рис. 1 показана зависимость потенциальной энергии двухатомной М. от межъядерного расстояния r. Эта энергия минимальна при равновесном расстоянии r 0, стремится к нулю при r® Ґ и возрастает до Ґ при r® 0. Разность энергий при r= r 0и r® Ґ характеризует энергию связи, энергию диссоциации D. Равновесные расстояния r 0в двухатомных и многоатомных М. и, следовательно, расположение атомных ядер в М. определяются методами спектроскопии, рентгеновского структурного анализа и электронографии,а также нейтронографии,позволяющими получить сведения и о распределении электронов (электронной плотности) в М. Рентгенографическое изучение молекулярных кристаллов даёт возможность установить геометрическое строение очень сложных М., вплоть до М. белков. Косвенную, но весьма детальную информацию о строении сложных М. получают различными спектроскопическими методами, в особенности с помощью спектров ядерного магнитного резонанса (ЯМР). Геометрия простых М., содержащих малое число атомов, также эффективно исследуется методами спектроскопии. Расстояния (в ъ) между 2 данными валентно связанными атомами приблизительно постоянны в М. различных соединений, они уменьшаются с увеличением кратности связи:
C-C……………. 1,54 C-F…………….. 1,39
C=C……………... 1,34 C-Cl……………. 1,77
C- - -C (в бензоле)... 1,39 C-Br……………. 1,92
CєC……………... 1,2 C-I……………… 2,1
C-H…………….. 1,09 C-S…………….. 1,82
C-O…………….. 1,42 O-H……………. 0,96
C=O……………... 1,21 N-H…………….. 1,01
C-N…………….. 1,46 S-H…………….. 1,35

Можно приписать каждому атому в данном валентном состоянии в М определённый атомный, или ковалентный, радиус (в случае ионной связи - ионный радиус, см. Атомные радиусы, Ионные радиусы) ,характеризующий размеры электронной оболочки атома (иона), образующего химическую связь в М. Представление о приблизительном постоянстве этих радиусов оказывается полезным при оценке межатомных расстояний и, следовательно, при расшифровке структуры М. Длина связи представляет собой сумму соответствующих атомных радиусов.

  Размер М. как целого, т. с. размер её электронной оболочки, есть величина до некоторой степени условная - имеется отличная от нуля, хотя и весьма малая, вероятность найти электроны М. и на большом расстоянии от её атомных ядер. Практически размеры М. определяются равновесным расстоянием, на которое они могут быть сближены при плотной упаковке М. в молекулярном кристалле и в жидкости. На больших расстояниях М. притягиваются одна к другой, на меньших - отталкиваются. Размеры М. поэтому можно найти с помощью рентгеноструктурного анализа молекулярных кристаллов, порядок величины этих размеров может быть определён из коэффициентов диффузии, теплопроводности и вязкости газов и из плотности вещества в конденсированном состоянии. Расстояние, на которое могут сблизиться валентно не связанные атомы, принадлежащие одной и той же М. или различным М., может быть охарактеризовано средними значениями т. н. ван-дер-ваальсовых радиусов (в ъ):

H……... 1,0-1,2 S……… 1,9
C……... 1,75-2,0 Se…….. 1,0
N……... 1,5 Te…….. 2,2
P……… 1,9 F……… 1,4
As…….. 2,0 Cl……... 1,8
Sb…….. 2,2 Br……... 2,0
O……… 1,4 I………. 2,2

  Ван-дер-ваальсовы радиусы существенно превышают ковалентные. Зная величины ван-дер-ваальсовых, ковалентных, а также ионных радиусов, можно построить наглядные модели М., отражающие форму и размеры их электронных оболочек ( рис. 2 ).

  Ковалентные химические связи в М. расположены под определёнными углами, зависящими от состояния гибридизации атомных орбиталей (см. Валентность ) .Так, для М. насыщенных органических соединений характерно тетраэдрическое расположение связей, образуемых атомом углерода; для М. с двойной связью (С=С) - плоское расположение связей атомов углерода; в М. соединений с тройной связью (СєС) - линейное расположение связей:

  Таким образом, многоатомная М. обладает определённой конфигурацией в пространстве, т. е. определённой геометрией расположения связей, которая не может быть изменена без их разрыва. М. характеризуется той или иной симметрией расположения атомов. Если М. не имеет плоскости и центра симметрии, то она может существовать в двух конфигурациях, представляющих зеркальные отражения одна другой (зеркальные антиподы, или стереоизомеры, см. Изомерия ) .Все важнейшие биологически функциональные вещества в живой природе фигурируют в форме одного определённого стерсоизомера.

  М., содержащие единичные связи, или сигма-связи, могут существовать в различных конформациях,возникающих при поворотах атомных групп вокруг единичных связей. Важные особенности макромолекул синтетических и биологических полимеров определяются именно их конформационными свойствами.

  Взаимодействие атомов в молекуле. Природа химических связей в М. оставалась загадочной вплоть до создания квантовой механики - классическая физика не могла объяснить насыщаемость и направленность валентных связей. Основы теории химической связи были созданы В. Гейтлером и немецким учёным Ф. Лондоном в 1927 на примере простейшей молекулы Н 2. В дальнейшем теория и методы расчёта были значительно усовершенствованы, в частности на основе широкого применения молекулярных орбиталей метода,и квантовая химия позволяет вычислять межатомные расстояния, энергии М., энергии химических связей и распределение электронной плотности для сложных М.; при этом расчётные данные хорошо согласуются с экспериментальными.

  Химические связи в М. подавляющего числа органических соединений являются ковалентными. Напротив, в ряде неорганических соединений существуют ионные, а также донорно-акцепторные связи (см. Химическая связь ) ,реализуемые в результате обобществления неподелённой пары электронов данного атома. Энергия образования М. из атомов во многих рядах сходных соединений приближённо аддитивна. Иными словами, в этих случаях можно считать, что энергия М. есть сумма энергии её связей, имеющих постоянные значения в рассматриваемом ряду. Отсюда следует практическая возможность приписать химическим связям приближённо автономные электронные оболочки.

  Аддитивность энергии М. выполняется не всегда. Яркий пример нарушения аддитивности представляют плоские М. органических соединений с т. н. сопряжёнными связями, т. е. с кратными связями, чередующимися с единичными. В этих случаях валентные электроны, определяющие кратность связей, т. н. p-электроны, становятся общими для всей системы сопряжённых связей, делокализованными. Такая делокализация электронов приводит к дополнительной стабилизации М. Например, энергия образования М. 1,3-бутадиена Н 2С=CH-CH=CH 2больше ожидаемой по аддитивности на 16,8 кдж/моль(на 4 ккал/моль) .Выравнивание электронной плотности вследствие обобществления p-электронов по связям выражается в удлинении двойных связей и укорочении единичных. В правильном шестиугольнике межуглеродных связей и бензола (см. формулу) все связи одинаковы и имеют длину, промежуточную между длиной единичной и двойной связи. Сопряжение связей ярко проявляется в молекулярных спектрах (см. ниже).

  Современная квантовомеханическая теория химической связи учитывает частичную делокализацию не только p-, но и s-электронов, наблюдающуюся в любых молекулах. Вообще говоря, это не нарушает аддитивности энергий молекул.

  В подавляющем большинстве случаев суммарный спин валентных электронов в М. равен нулю, т. е. спины электронов попарно насыщены. М., содержащие неспаренные электроны - радикалы свободные (например, атомный водород Н · ·, метил CH· · 3), обычно неустойчивы, т. к. при их соединении друг с другом происходит значительное понижение энергии вследствие образования валентных связей. Наиболее эффективным методом изучения строения свободных радикалов является электронный парамагнитный резонанс (ЭПР).

  Электрические и оптические свойства молекул.Поведение вещества в электрическом поле определяется основными электрическими характеристиками М. - постоянным дипольным моментом и поляризуемостью. Дипольный момент означает несовпадение центров тяжести положительных и отрицательных зарядов в М., т. е. электрическую асимметрию М. Соответственно М., имеющие центр симметрии, например H 2, лишены постоянного дипольного момента; напротив, в HCl электроны смещены к атому Cl и дипольный момент равен 1,03 D (1,03Ч10 -18ед. СГС). Поляризуемостью характеризуется способность электронной оболочки любой М. смещаться под действием электрического поля, в результате чего в М. создаётся индуцированный дипольный момент. Значения дипольного момента и поляризуемости находят экспериментально с помощью измерений диэлектрической проницаемости.В случае аддитивности свойств М. дипольный момент М. может быть представлен суммой дипольных моментов связей (с учётом их направления), то же относится к поляризуемости М.

  Оптические свойства вещества характеризуют его поведение в переменном электрическом поле световой волны - тем самым они определяются поляризуемостью М. вещества. С поляризуемостью непосредственно связаны преломление и рассеяние света, оптическая активность и другие явления, изучаемые молекулярной оптикой-разделом физической оптики, посвященным изучению оптических свойств вещества.

  Магнитные свойства молекул.М. и макромолекулы подавляющего большинства химыических соединений диамагнитны (см. Диамагнетизм ) . Магнитная восприимчивостьМ. (c) в ряде органических соединений может быть выражена как сумма значений c для отдельных связей; однако аддитивность c выполняется хуже, чем аддитивность поляризуемостей a. И c, и a определяются свойствами внешних электронов М.; эти две величины связаны одна с другой.

  Парамагнитны М., обладающие постоянным магнитным моментом (см. Парамагнетизм ) .Таковы М. с нечётным числом электронов во внешней оболочке (например, NO и любые свободные радикалы), М., содержащие атомы с незамкнутыми (незаполненными) внутренними оболочками (переходные металлы и др.). Магнитная восприимчивость парамагнитных веществ зависит от температуры, т. к. тепловое движение препятствует ориентации магнитных моментов в магнитном поле. Строение парамагнитных М. эффективно изучается методом ЭПР.

  Атомные ядра элементов, у которых атомный номер или массовое число нечётны, обладают ядерным спиновым парамагнетизмом. Для таких ядер характерен ядерный магнитный резонанс (ЯМР), спектр которого зависит от электронного окружения ядер в М. Поэтому спектры ЯМР служат источником очень подробной информации о строении М., в том числе и весьма сложных, например белков (см. также Ядерный квадрупольный резонанс, Магнетизм, Магнетохимия) .

  Спектры и строение молекул.Электрические, оптические, магнитные и другие свойства М. в конечном счёте связаны с волновыми функциями и энергиями различных состояний М.; через них выражаются и электрический дипольный момент, и магнитный момент, и поляризуемость, и магнитная восприимчивость. Прямую информацию о состояниях М. и вероятностях перехода между ними дают молекулярные спектры.

 Частоты в спектрах, соответствующих вращательным переходам, зависят от моментов инерции М., определение которых из спектроскопических данных позволяет получить наиболее точные значения межатомных расстояний в М.

  Общее число линий или полос в колебательном спектре М. зависит от её симметрии. Частоты колебаний, наблюдаемые в спектрах, определяются, с одной стороны, массами атомов и их расположением, с другой - динамикой межатомных взаимодействий. Теория колебаний многоатомных М. соответственно опирается на теорию химического строения и классическую механику связанных колебаний. Исследование колебательных спектров позволяет сделать ряд выводов о строении М., о межатомных и межмолекулярных взаимодействиях, изучать явления таутомерии, поворотной изомерии.

  Электронные переходы в М. характеризуют структуру их электронных оболочек, состояние химических связей. Спектры М., обладающих большим числом сопряжённых связей, характеризуются длинноволновыми полосами поглощения, попадающими в видимую область. Вещества, построенные из таких М., обладают цветностью, к ним относятся все органические красители. Изучение электронно-колебательных спектров М. необходимо для понимания естественной и магнитной оптической активности.

  Молекулы в химии, физике и биологии.Понятие о М. - основное для химии, и большей частью сведений о строении и функциональности М. наука обязана химическим исследованиям. При химической реакции происходит превращение одних М. в другие. Для такого превращения обычно необходима некоторая избыточная энергия М. - энергия активации (см. Кинетика химическая ) .В акте химического взаимодействия М. проходят через конфигурацию т. н. активированного комплекса, или переходного состояния М. Характер и скорость химической реакции определяются этим состоянием, в свою очередь зависящим от строения взаимодействующих М. Химия решает две главные задачи, относящиеся к М., - устанавливает строение М. на основании химических реакций и, наоборот, на основе строения М. определяет ход реакций. Широкая совокупность важнейших проблем современной химии, в том числе и нерешённых, сводится к теории химической реакционной способности. Исследование этих проблем требует применения как теоретических методов квантовой химии, так и экспериментальных данных, получаемых химическими и физическими методами.

  Физические явления, определяемые строением и свойствами М., изучаются молекулярной физикой.Термодинамические свойства любого вещества, построенного из М., в конечном счёте выражаются через значения энергий всех возможных состояний М., находимых из спектроскопических данных. Строение М. и межмолекулярные взаимодействия ответственны за равновесные свойства вещества. То же относится к неравновесным, кинетическим, свойствам. Установление равновесия требует некоторого времени - времени релаксации.При быстрых изменениях состояния вещества равновесие может не успеть установиться. Эти явления наблюдаются, например, при прохождении ультразвука через вещество и сказываются на поглощении и дисперсии звуковых волн (см. Молекулярная акустика ) .Равновесие устанавливается в результате взаимодействия М. при их соударениях в газе и жидкости, в результате поглощения и излучения света и т. д. Время релаксации М. в конденсированной среде существенно зависит от температуры, с ростом которой увеличивается подвижность М. В ряде случаев М. в жидкости практически утрачивают свою подвижность ещё до кристаллизации: происходит стеклование вещества. Подвижностью М. определяются способность веществ к диффузии,их вязкость, теплопроводностьи т. д. Непосредственное изучение подвижности М., определение времён релаксации проводятся методами поглощения и дисперсии электромагнитных волн, ЯМР, ЭПР и другими способами.

  Равновесные и кинетические свойства больших цепных М., образующих полимеры (см. Макромолекула ) ,специфичны. Особенности поведения макромолекул определяются прежде всего их гибкостью - способностью находиться в большом числе различных конформаций, возникающих в результате поворотов вокруг единичных связей.

  Развитие биологии, химии и молекулярной физики привело к построению молекулярной биологии,исследующей основные явления жизни, исходя из строения и свойств биологически функциональных М. Организм существует на основе тонко сбалансированных химических и нехимических взаимодействий между М. Таким образом, изучение строения и свойств М. имеет фундаментальное значение для естествознания в целом.

  Лит.:Сыркин Я. К., Дяткина М. Е., Химическая связь и строение молекул, М. - Л., 1946; Паулинг Л., Природа химической связи, пер. с англ., М. - Л., 1947; Волькенштейн М. В., Строение и физические свойства молекул, М. - Л., 1955; его же, Молекулы и жизнь, М., 1965; его же, Перекрёстки науки, М., 1972; Кондратьев В. Н., Структура атомов и молекул, 2 изд., М., 1959; Козман У., Введение в квантовую химию, пер. с англ., М., 1960; Слэтер Дж., Электронная структура молекул, пер. с англ., М., 1965.

  М. В. Волькенштейн.

Рис. 1. Зависимость потенциальной энергии Uдвухатомной молекулы (или отдельной химической связи) от межатомного расстояния r( r 0- равновесное расстояние, D- энергия диссоциации, 0, 1, 2, ... - уровни энергии колебаний).

Рис. 2. Модели структур некоторых простых молекул (радиусы сфер - ван-дер-ваальсовы).

Молекулярная акустика

Молекуля'рная аку'стика,раздел физической акустики,в котором свойства вещества и кинетика молекулярных процессов исследуются акустическими методами. Основными методами М. а. являются измерение скорости звука и поглощения звука и зависимостей этих величин от разных физических параметров: частоты звуковой волны, температуры, давления и др. Методами М. а. можно исследовать газы, жидкости, полимеры, твёрдые тела, плазму.

  Развитие М. а. как самостоятельного раздела началось в 30-е годы 20 в., когда было установлено, что во многих веществах при распространении в них звуковых волн имеет место дисперсия скорости звука (см. Дисперсия звука ) ,а поглощение звука не описывается классическим законом, по которому коэффициент поглощения пропорционален квадрату частоты. Эти аномалии были объяснены на основании изучения релаксационных процессов (см. Релаксация ) ,что позволило связать некоторые свойства вещества на молекулярном уровне, а также ряд кинетических характеристик молекулярных процессов с такими макроскопическими величинами, как скорость и поглощение звука.

  По скорости звука можно определить такие характеристики вещества, как сжимаемость, отношение теплоёмкостей, упругие свойства твёрдого тела и др., а по поглощению звука - значения сдвиговой и объёмной вязкости, время релаксации и др. В газах, измеряя скорость звука и её зависимость от температуры, определяют параметры, характеризующие взаимодействие молекул газа при столкновениях. В жидкости, вычисляя скорость звука на основании той или иной модели жидкости и сравнивая результаты расчёта с опытными данными, в ряде случаев можно оценить правдоподобность используемой модели и определить энергию взаимодействия молекул. На скорость звука влияют особенности молекулярной структуры, силы межмолекулярного взаимодействия и плотность упаковки молекул. Так, например, увеличение плотности упаковки молекул, появление водородных связей, полимеризация приводят к увеличению скорости звука, а введение в молекулу тяжёлых атомов - к её уменьшению.

  При наличии релаксационных процессов энергия поступательного движения молекул, которую они получают в звуковой волне, перераспределяется на внутренние степени свободы. При этом появляется дисперсия скорости звука, а зависимость произведения коэффициента поглощения на длину волны от частоты имеет максимум на некоторой частоте, называется частотой релаксации. Величина дисперсии скорости звука и величина коэффициента поглощения зависят от того, какие именно степени свободы возбуждаются под действием звуковой волны, а частота релаксации, равная обратному значению времени релаксации, связана со скоростью обмена энергией между различными степенями свободы. Т. о., измеряя скорость звука и поглощение в зависимости от частоты и определяя время релаксации, можно судить о характере молекулярных процессов и о том, какой из этих процессов вносит основной вклад в релаксацию. Этими методами можно исследовать возбуждение колебательных и вращательных степеней свободы молекул в газах и жидкостях, процессы столкновения молекул в смесях различных газов, установление равновесия при химических реакциях, перестройку молекулярной структуры в жидкостях, процессы сдвиговой релаксации в очень вязких жидкостях и полимерах, различные процессы взаимодействия звука с элементарными возбуждениями в твёрдых телах и др.

  Анализ акустических данных для жидкостей обычно проводить труднее, чем для газов, поскольку область релаксации здесь, как правило, лежит в диапазоне более высоких частот, требующем более сложных измерений. В очень вязких жидкостях, полимерах и некоторых других веществах в поглощение и дисперсию может давать вклад целый набор релаксационных процессов с широким спектром времён релаксации. Поскольку время релаксации зависит от температуры и давления, меняя эти параметры, можно сдвигать по частоте область релаксации. Так, например, в газе повышение давления газа эквивалентно уменьшению частоты. Это бывает удобно использовать при измерении скорости и поглощения звука, если частота релаксации при нормальных условиях оказывается в том диапазоне частот, который с трудом поддаётся экспериментальному исследованию. Изучение температурных зависимостей скорости и поглощения звука позволяет разделить вклад различных релаксационных процессов.

  В М. а. для исследований обычно применяется ультразвук;в газах - в диапазоне частот 10 4-10 5 гц,а в жидкостях и твёрдых телах - в диапазоне 10 5-10 8 гц.Это связано как с высоким развитием техники излучения и приёма ультразвука и с большой точностью измерений в этом диапазоне частот, так и с тем, что работа на более низких частотах потребовала бы очень больших объёмов исследуемого вещества, а на более высоких частотах поглощение звука становится столь большим, что многие акустические методы оказываются неприменимыми.

  Лит.:Михайлов И. Г., Соловье в В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 2, ч. А, М., 1968, т. 4, ч. А и Б, М., 1970; Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., М., 1956; Herzfeld K. F., Litovitz Т. A., Absorption and dispersion of ultrasonic waves, N. Y. - L., 1959.

  А. Л. Полякова.

Молекулярная биология

Молекуля'рная биоло'гия,наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом является выяснение того, каким образом и в какой мере характерные проявления жизни, такие, как наследственность, воспроизведение себе подобного, биосинтез белков, возбудимость, рост и развитие, хранение и передача информации, превращения энергии, подвижность и т. д., обусловлены структурой, свойствами и взаимодействием молекул биологически важных веществ, в первую очередь двух главных классов высокомолекулярных биополимеров-белков и нуклеиновых кислот. Отличительная черта М. б. - изучение явлений жизни на неживых объектах или таких, которым присущи самые примитивные проявления жизни. Таковыми являются биологические образования от клеточного уровня и ниже: субклеточные органеллы, такие, как изолированные клеточные ядра, митохондрии, рибосомы, хромосомы, клеточные мембраны; далее - системы, стоящие на границе живой и неживой природы, - вирусы, в том числе и бактериофаги, и кончая молекулами важнейших компонентов живой материи - нуклеиновых кислот и белков.

 М. б. - новая область естествознания, тесно связанная с давно сложившимися направлениями исследований, которые охватываются биохимией, биофизикойи биоорганической химией.Разграничение здесь возможно лишь на основе учёта применяемых методов и по принципиальному характеру используемых подходов.

  Фундамент, на котором развивалась М. б., закладывался такими науками, как генетика, биохимия, физиология элементарных процессов и т. д. По истокам своего развития М. б. неразрывно связана с молекулярной генетикой,которая продолжает составлять важную часть М. б., хотя и сформировалась уже в значительной мере в самостоятельную дисциплину. Вычленение М. б. из биохимии продиктовано следующими соображениями. Задачи биохимии в основном ограничиваются констатацией участия тех или иных химических веществ при определённых биологических функциях и процессах и выяснением характера их превращений; ведущее значение принадлежит сведениям о реакционной способности и об основных чертах химического строения, выражаемого обычной химической формулой. Т. о., по существу, внимание сосредоточено на превращениях, затрагивающих главновалентные химические связи. Между тем, как было подчёркнуто Л. Полингом,в биологических системах и проявлениях жизнедеятельности основное значение должно быть отведено не главновалентным связям, действующим в пределах одной молекулы, а разнообразным типам связей, обусловливающих межмолекулярные взаимодействия (электростатическим, ван-дер-ваальсовым, водородным связям и др.).