Лит.:Михайлов А. И., Черный А. И., Гиляревский Р. С., Основы информатики, 2 изд., М., 1968, с. 316-515.
А. И. Черный.
Информационный запрос
Информацио'нный запро'с,текст, смысловое содержание которого выражает некоторую информационную потребность. После индексирования И. з. становится поисковым предписанием для информационно-поисковой системы. Например, И. з. по теме «Воздушные линии передачи электроэнергии» выражается на языке «Универсальной десятичной классификации» индексом 621.315.1, который является поисковым предписанием для выдачи системой необходимой информации.
Информационный поиск
Информацио'нный по'иск,процесс отыскания в некотором множестве текстов (документов) всех таких, которые посвящены указанной в запросе теме (предмету) или содержат нужные потребителю факты, сведения. И. п. осуществляется посредством информационно-поисковой системы и выполняется вручную либо с использованием средств механизации или автоматизации. Непременным участником И. п. является человек. В зависимости от характера информации, которая содержится в выдаваемых информационно-поисковой системой (ИПС) текстах, И. п. может быть документальным, в том числе библиографическим, и фактографическим. И. п. нужно отличать от логической переработки информации, без которой невозможна непосредственная выдача человеку ответов на задаваемые им вопросы. При И. п. отыскиваются - и могут быть найдены - такие и только такие факты или сведения, которые были введены в ИПС. Перед вводом в ИПС текста (документа) определяется его основное смысловое содержание (тема или предмет), которое затем переводится и записывается на одном из информационно-поисковых языков (см. также Индексирование ). Эта запись называется поисковым образом текста. Так же поступают и когда в ИПС вводят определённым образом записанные факты, сведения. Поступивший запрос также переводится на информационно-поисковый язык, образуя поисковое предписание. Поскольку поисковые образы текстов и поисковые предписания записаны на одном и том же языке, выражения на котором допускают только одно истолкование, то возможно сравнивать их формально, не вникая в смысл. Для этого задаются определённые правила (критерии соответствия), устанавливающие, при какой степени формального совпадения поискового образа с поисковым предписанием текст следует считать отвечающим на информационный запрос и подлежащим выдаче.
Техническая эффективность И. п. характеризуется двумя относительными показателями - коэффициентом точности (отношением числа текстов, отвечающих на информационный запрос, к общему числу текстов в данной выдаче) и коэффициентом полноты (отношением числа текстов, отвечающих на информационный запрос, к общему числу таких текстов, содержащихся в данной ИПС). Необходимые значения этих показателей зависят от специфики информационных потребностей. Например, при поиске патентных описаний с целью проведения экспертизы патентной заявки на новизну необходима 100%-ная полнота выдачи; при поиске, ориентированном на обычного исследователя или инженера, очень хорошей считается точность выдачи около 80% , полнота - около 50%.
И. п. может быть двух типов - избирательное (или адресное) распространение информации и ретроспективный поиск. При избирательном распространении информации И. п. производится по постоянным запросам некоторого числа потребителей (абонентов), осуществляется периодически (обычно один раз в неделю или в две недели) и выполняется лишь в массиве текстов, поступивших в ИПС за этот период времени. Между ИПС и потребителями (абонентами) устанавливается эффективно действующая обратная связь (абонент сообщает, в какой степени этот текст соответствует запросу и нужна ли ему копия полного текста, о степени соответствия этого текста его информационной потребности), которая позволяет уточнять потребности абонентов, своевременно реагировать на изменения этих потребностей и оптимизировать работу системы. При ретроспективном поиске ИПС отыскивает содержащие требуемую информацию тексты во всём накопленном массиве текстов по разовым запросам.
Дальнейшее развитие И. п. направлено на его механизацию и автоматизацию. Для этого используются перфокарты ручного обращения (с краевой перфорацией, щелевые и просветные), счётно-перфорационные машины, электронные цифровые вычислительные машины, а также специальные технические средства - микрофотографические, с магнитной и видеомагнитной записью информации и т. д.
Лит.:Михайлов А. И., Черный А. И., Гиляревский Р. С., Основы информатики, 2 изд., М., 1968, с. 244-620; Bourne Ch. P., Methods of information handling, N. Y., 1963; Vickery B. C., On retrieval system theory, 2 ed., L., 1965.
А. И. Чёрный.
«Информационный указатель Государственных стандартов СССР»
«Информацио'нный указа'тель Госуда'рственных станда'ртов СССР»(ИУС), ежемесячное официальное издание Государственного комитета стандартов Совета Министров СССР. Издаётся в Москве с 1940. Рассчитано на широкий круг инженерно-технических работников. Включает перечень государственных стандартов (располагается по разделам и группам классификатора ГОСТов), утвержденных Госстандартом СССР за прошедший месяц (в том числе на аттестованную продукцию), номера отмененных и измененных стандартов и инструкций. К каждому номеру ИУС выпускается приложение (тексты изменений и поправок, внесённых в государственные стандарты). На основе материалов государственной регистрации стандартов ИУС составляет Всесоюзный информационный фонд стандартов и технических условий. Тираж (1971) 47 тыс. экземпляров.
Информационный язык (в информационно-логической системе)
Информацио'нный язы'кдля информационно-логической системы, формальная семантическая система, состоящая из некоторого алфавита (списка элементарных символов) и правил образования, преобразования и интерпретации. Правила образования устанавливают, какие комбинации элементарных символов допускаются, правила преобразования - какие допускаются преобразования выражений (на И. я.) с целью получения логического вывода, а правила интерпретации - как надлежит понимать выражения, составленные по правилам образования. Так как И. я. используется в информационно-логических системах для записи фактов и сведений, он должен быть недвусмысленным, удобным для дедуктивного логического вывода и отождествления разным образом записанных одинаковых фактов и сведений, пригодным для использования в информационной машине. Такое построение И. я. позволяет вводить в машину не все известные факты и сведения (это было бы невозможно), а лишь основные, из которых в ней можно получить остальные по правилам преобразования.
Чем более формализован реальный язык той или иной отрасли науки (наиболее формализованные языки используются в математике и химии), тем легче создать для неё И. я. Необходимо отличать И. я. от информационно-поискового языка , предназначенного для решения другой, значительно более простой задачи - для поиска текстов (документов), основное смысловое содержание которых отвечает на некоторый информационный запрос , и поэтому имеющего иную структуру.
А. И. Чёрный.
Информационный язык (в обработке информации)
Информацио'нный язы'к,специальный искусственный язык, используемый в системах обработки информации (см. Языки информационные ).
Информация (в кибернетике)
Информа'цияв кибернетике. Естественнонаучное понимание И. основано на двух определениях этого понятия, предназначенных для различных целей (для информации теории , иначе называемой статистической теорией связи, и теории статистических оценок ). К ним можно присоединить и третье (находящееся в стадии изучения), связанное с понятием сложности алгоритмов.
Центральное положение понятия И. в кибернетике объясняется тем, что кибернетика (ограничивая и уточняя интуитивное представление об И.) изучает машины и живые организмы с точки зрения их способности воспринимать определённую И., сохранять её в «памяти», передавать по «каналам связи» и перерабатывать её в «сигналы», направляющие их деятельность в соответствующую сторону.
В некоторых случаях возможность сравнения различных групп данных по содержащейся в них И. столь же естественна, как возможность сравнения плоских фигур по их «площади»; независимо от способа измерения площадей можно сказать, что фигура Aимеет не большую площадь, чем B, если Aможет быть целиком помещена в В(сравни примеры 1-3 ниже). Более глубокий факт - возможность выразить площадь числом и на этой основе сравнить между собой фигуры произвольной формы - является результатом развитой математической теории. Подобно этому, фундаментальным результатом теории И. является утверждение о том, что в определённых весьма широких условиях можно пренебречь качественными особенностями И. и выразить её количество числом. Только этим числом определяются возможности передачи И. по каналам связи и её хранения в запоминающих устройствах.
Пример 1. В классической механике знание положения и скорости частицы, движущейся в силовом поле, в данный момент времени даёт И. о её положении в любой будущий момент времени, притом полную в том смысле, что это положение может быть предсказано точно. Знание энергии частицы даёт И., но, очевидно, неполную.
Пример 2. Равенство
a= b (1)
даёт И. относительно вещественных переменных a и b.Равенство
a 2= b 2 (2)
даёт меньшую И. [так как из (1) следует (2), но эти равенства не равносильны]. Наконец, равенство
a 3= b 3 (3)
равносильное (1), даёт ту же И., то есть (1) и (3) - это различные формы задания одной и той же И.
Пример 3. Результаты произведённых с ошибками независимых измерений какой-либо физической величины дают И. о её точном значении. Увеличение числа наблюдений увеличивает эту И.
Пример 3 а. Среднее арифметическое результатов наблюдений также содержит некоторую И. относительно рассматриваемой величины. Как показывает математическая статистика, в случае нормального распределения вероятностей ошибок с известной дисперсией среднее арифметическое содержит всю И.
Пример 4. Пусть результатом некоторого измерения является случайная величина X. При передаче по некоторому каналу связи Xискажается, в результате чего на приёмном конце получают величину Y= X+ q, где q не зависит от X(в смысле теории вероятностей). «Выход» Yдаёт И. о «входе» X; причём естественно ожидать, что эта И. тем меньше, чем больше дисперсия случайной ошибки q.
В каждом из приведённых примеров данные сравнивались по большей или меньшей полноте содержащейся в них И. В примерах 1-3 смысл такого сравнения ясен и сводится к анализу равносильности или неравносильности некоторых соотношений. В примерах 3 а и 4 этот смысл требует уточнения. Это уточнение даётся, соответственно, математической статистикой и теорией И. (для которых эти примеры являются типичными).
В основе теории информации лежит предложенный в 1948 американским учёным К. Шенноном способ измерения количества И., содержащейся в одном случайном объекте (событии, величине, функции и т. п.) относительно другого случайного объекта. Этот способ приводит к выражению количества И. числом. Положение можно лучше объяснить в простейшей обстановке, когда рассматриваемые случайные объекты являются случайными величинами, принимающими лишь конечное число значений. Пусть X- случайная величина, принимающая значения x 1, x 2,..., x nс вероятностями p 1, p 2,..., p n,а Y- случайная величина, принимающая значения y 1, y 2,..., y mс вероятностями q 1, q 2,..., q m. Тогда И. I( X, Y) относительно Y, содержащаяся в X, определяется формулой
где p ij- вероятность совмещения событий X= x iи Y = y jи логарифмы берутся по основанию 2. И. I( X, Y) обладает рядом свойств, которые естественно требовать от меры количества И. Так, всегда I( X, Y) ³ 0 и равенство I( X, Y) = 0 возможно тогда и только тогда, когда p ij= p iq jпри всех iи j,т. е. когда случайные величины Xи Yнезависимы. Далее, всегда I( X, Y) Ј I( Y, Y) и равенство возможно только в случае, когда Yесть функция от X(например, Y= X 2и т. д.). Кроме того, имеет место равенство I( X, Y) = I( Y, X).
Величина
носит название энтропии случайной величины X. Понятие энтропии относится к числу основных понятий теории И. Количество И. и энтропия связаны соотношением
I( X, Y) = H( X) + H( Y) - H( X, Y), (5)
где H( X, Y) - энтропия пары ( X, Y), т. е.
Величина энтропии указывает среднее число двоичных знаков (см. Двоичные единицы ), необходимое для различения (или записи) возможных значений случайной величины (подробнее см. Кодирование , Энтропия ). Это обстоятельство позволяет понять роль количества И. (4) при «хранении» И. в запоминающих устройствах. Если случайные величины Xи Yнезависимы, то для записи значения Xтребуется в среднем H( X) двоичных знаков, для значения Yтребуется H( Y) двоичных знаков, а для пары ( X, Y) требуется Н( Х) + H( Y) двоичных знаков. Если же случайные величины Xи Yзависимы, то среднее число двоичных знаков, необходимое для записи пары ( X, Y), оказывается меньшим суммы Н( Х) + H( Y), так как
H( X, Y) = H( X) + H( Y) - I( X, Y).
С помощью значительно более глубоких теорем выясняется роль количества И. (4) в вопросах передачи И. по каналам связи. Основная информационная характеристика каналов, так называемая пропускная способность (или ёмкость), определяется через понятие «И.» (подробнее см. Канал ).
Если Xи Yимеют совместную плотность p( x, y), то
где буквами ри qобозначены плотности вероятности Хи Yсоответственно. При этом энтропии Н( X) и Н( Y) не существуют, но имеет место формула, аналогичная (5),
I( X, Y) = h( X) + h( Y) - h( X, Y), (7)
где
дифференциальная энтропия X[ h( Y) и h( X, Y) определяется подобным же образом].
Пример 5. Пусть в условиях примера 4 случайные величины Xи q имеют нормальное распределение вероятностей с нулевыми средними значениями и дисперсиями, равными соответственно s 2 х и s 2 q .Тогда, как можно подсчитать по формулам (6) или (7):
Таким образом, количество И. в «принятом сигнале» Yотносительно «переданного сигнала» Xстремится к нулю при возрастании уровня «помех» q (т. е. при s 2 q ® Ґ) и неограниченно возрастает при исчезающе малом влиянии «помех» (т. е. при s 2 q ® 0).
Особенный интерес для теории связи представляет случай, когда в обстановке примеров 4 и 5 случайные величины Xи Yзаменяются случайными функциями (или, как говорят, случайными процессами) X( t) и Y( t), которые описывают изменение некоторой величины на входе и на выходе передающего устройства. Количество И. в Y( t) относительно X( t) при заданном уровне помех («шумов», по акустической терминологии) q( t) может служить критерием качества самого этого устройства (см. Сигнал , Шеннона теорема ).
В задачах математической статистики также пользуются понятием И. (сравни примеры 3 и 3а). Однако как по своему формальному определению, так и по своему назначению оно отличается от вышеприведённого (из теории И.). Статистика имеет дело с большим числом результатов наблюдений и заменяет обычно их полное перечисление указанием некоторых сводных характеристик. Иногда при такой замене происходит потеря И., но при некоторых условиях сводные характеристики содержат всю И., содержащуюся в полных данных (разъяснение смысла этого высказывания даётся в конце примера 6). Понятие И. в статистике было введено английским статистиком Р. Фишером в 1921.
Пример 6. Пусть X 1, X 2, ..., X n, - результаты nнезависимых наблюдений некоторой величины, распределённые по нормальному закону с плотностью вероятности
где параметры aи s 2(среднее и дисперсия) неизвестны и должны быть оценены по результатам наблюдений. Достаточными статистиками (т. е. функциями от результатов наблюдении, содержащими всю И. о неизвестных параметрах) в этом примере являются среднее арифметическое
и так называемая эмпирическая дисперсия
Если параметр s 2известен, то достаточной статистикой будет только X(сравни пример 3 а выше).
Смысл выражения «вся И.» может быть пояснён следующим образом. Пусть имеется какая-либо функция неизвестных параметров j = j ( a, s 2) и пусть
j* = j*( X 1, X 2, ..., X n)
- какая-либо её оценка, лишённая систематической ошибки. Пусть качество оценки (её точность) измеряется (как это обычно делается в задачах математической статистики) дисперсией разности j* - j. Тогда существует другая оценка j**, зависящая не от отдельных величин X i, а только от сводных характеристик Xи s 2, не худшая (в смысле упомянутого критерия), чем j*. Р. Фишером была предложена также мера (среднего) количества И. относительно неизвестного параметра, содержащейся в одном наблюдении. Смысл этого понятия раскрывается в теории статистических оценок.
Лит.:Крамер Г., Математические методы статистики, пер. с англ., М., 1948; Ван-дер-Варден Б. Л., Математическая статистика, пер. с нем., М., 1960; Кульбак С., Теория информации и статистика, пер. с англ., М., 1967.
Ю. В. Прохоров.
Информация (изложение)
Информа'ция(от лат. informatio - разъяснение, изложение), первоначально - сведения, передаваемые одними людьми другим людям устным, письменным или каким-либо другим способом (например, с помощью условных сигналов, с использованием технических средств и т. д.), а также сам процесс передачи или получения этих сведений. И. всегда играла в жизни человечества очень важную роль. Однако в середины 20 в. в результате социального прогресса и бурного развития науки и техники роль И. неизмеримо возросла. Кроме того, происходит лавинообразное нарастание массы разнообразной И., получившее название «информационного взрыва». В связи с этим возникла потребность в научном подходе к И., выявлении её наиболее характерных свойств, что привело к двум принципиальным изменениям в трактовке понятия И. Во-первых, оно было расширено и включило обмен сведениями не только между человеком и человеком, но также между человеком и автоматом, автоматом и автоматом; обмен сигналами в животном и растительном мире. Передачу признаков от клетки к клетке и от организма к организму также стали рассматривать как передачу И. (см. Генетическая информация , Кибернетика биологическая ). Во-вторых, была предложена количественная мера И. (работы К. Шеннона , А. Н. Колмогорова и др.), что привело к созданию информации теории .
Более общий, чем прежде, подход к понятию И., а также появление точной количественной меры И. пробудили огромный интерес к изучению И. С начала 1950-х гг. предпринимаются попытки использовать понятие И. (не имеющее пока единого определения) для объяснения и описания самых разнообразных явлений и процессов.
Исследование проблем, связанных с научным понятием И., идёт в трёх основных направлениях. Первое из них состоит в разработке математического аппарата, отражающего основные свойства И. (см. Информация в кибернетике).
Второе направление заключается в теоретической разработке различных аспектов И. на базе уже имеющихся математических средств, в исследовании различных свойств И. Например, уже с момента создания теории И. возникла сложная проблема измерения ценности, полезности И. с точки зрения её использования. В большинстве работ по теории И. это свойство не учитывается. Однако важность его несомненна. В количественной теории, выдвинутой в 1960 А. А. Харкевичем , ценность И. определяется как приращение вероятности достижения данной цели в результате использования данной И. Близкие по смыслу работы связаны с попытками дать строгое математическое определение количества семантической (т. е. смысловой) И. (Р. Карнап и др.).
Третье направление связано с использованием информационных методов в лингвистике, биологии, психологии, социологии, педагогике и др. В лингвистике, например, проводилось измерение информативной ёмкости языков. После статистической обработки большого числа текстов, выполненной с помощью ЭВМ, а также сопоставления длин переводов одного и того же текста на разные языки и многочисленных экспериментов по угадыванию букв текста выяснилось, что при равномерной нагрузке речевых единиц информацией тексты могли бы укоротиться в 4-5 раз. Так был с этой точки зрения установлен факт избыточности естественных языков и довольно точно измерена её величина, находящаяся в этих языках примерно на одном уровне. В нейрофизиологии информационные методы помогли лучше понять механизм действия основного закона психофизики - закона Вебера - Фехнера, который утверждает, что ощущение пропорционально логарифму возбуждения. Именно такая зависимость должна иметь место в случае, если нервные волокна, передающие сигналы от акцепторов к мозгу, обладают свойствами, присущими идеализированному каналу связи, фигурирующему в теории И. Значительную роль информационный подход сыграл в генетике и молекулярной биологии, позволив, в частности, глубже осознать роль молекул РНК как переносчиков И. Ведутся также исследования по применению информационных методов в искусствоведении.
Такое разнообразное использование понятия И. побудило некоторых учёных придать ему общенаучное значение. Основоположниками такого общего подхода к понятию И. были английский нейрофизиолог У. Р. Эшби и французский физик Л. Бриллюэн.Они исследовали вопросы общности понятия энтропии в теории И. и термодинамике, трактуя И. как отрицательную энтропию (негэнтропию). Бриллюэн и его последователи стали изучать информационные процессы под углом зрения второго начала термодинамики , рассматривая передачу И. некоторой системе как усовершенствование этой системы, ведущее к уменьшению её энтропии. В некоторых философских работах был выдвинут тезис о том, что И. является одним из основных универсальных свойств материи. Положительная сторона этого подхода состоит в том, что он связывает понятие И. с понятием отражения. См. также ст. Информатика , Информация общественно-политическая, Массовая коммуникация .
Лит.:Эшби У. Р., Введение в кибернетику, пер. с англ., М., 1959; Харкевич А. А., О ценности информации, в сборнике: Проблемы кибернетики, в. 4, М., 1960; Шеннон К. Э., Работы по теории информации и кибернетике, пер. с англ., М., 1963; Колмогоров А. Н., Три подхода к определению понятия «количество информации», «Проблемы передачи информации», 1965, т. 1, в. 1; Бриллюэн Л., Научная неопределённость и информация, пер. с англ., М., 1966; Урсул А. Д., Информация, М., 1971.
В. Н. Тростников.
Информация (обществ.-политич.)
Информа'цияобщественно-политическая, совокупность сообщений об актуальных новостях внутренней и международной жизни, распространяемых средствами массовой коммуникации и ориентирующих аудиторию в фактах, явлениях, процессах политической, экономической, научной, культурной и пр. жизни общества. В социалистическом обществе к И. предъявляются требования правдивости и точности изложения правильно отобранных и сгруппированных типических фактов, объективного анализа и комментирования событий и процессов социальной жизни на основе марксистско-ленинской методологии в соответствии с принципом партийности. Коммунистическая партия придаёт важное значение проблеме информированности масс трудящихся с целью их сознательного и активного участия в общественной жизни, а также поступлению фактической и оценочной И. от самих трудящихся о положении дел во всех сферах народного хозяйства и культуры, о мнениях по различным общественным вопросам; эта «обратная» И. используется для принятия решений на различных уровнях социального управления.