,5 тыс. кандидатов технических наук.

  В. А. Юдин.

Инженерная геодезия

Инжене'рная геоде'зия,раздел геодезии , изучающий методы измерений и инструменты, используемые при изысканиях и строительстве инженерных сооружений. Составные части И. г.: топографо-геодезические изыскания, инженерно-геодезическое проектирование, разбивочные работы, выверка конструкций, наблюдения за деформациями сооружений.

  При изысканиях строительных площадок местность снимают в масштабах 1:5000-1:500. Геодезическое обоснование строят в виде сетей триангуляции, полигонометрии, нивелирования. Предварительные изыскания трасс линейных сооружений производят по топографическим картам и материалам аэросъёмки. Окончательные изыскания выполняют полевым трассированием. Оптимальные варианты трасс и площадок выбирают с помощью электронно-вычислительных машин по цифровой модели местности. Инженерно-геодезическое проектирование состоит в подготовке топографической основы проекта (планов, профилей) и аналитических данных (координат и отметок точек, длин и азимутов линий), а также в вертикальной планировке площадок, аналитической подготовке проекта и др. Для перенесения проекта на местность создают разбивочную сеть опорных геодезических пунктов в виде триангуляции (туннельной, гидротехнической, мостовой), строительной сетки (на промышленных площадках), сетей полигонометрии (в городах), точной трилатерации (для высотных и уникальных сооружений). От разбивочной сети переносят в натуру главные оси сооружений и детально разбивают все строительные оси и поперечники. На законченных сооружениях выполняют контрольную исполнительную съёмку. Установка в проектное положение конструкций и оборудования включает выверку осей в плане, по высоте и по вертикали. Для плановой выверки применяют струнно-оптические и оптические методы. Конструкции по высоте устанавливают геометрическим и гидростатическим нивелированием или микронивелированием. Вертикальность осей проверяют точными теодолитами (наклонным визированием) или особыми зенит-приборами. При наблюдениях за деформациями сооружений определяют осадки и плановые смещения закрепленных точек (марок). Осадки измеряют высокоточным нивелированием, которое прокладывается периодически (циклами) по строго установленной программе. Применяют также электронно-гидростатические системы с автоматической записью их показаний. Плановые смещения прямолинейных сооружений определяют створным методом, криволинейных - триангуляцией или полигонометрией. Пространственные деформации целесообразно измерять методом наземной стереофотограмметрической съёмки. В этих работах особое внимание обращается на устойчивость (незыблемость) плановой и высотной геодезической основы.

  Лит.:Левчук Г. П., Основные виды инженерно-геодезических работ. Геодезические работы при изысканиях и строительстве транспортных и промышленных сооружений, М., 1970; Глотов Г. Ф., Геодезические работы при проектировании и строительстве гидротехнических сооружений, М., [в печати]; Лебедев Н. Н., Геодезические работы при проектировании и строительстве городов и тоннелей, М., 1970; Справочник геодезиста, под ред. В. Д. Большакова и Г. П. Левчука, М., 1966; Видуев Н. Г., Ракитов Д. И., Приложение геодезии в инженерно-строительном деле, 2 изд., М., 1964.

  Г. П. Левчук.

Инженерная геология

Инжене'рная геоло'гия,отрасль геологии , изучающая верхние горизонты земной коры и динамику последней в связи с инженерно-строительной деятельностью человека. Рассматривает состав, структуру, текстуру и свойства горных пород как грунтов; разрабатывает прогнозы тех процессов и явлений, которые возникают при взаимодействии сооружений с природной обстановкой, и пути возможного воздействия на процессы с целью устранения их вредного влияния.

  И. г. зародилась в 19 в. В России первые инженерно-геологические работы были связаны со строительством железных дорог (1842-1914). В них принимали участие А. П. Карпинский, Ф. Ю. Левинсон-Лессинг, И. В. Мушкетов, А. П. Павлов, В. А. Обручев и др. Как наука И. г. оформилась в СССР к концу 1930-х гг. в результате исследований, связанных главным образом с гидротехническим строительством. В её развитии большая роль принадлежит Ф. П. Саваренскому, И. В. Попову, Н. Н. Маслову, В. А. Приклонскому, М. П. Семенову и др.

  И. г. подразделяется на: грунтоведение , изучающее горные породы и почвы, исследуемые в качестве оснований, естественных материалов и среды для инженерных сооружений; инженерную геодинамику, рассматривающую наряду с природными геологическими процессами процессы, возникающие под влиянием инженерной деятельности человека, и региональную инженерную геологию, которая изучает региональный и зональный характер распространения инженерно-геологических процессов и явлений; оценивает применительно к данной территории геологические факторы, определяющие условия строительства и эксплуатации инженерных сооружений; даёт прогноз изменения инженерно-геологических условий в результате строительства.

  Морская И. г. изучает возможности строительства в условиях субаквальной среды. Формируется направление, изучающее влияние инженерной деятельности человека на глубокие горизонты земной коры (зону катагенеза ), а также изучающее сейсмические явления с инженерно-геологических позиций (инженерная сейсмогеология).

  И. г. тесно связана с гидрогеологией, геокриологией (мерзлотоведением), нефтяной геологией. При полевых исследованиях она использует геофизические методы (электроразведка, микросейсмика, ультразвуковой и ядерно-пенетрационный каротаж), а также физические и химические методы. Для проникновения в «микромир» горных пород применяются электронная микроскопия, электронография, рентгенография и др. методы лабораторных исследований.

  В СССР исследования по И. г. проводятся различными организациями министерства геологии СССР, Госстроя СССР, некоторыми вузами и др. Координация всех исследований ведётся Научным советом по инженерной геологии и грунтоведению при АН СССР. В 1968 на 23-й сессии Международного геологического конгресса в Праге организована Международная ассоциация инженеров-геологов.

  Лит.:Саваренский Ф. П., Инженерная геология, 2 изд., М., 1939; Попов И. В., Инженерная геология, 2 изд., М., [1959]; Коломенский Н. В., Комаров И. С., Инженерная геология, [М.], 1964; Инженерная геология в государственном планировании, М., 1968; Проблемы инженерной геологии, М., 1970.

  Е. М. Сергеев.

Инженерная гидравлика

Инжене'рная гидра'влика,гидравлика сооружений, раздел гидравлики , в котором рассматривается теория расчёта движения воды через водопроводящие гидротехнические сооружения (водосливы и водоспуски плотин, лотки, каналы и т. п.), а также взаимодействие этих сооружений с проходящим потоком. Важнейшая задача И. г. заключается в определении основных строительных размеров сооружений и их рациональной формы. Наряду с этим в И. г. рассматриваются вопросы движения жидкости в пористой среде (движение грунтовых вод , фильтрация под гидротехническими сооружениями и др.), воздействия волн на сооружения, пропуска речного потока в период строительства плотин и гидроузлов, проблемы гидротранспорта грунтов и горных пород (см. Гидромеханизация ). В СССР разработаны теоретические основы и методы расчёта регулирования речных русел возбуждением поперечной циркуляции потока, вопросы теории и расчёта перекрытия речного потока наброской камня и бетонных массивов в текущую воду и др. инженерные задачи.

  Развитие И. г. тесно связано с техническим прогрессом в области водного хозяйства, обусловлено масштабами современного гидротехнического строительства. Применяя общие законы механики жидкости, И. г. широко использует экспериментальные исследования как в лабораториях на моделях, так и в натурных условиях на эксплуатируемых сооружениях.

  Современные актуальные проблемы И. г. - исследования течения воды с большими скоростями, аэрации воды водного потока, кавитации , проблемы гидравлического расчёта высоконапорных сооружений. Развитие И. г. в СССР связано с научной, инженерной и педагогической деятельностью академика Н. Н. Павловского, профессоров В. Д. Журина, А. Н. Ахутина, М. Д. Чертоусова, И. И. Агроскина и др.

  Лит.:Киселев П. Г., Справочник по гидравлическим расчётам, 4 изд., М.-Л., 1972; Чертоусов М. Д., Гидравлика. Спецкурс, 4 изд., М.-Л., 1962; Леви И. И., Моделирование гидравлических явлений, 2 изд., Л., 1967; Слисский С. М., Гидравлика зданий гидроэлектростанций, М., 1970.

  Н. Н. Пашков.

Инженерная гидрогеология

Инжене'рная гидрогеоло'гия,раздел гидрогеологии , изучающий современное состояние подземных вод и те изменения, которым они подвергаются под влиянием строительства и эксплуатации различных сооружений и другой хозяйственной деятельности человека. Подземные воды в одних случаях могут быть полезны для человека (использование для водоснабжения, орошения и обводнения территорий), в других - являются отрицательным фактором, усложняющим и удорожающим строительство (например, в областях развития многолетнемёрзлых горных пород, подтопление и заболачивание ценных земель на берегах водохранилищ и каналов, на площадках промышленного и гражданского строительства, приток подземных вод и обводнение строительных котлованов, шахт, карьеров).

  Для установления гидрогеологических условий района сооружений и определения необходимых исходных данных для количественных прогнозов (расчётов) дебита водоразборных сооружений, водопритоков в котлованы и горные выработки и т. п. производятся гидрогеологические исследования с проведением геологических и гидрогеологических съёмок, применением разведочных работ (бурение, проходка шурфов, штолен и т. д.), полевых опытно-фильтрационных работ (опытные откачки из скважин, нагнетания и налив воды в скважины и шурфы, опыты по определению естественных скоростей течения подземных вод) и геофизических работ (электроразведка, сейсморазведка и др.). Кроме того, проводится лабораторное изучение химического состава подземных вод и водных свойств грунтов. При гидрогеологических исследованиях возникает необходимость привлечения методов смежных областей естественных наук: гидрологии, почвоведения и др. Для количественных прогнозов используются методы математики, механики (гидромеханики, теории фильтрации).

  Лит.:Саваренский Ф. П., Гидрогеология, 3 изд., М.-Л., 1939; Овчинников А. М., Общая гидрогеология, 2 изд., М., 1954; Каменский Г. Н., Основы динамики подземных вод, 2 изд., М., 1943; его же, Поиски и разведка подземных вод, М.-Л., 1947.

  Ф. М. Бочевер.

Инженерная подготовка

Инжене'рная подгото'вкатерриторий населённых мест, комплекс инженерных мероприятий и сооружений по освоению территорий для целесообразного градостроительного использования, улучшению санитарно-гигиенических и микроклиматических условий населённых мест.

  Вопросы И. п. имеют существенное значение как при выборе площадок для строительства новых городов и посёлков, так и при реконструкции и расширении существующих населённых мест, поскольку территории, полностью пригодные для целей градостроительства по своим природным условиям и одновременно достаточные по размерам, практически отсутствуют. В большинстве существующих городов и посёлков удельный вес непригодных и ограниченно пригодных территорий составляет в среднем 8-10% общей площади населённого места; осуществление мероприятий по И. п. позволяет максимально сократить размеры этих территорий.

  Состав мероприятий И. п. устанавливается в зависимости от природных условий осваиваемой территории (рельефа, грунтовых условий, степени затопляемости, заболоченности и т. д.) с учётом планировочной организации населённого места. В некоторых случаях мероприятия по И. п. определяют архитектурно-планировочную структуру и пространственную композицию населённых мест. Так, например, намыв (рефулирование) территорий на побережье Финского залива в Ленинграде создал дополнительную возможность застройки прибрежных участков площадью около 400 гаи 200 гаакватории мелководной части залива. Это мероприятие обеспечило широкий выход города к морю.

  В зависимости от сложности комплекса мероприятий И. п. и величины затрат на их осуществление выделяются: 1) мероприятия, необходимые в том или ином объёме почти повсеместно, - вертикальная планировка территорий, организация поверхностного стока и удаление застойных вод, а также в ряде случаев - регулирование водотоков, устройство и реконструкция водоёмов, берегоукрепительных сооружений , благоустройство береговой полосы. Обычно затраты на эти мероприятия составляют около 1-2% общей стоимости городского строительства; 2) мероприятия, имеющие широкое распространение, - понижение уровня грунтовых вод, защита территории от затопления и подтопления, освоение оврагов, борьба с карстовыми явлениями (см. Карст ) и оползнями , восстановление территорий, нарушенных вследствие деятельности человека (например, при добыче полезных ископаемых). Стоимость их осуществления в среднем 2,5-5% обшей стоимости городского строительства; 3) мероприятия по освоению территорий с исключительно неблагоприятными природными условиями, например с глубоким залеганием торфа на обширной площади, где требуется проведение сложного комплекса работ по И. п. (глубокий дренаж, массовое выторфовывание, подсыпка территорий с большими объёмами перемещаемого грунта и т. п.), инженерная подготовка территорий, сложенных просадочными грунтами, защита территорий от грязекаменных потоков ( селей ). Особенно сложно освоение территорий в сейсмических районах и в районах распространения многолетнемёрзлых грунтов. Затраты на И. п. таких территорий достигают 10% общей стоимости городского строительства.

  Одно из основных, практически повсеместных мероприятий по И. п. - вертикальная планировка территорий - заключается в подготовке естественного рельефа местности для размещения зданий и сооружений, обеспечении транспортных связей и организации поверхностного стока путём срезок, подсыпок грунта, смягчения уклонов. При вертикальной планировке обычно соблюдается требование максимального сохранения естественного рельефа. При спокойном рельефе с уклоном от 0,5 до 10% и его частичном преобразовании объёмы работ по вертикальной планировке составляют 800-1500 м 3/ га; при холмистом рельефе достигают 3000 м 3/ га.Вертикальная планировка территории обычно осуществляется средствами землеройной техники (см. Земляные работы ). При перемещении земляных масс, объём которых превышает 1 млн. м 3, наиболее эффективен гидромеханический способ (см. Гидромеханизация ), при объёмах, превышающих 1,5 млн. м 3, -взрывная экскавация.

  В комплексе с вертикальной планировкой для организации поверхностного стока атмосферных вод используется сеть водотоков открытого, закрытого или смешанного типа.

  Среди широко распространённых мероприятий И. п. особое градостроительное значение имеет защита территорий от затопления, осуществляемая повышением отметок земной поверхности (подсыпкой, намывом), обвалованием, снижением отметок водотока за счёт создания водохранилищ или устройством разгрузочных русел преимущественно на малых реках. Практически применяется не одно из мероприятий, а их комплекс; так, подсыпка территорий обеспечивает (по сравнению с обвалованием) доступ к водному пространству, но невозможна на застроенных территориях. Защита территории от затопления должна, как правило, сопровождаться защитой её от подтопления, т. е. повышения уровня грунтовых вод вследствие подъёма горизонта воды в реке или водохранилище. Эта защита осуществляется устройством береговой горизонтальной дрены, системой вертикальных дренажных колодцев или их сочетаний. Понижение уровня грунтовых вод предусматривается и на территориях, где возможен их подъём, например при застройке.

  К числу сложных, но необходимых мероприятий И. п. относится восстановление нарушенных территорий, увеличение которых происходит постоянно вследствие производственной и градостроительной деятельности. Нарушенные территории могут восстанавливаться для жилищного, промышленного и иного строительства, для организации мест отдыха с устройством водоёмов. Восстановление территорий, нарушенных, в частности, при добыче полезных ископаемых, производится засыпкой провалов шахтной породой, складированием пород в выработанных пространствах карьеров, разравниванием отвалов вскрыши или шахтной породы. В целом мероприятия по И. п. территорий населённых мест являются неотъемлемой частью градостроительства. См. также Благоустройство населённых мест .

  Лит.:Основы советского градостроительства, т. 3, М., 1967; Строительные нормы и правила, ч. 2, раздел К, гл. 2. Планировка и застройка населенных мест. Нормы проектирования, М., 1967.

  Н. Я. Бурлаков, И. В. Лазарева.

Инженерная психология

Инжене'рная психоло'гия,одна из специальных дисциплин психологии . И. п. решает следующие задачи: 1) рациональная организация деятельности людей в системах «человек и машина» , предназначенных для управления и обработки информации; 2) целесообразное распределение функций между управляющим и обслуживающим персоналом и техническими средствами автоматизации; 3) оптимизация процессов информационного обеспечения и принятия решения. В решении этих задач И. п. основывается на данных смежных наук, таких, как психология личности, психология труда и др., а также тесно взаимодействует с системотехникой и инженерными дисциплинами.

  И. п. возникла в 40-х гг. 20 в. и первоначально развивалась как направление традиционной психологии труда, основным объектом которой было исследование непосредственного взаимодействия человека с предметами и орудиями труда (инструменты, станок, конвейер, средства транспорта и т. п.). Задачи И. п. сводились в основном к критическому анализу ошибок проектирования оборудования или подготовки операторов и выявлению факторов, влияющих на эффективность систем «человек и машина». Были выработаны полезные рекомендации по рациональному конструированию пультов управления, шкал приборов, средств индикации и т. п. Становление И. п. как самостоятельной научной психологической дисциплины было обусловлено