Интегральная электроника.

  Лит.:Колосов Д. А., Горбунов Ю. И., Наумов Ю. Е., Полупроводниковые твердые схемы, М., 1965; Интегральные схемы. Принципы конструирования и производства, пер, с англ., под ред. А. А. Колосова, М., 1968; Интегральные схемы. Основы проектирования и технологии, пер. с англ., под ред. К. И. Мартюшова, М., 1970.

  И. Е. Ефимов.

Рис. 1. Поперечное сечение и электрическая схема полупроводниковой интегральной схемы. На рис. сгущенными точками показаны слои проводников тока из алюминия; разреженными точками показаны слои полупроводника из двуокиси кремния; косыми линиями показаны слои кремния с проводимостью n, с повышенной проводимостью n+ и р - типов: участок полупроводника (подложка )с проводимостью р - типа а образует конденсатор б, транзистор в, резистор г; цифрами отмечены участки интегральной схемы, соответственно обозначенные на электрической схеме.

Рис. 2. Поперечное сечение и электрическая схема гибридной интегральной схемы. На рис. разреженными точками показаны слои полупроводника из окиси кремния; вертикальными разреженными линиями показан слой хрома; вертикальными сгущенными линиями показан слой из хромистого никеля (NiCr); горизонтальными линиями показаны слои проводников тока из золота или серебра; на керамической подложке авыполнены конденсатор б, транзистор в, резистор г; цифрами отмечены участки интегральной схемы, соответственно обозначенные на электрической схеме.

Интегральная электроника

Интегра'льная электро'ника,интегральная микроэлектроника, область электроники, решающая проблемы конструирования, изготовления и применения интегральных схем и функциональных устройств. И. э. представляет собой дальнейший этап развития технологии изготовления полупроводниковых приборов на основе применения высокопроизводительных групповых технологических процессов (см. в ст. Микроэлектроника ). Основные разработки в области И. э. направлены на создание: интегральных схем (полупроводниковых, плёночных, гибридных), функциональных интегральных узлов, молектронных и оптоэлектронных устройств, ионных приборов (см. Молекулярная электроника и Оптоэлектроника ).

  Наиболее развита полупроводниковая и плёночная (гибридная) микроэлектроника, обеспечивающая массовое промышленное производство стандартных интегральных схем. Особенности развития этих направлений заключаются в непрерывном повышении функциональной сложности и увеличении степени интеграции схем. Оба направления тесно взаимосвязаны и дополняют друг друга. Функциональные интегральные узлы, молектронные и оптоэлектронные устройства являются дальнейшим развитием интегральной технологии на основе методов полупроводниковой и плёночной технологии. Интегральные схемы широко применяют в ЭВМ, контрольно-измерительной аппаратуре, бытовых радиоэлектронных приборах, аппаратуре связи и мн. др. Одним из перспективных направлений И. э. является диэлектрическая электроника.

  Лит.:Микроэлектроника, Сб. ст., под ред. ф. В. Лукина, в. 1, М., 1967; Введение в микроэлектронику, пер. с англ., под ред. И. П. Степаненко, М., 1968.

  К. Я. Прохоров.

Интегральное исчисление

Интегра'льное исчисле'ние,раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением и составляет вместе с ним одну из основных частей математического анализа (или анализа бесконечно малых). Центральными понятиями И. и. являются понятия определённого интеграла и неопределённого интеграла функций одного действительного переменного.

  Определённый интеграл.Пусть требуется вычислить площадь S«криволинейной трапеции» - фигуры ABCD(см. рис. ), ограниченной дугой непрерывной линии, уравнение которой у= f( x), отрезком ABоси абсцисс и двумя ординатами ADи BC.Для вычисления площади Sэтой криволинейной трапеции основание AB(отрезок [ a, b]) разбивают на nучастков (необязательно равных) точками а= x 0< x 1< ... < x n-1< < x n = b, обозначая длины этих участков D x 1, D x 2, ..., D x n; на каждом таком участке строят прямоугольники с высотами f(x 1), f(x 2), ..., f(x n ) где x k - некоторая точка из отрезка [ x k - 1, x k] (на рис. заштрихован прямоугольник, построенный на k-м участке разбиения; f (x k) - его высота). Сумма S nплощадей построенных прямоугольников рассматривается в качестве приближения к площади Sкриволинейной трапеции:

S» S n = f(x 1) D x 1+ f(x 2) D x 2+ f(x n ) D x n

или, применяя для сокращения записи символ суммы S (греческая буква «сигма»):

Указанное выражение для площади криволинейной трапеции тем точнее, чем меньше длины D x kучастков разбиения. Для нахождения точного значения площади Sнадо найти предел сумм S nв предположении, что число точек деления неограниченно увеличивается и наибольшая из длин D x kстремится к нулю.

  Отвлекаясь от геометрического содержания рассмотренной задачи, приходят к понятию определённого интеграла от функции f( x), непрерывной на отрезке [ а, b], как к пределу интегральных сумм S nпри том же предельном переходе. Этот интеграл обозначается

Символ т (удлинённое S- первая буква слова Summa) называется знаком интеграла, f( x) - подинтегральной функцией, числа аи bназываются нижним и верхним пределами определённого интеграла. Если а= b, то, по определению, полагают

кроме того,

 Свойства определённого интеграла:

( k -постоянная). Очевидно также, что

(численное значение определённого интеграла не зависит от выбора обозначения переменной интегрирования).

  К вычислению определённых интегралов сводятся задачи об измерении площадей, ограниченных кривыми (задачи «нахождения квадратур»), длин дуг кривых («спрямление кривых»), площадей поверхностей тел, объёмов тел («нахождение кубатур»), а также задачи определения координат центров тяжести, моментов инерции, пути тела по известной скорости движения, работы, производимой силой, и многие другие задачи естествознания и техники. Например, длина дуги плоской кривой, заданной уравнением у= f( x) на отрезке [ a, b], выражается интегралом

объём тела, образованного вращением этой дуги вокруг оси Ox,- интегралом

поверхность этого тела - интегралом

 Фактическое вычисление определённых интегралов осуществляется различными способами. В отдельных случаях определённый интеграл можно найти, непосредственно вычисляя предел соответствующей интегральной суммы. Однако большей частью такой переход к пределу затруднителен. Некоторые определённые интегралы удаётся вычислять с помощью предварительного отыскания неопределённых интегралов (см. ниже). Как правило же, приходится прибегать к приближённому вычислению определённых интегралов, применяя различные квадратурные формулы (например, трапеций формулу , Симпсона формулу ). Такое приближённое вычисление может быть осуществлено на ЭВМ с абсолютной погрешностью, не превышающей любого заданного малого положительного числа. В случаях, не требующих большой точности, для приближённого вычисления определённых интегралов применяют графические методы (см. Графические вычисления ).

  Понятие определённого интеграла распространяется на случай неограниченного промежутка интегрирования, а также на некоторые классы неограниченных функций. Такие обобщения называются несобственными интегралами .

  Выражения вида

где функция f( x, a) непрерывна по xназываются интегралами, зависящими от параметра. Они служат основным средством изучения многих специальных функций (см., например, Гамма-функция ).

  Неопределённый интеграл.Нахождение неопределённых интегралов, или интегрирование, есть операция, обратная дифференцированию. При дифференцировании данной функции ищется её производная. При интегрировании, наоборот, ищется первообразная (или примитивная) функция - такая функция, производная которой равна данной функции. Таким образом, функция F( x) является первообразной для данной функции f( x), если F'( x) = f( x) или, что то же самое, dF( x) = f( x) dx.Данная функция f( x) может иметь различные первообразные, но все они отличаются друг от друга только постоянными слагаемыми. Поэтому все первообразные для f( x) содержатся в выражении F( x) + С, которое называют неопределённым интегралом от функции f( x) и записывают

 Определённый интеграл как функция верхнего предела интегрирования

(«интеграл с переменным верхним пределом»), есть одна из первообразных подинтегральной функции. Это позволяет установить основную формулу И. и. (формулу Ньютона - Лейбница):

выражающую численное значение определённого интеграла в виде разности значений какой-либо первообразной подинтегральной функции при верхнем и нижнем пределах интегрирования.

  Взаимно обратный характер операций интегрирования и дифференцирования выражается равенствами

  Отсюда следует возможность получения из формул и правил дифференцирования соответствующих формул и правил интегрирования (см. табл., где C, m, a, k- постоянные и m¹ -1, а> 0).

Таблица основных интегралов и правил интегрирования

¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

  Трудность И. и. по сравнению с дифференциальным исчислением заключается в том, что интегралы от элементарных функций не всегда выражаются через элементарные, могут не выражаться, как говорят, «в конечном виде». И. и. располагает лишь отдельными приёмами интегрирования в конечном виде, область применения каждого из которых ограничена (способы интегрирования излагаются в учебниках математического анализа: обширные таблицы интегралов приводятся во многих справочниках).

  К классу функций, интегралы от которых всегда выражаются в элементарных функциях, принадлежит множество всех рациональных функций

где P( x) и Q( x) - многочлены. Многие функции, не являющиеся рациональными, также интегрируются в конечном виде, например функции, рационально зависящие от

или же от xи рациональных степеней дроби

В конечном виде интегрируются и многие трансцендентные функции, например рациональные функции синуса и косинуса. Функции, которые изображаются неопределёнными интегралами, не берущимися в конечном виде, представляют собой новые трансцендентные функции. Многие из них хорошо изучены (см., например, Интегральный логарифм , Интегральный синус и интегральный косинус , Интегральная показательная функция ).

  Понятие интеграла распространяется на функции многих действительных переменных (см. Кратный интеграл , Криволинейный интеграл , Поверхностный интеграл ), а также на функции комплексного переменного (см. Аналитические функции ) и вектор-функции (см. Векторное исчисление ).

  О расширении и обобщении понятия интеграла см. ст. Интеграл.

  Историческая справка.Возникновение задач И. и. связано с нахождением площадей и объёмов. Ряд задач такого рода был решен математиками Древней Греции. Античная математика предвосхитила идеи И. и. в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывания метод , созданный Евдоксом Книдским и широко применявшийся Архимедом.Однако Архимед не выделил общего содержания интеграционных приёмов и понятия об интеграле, а тем более не создал алгоритма И. и. Учёные Среднего и Ближнего Востока в 9-15 вв. изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в И. и. они не получили. Деятельность европейских учёных в это время была ещё более скромной. Лишь в 16 и 17 вв. развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождения квадратур, кубатур и определение центров тяжести. Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов дальнейшего развития И. и. Античный «неделимых» метод был возрожден И. Кеплером.В более общей форме идеи этого метода были развиты Б. Кавальери , Э. Торричелли , Дж. Валлисом , Б. Паскалем.Методом «неделимых» был решен ряд геометрических и механических задач. К этому же времени относятся опубликованные позднее работы П. Ферма по квадрированию парабол n-й степени, а затем - работы Х. Гюйгенса по спрямлению кривых.

  В итоге этих исследований выявилась общность приёмов интегрирования при решении внешне несходных задач геометрии и механики, приводившихся к квадратурам как к геометрическому эквиваленту определённого интеграла. Заключительным звеном в цепи открытий этого периода было установление взаимно обратной связи между задачами на проведение касательной и на квадратуры, т. е. между дифференцированием и интегрированием. Основные понятия и алгоритм И. и. были созданы независимо друг от друга И. Ньютоном и Г. Лейбницем.Последнему принадлежит термин «интегральное исчисление» и обозначение интеграла т ydx.

 При этом в работах Ньютона основную роль играло понятие неопределённого интеграла (флюенты, см. Флюксий исчисление ), тогда как Лейбниц исходил из понятия определённого интеграла. Дальнейшее развитие И. и. в 18 в. связано с именами И. Бернулли и особенно Л. Эйлера.В начале 19 в. И. и. вместе с дифференциальным исчислением было перестроено О. Коши на основе теории пределов. В развитии И. и. в 19 в. приняли участие русские математики М. В. Остроградский , В. Я. Буняковский , П. Л. Чебышев . В конце 19 - начале 20 вв. развитие теории множеств и теории функций действительного переменного привело к углублению и обобщению основных понятий И. и. (Б. Риман , А. Лебег и др.).

  Лит.: История.Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Строек Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; Cantor М.. Vorleslingen ьber Geschichte der Mathematik, 2 Aufl., Bd 3-4, Lpz. - B., 1901-24.

  Работы основоположников и классиков И. и.Ньютон И., Математические работы, пер. с латин., М.-Л., 1937; Лейбниц Г., Избранные отрывки из математических сочинений, пер. с. латин., «Успехи математических наук», 1948, т. 3, в. 1; Эйлер Л., Интегральное исчисление, пер. с латин., тт. 1-3, М., 1956-58; Коши О. Л., Краткое изложение уроков о дифференциальном и интегральном исчислении, пер. с франц., СПБ, 1831; его же, Алгебраический анализ, пер. с франц., Лейпциг, 1864.

  Учебники и учебные пособия по И. и.Хинчин Д. Я., Краткий курс математического анализа, 3 изд., 1957; Смирнов В. И., Курс высшей математики, 22 изд., т. 1, М., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969; Ильин В., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971; Курант Р., Курс дифференциального и интегрального исчисления, пер. с нем. и англ., 4 изд., т. 1, М., 1967; Двайт Г.-Б., Таблицы интегралов и другие математические формулы, пер. с англ., М., 1964.

  Под редакцией академика А. Н. Колмогорова.

Рис. к ст. Интегральное исчисление.

Интегральное стереокино

Интегра'льное стереокино',стереоскопическое кино, в котором объёмно-пространственный образ создаётся в результате одновременной проекции на растровый экран не двух, как в однопарном стереоскопическом кино, а многих плоских взаимосвязанных между собой изображений (кадров), хотя зритель видит из них в каждое мгновение только 2 изображения: одно - левым, а другое - правым глазом. Метод И. с. впервые в мире был предложен в 1962-63 советским изобретателем безочкового стереоскопического кино С. П. Ивановым и совершенствовался им в последующие годы. В 1965 был продемонстрирован экспериментальный кинофильм (режиссер Н. В. Экк), снятый интегральным методом, а в 1972 в Москве (кинотеатр «Октябрь») впервые демонстрировался короткометражный видовой кинофильм «По Южному берегу Крыма», снятый также интегральным методом (режиссёр и оператор Н. И. Большаков).

  При наиболее простом способе съёмки И. с. на 8-, 16- или 35- ммкиноплёнку применяется обычный (однообъективный) съёмочный аппарат с любыми объективами. В нём изменяется только рамка, ограничивающая поле зрения визира в соответствии с выбранным стереоскопическим экраном. Особенность процесса съёмки заключается в том, что съемочный аппарат устанавливается не обычно, а поворачивается вокруг оптической оси объектива на 90° для обеспечения горизонтального продвижения киноплёнки, необходимого при проекции, и перемещается в горизонтальной плоскости вокруг центрального объекта композиции ( рис. 1 ). Скорость перемещения камеры может быть рассчитана по формуле: v= LЧ K/10Чf ' c, где v- скорость движения камеры ( мм/сек), L- расстояние до центрального объекта композиции ( мм), К- частота смены кадров ( кадр/сек), f ' c-сопряжённое фокусное расстояние ( мм). По этой формуле могут быть составлены таблицы для наиболее характерных или часто встречающихся случаев съёмки. При съёмке допустимы 2-3-кратные отклонения от параметров, указанных в формуле. Простейший контроль правильности такой съёмки заключается в том, что видимые в визире перемещения самых ближних и самых удалённых объектов (относительно неподвижного центрального объекта) от одной границы кадра к другой должны происходить за время не более 10 секи не менее 2 сек.

 При проекции на растровый экран киноплёнка продвигается горизонтально с обычной частотой смены кадров (24 кадр/сек) мимо нескольких взаимосвязанных объективов. Количество объективов определяется оптическими параметрами растрового экрана. Так, при проекции на растровый экран с перспективным линзовым растром ( рис. 2 ) достаточно от 5 до 10 объективов. В этом случае на любое кресло зрительного зала придется от 5 до 10 элементарных взаимосвязанных фокальных зон, составляющих в целом интегральную зону стереоскопического видения (о фокальных зонах см. в ст. Стереоскопическое кино ). Посредством экрана образуется до 50 интегральных зон или 400-500 элементарных фокальных зон. Такое количество зон обеспечивает нормальные условия просмотра кинофильма зрителем: при отклонении зрителя вправо или влево стереоскопический эффект не пропадает, что неизбежно при однопарной безочковой стереоскопической проекции, а напротив, подчёркивается за счёт естественного перемещения ближних предметов относительно дальних, т. е. в полном соответствии с тем, что наблюдается в жизни.

  Однако рассмотренному способу получения И. с. свойствен недостаток: наиболее быстро движущиеся объекты оказываются заснятыми с большим временным параллаксом, проявляющимся при любой проекции в виде дробления изображения движущихся объектов; кроме того, при стереоскопической проекции наблюдается заметная деформация формы объектов и их пространственного положения. Во избежание этого явления предложено 2 более сложных способа получения И. с.: 1) увеличение при съёмке и проецировании частоты смены кадров в 2-4 раза; 2) съёмка и проецирование одновременно серии из 8-9 кадров при прежней частоте смены кадров. Для реализации последнего способа может быть использован киносъёмочный аппарат, в котором применена, например, перфорированная аэрофотоплёнка шириной 190 ммс поперечным (к вертикальному перемещению плёнки) размещением на ней серии из 9 отдельных взаимосвязанных кадров размером 19ґ19 ммкаждый.

  Лит.:Иванов Б. Т., Растровая стереоскопия в кино, М., 1945; Валюс Н. А., Растровая оптика, М., 1949; Иванов С.П., Иванов М. С., Быховский В. М. , Интегральная стереодиапроекция на ЭКСПО-70, «Техника кино и телевидения», 1970, № 10, с. 33-38.

  С. П. Иванов.

Рис. 2. Схема образования интегральных фокальных зон растровым экраном с перспективным растром.

Рис. 1. Схема съёмки кинофильма интегральным методом: А - сверху вниз (в вертикальной плоскости); Б - в сторону (в горизонтальной плоскости); 1, 2, 3, 4 - центральные объекты композиции. Стрелками показаны пути перемещения съёмочного аппарата при съёмке в сторону (I) и сверху вниз (II); обоюдоострыми стрелками показан быстрый переход с одной визирной точки (центрального объекта) на другую.

Интегральные уравнения

Интегра'льные уравне'ния,уравнения, содержащие неизвестные функции под знаком интеграла. Многочисленные задачи физики и математической физики приводят к И. у. различных типов. Пусть, например, требуется с помощью некоторого оптического прибора получить изображение линейного объекта А, занимающего отрезок 0 Ј xЈ lоси Ox, причём освещённость объекта характеризуется плотностью u( x). Изображение Впредставляет собой некоторый отрезок другой оси x 1; последний путём подходящего выбора начала отсчёта и единицы длины также можно совместить с отрезком 0 Ј x 1 Ј l .Если дифференциально малый участок ( х, х+ D х) объекта Авызывает освещённость изображения Вс плотностью K( x 1, x) u( x) dx, где функция K( x 1 , x) определяется свойствами оптического прибора, то полная освещённость изображения будет иметь плотность

В зависимости от того, хотят ли добиться заданной освещённости v( x 1) изображения или «точного» фотографического изображения [ v( x) = ku( x), где постоянная kзаранее не фиксируется], или, наконец, определённой разницы освещённости Аи В[ u( x) - v( x) = f( x)], приходят к различным И. у. относительно функции u( x):

Вообще, линейным интегральным уравнением 1-го рода называется уравнение вида

линейным интегральным уравнением 2-го рода, или уравнением Фредгольма,-уравнение вида

[при f( x) є 0 оно называется однородным уравнением Фредгольма]; обычно рассматриваются уравнения Фредгольма с параметром l:

Во всех уравнениях функция

-так называемое ядро И. у. - известна, так же, как функция f( x) ( аЈ хЈ b); искомой является функция u( x) ( аЈ хЈ b).

  Функции K( x, y), f( x), u( x) и параметр уравнения l могут принимать как действительные, так и комплексные значения. В частном случае, когда ядро K( x, y) обращается в нуль при у> х, получается уравнение Вольтерра:

  И. у. называется особым, если хотя бы один из пределов интегрирования бесконечен или ядро K( x, y) обращается в бесконечность в одной или нескольких точках квадрата аЈ хЈ b, аЈ yЈ bили на некоторой линии. И. у. может относиться и к функциям нескольких переменных: таково, например, уравнение

Рассматриваются также нелинейные И. у., например уравнения вида

или

 Линейные И. у. 2-го рода решаются следующими методами: 1) решение u( x) получается в виде ряда по степеням l (сходящегося в некотором круге |l|< K) с коэффициентами, зависящими от х(метод Вольтерра - Неймана); 2) решение u( x), при тех значениях l, при которых оно вообще существует, выражается через некоторые целые функции от l (метод Фредгольма); 3) в случае, когда ядро симметрично, т. е. К( х, y) є К( у, x), решение