- << Первая
- « Предыдущая
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- Следующая »
- Последняя >>
В классических системах М. л. (для которых справедлив исключённого третьего принцип AV щ Aили закон снятия двойного отрицания щ щ АЙ Адля модальностей имеют место соотношения двойственности, аналогичные «законам де Моргана» щ ( АV В) є (щ А& щ В) и щ ( А& В) є (щ АV щ В) алгебры логики и соответствующим эквивалентностям для кванторов,связывающие операторы возможности а и необходимости ¬ с отрицанием щ:
¬ Aє щ а щ Aи а Ає щ ¬ щ A.
Поэтому в аксиоматических системах М. л. в качестве исходной вводят обычно одну модальную операцию (используя какую-либо из этих эквивалентностей в качестве определения другой операции). Аналогично вводятся и другие модальные операции (не входящие в число логических операций и не выразимые через них).
Системы М. л. могут быть интерпретированы в терминах многозначной логики (простейшие системы - как трёхзначные: «истина», «ложь», «возможно»). Это обстоятельство, а также возможность применения М. л. к построению теории «правдоподобных» выводов указывают на её глубокое родство с вероятностной логикой .
Кроме рассматривавшихся выше «абсолютных» модальностей, в М. л. приходится иметь дело с т. н. относительными, т. е. связанными с какими-либо условиями (« Авозможно, если В», и т. п.); формализация правил обращения с ними не вызывает дополнительных трудностей и проводится с помощью аппарата ограниченных кванторов (с использованием предикатов, выражающих ограничительные условия, и логические операции материальной импликации).
Ю. А. Гастев.
Модальность (в языкознании)
Мода'льностьв языкознании, понятийная категория, выражающая отношение говорящего к содержанию высказывания, целевую установку речи, отношение содержания высказывания к действительности. М. может иметь значение утверждения, приказания, пожелания, допущения, достоверности, ирреальности и др. М. выражается различными грамматическими и лексическими средствами: специальными формами наклонений; модальными глаголами (например, русскими: «может», «должен»; немецкими: sollen, kцnnen, wollen и др.); другими модальными словами (например, русскими: «кажется», «пожалуй»; английскими: perhaps, likely); интонационными средствами. Различные языки грамматически по-разному выражают разные значения М. Так, английский язык выражает значение ирреальной М. при помощи специального наклонения (т. н. Subjunctive II, например: If you had come in time we should have been able to catch the train), в ягнобском языке формы настояще-будущего времени могут иметь модальные оттенки косвенного приказания, приглашения к действию, решимости сделать что-либо, допущения и др.
Модальность (философ.)
Мода'льность(от лат. modus - мера, способ), способ существования какого-либо объекта или протекания какого-либо явления (онтологическая М.) или же способ понимания, суждения об объекте, явлении или событии (гносеологическая, или логическая М.). Понятие М., введённое по существу ещё Аристотелем , перешло затем в классические философские системы. Слова (термины), выражающие различные модальные понятия, являются предметом рассмотрения и изучения лингвистики (см. Модальность в языкознании). Различие суждений по М., разрабатывавшееся в античной логике учениками и комментаторами Аристотеля Теофрастом, Евдемом Родосским и др., уточнялось далее средневековыми схоластами. В логике и философии нового времени стало традиционным предложенное И. Кантом подразделение суждений на ассерторические (суждения действительности), аподиктические (суждения необходимости) и проблематические (суждения возможности); общепринятое следование суждения «происходит А» из «необходимо А» и суждения «возможно А» из «происходит А» стало основой разработки М. в современной формальной (математической) логике . При этом М., относящиеся к высказываниям или предикатам, называют алетическими, а М., относящиеся к словам, выражающим действия и поступки, - деонтическими. М. делятся далее на абсолютные (безусловные) и относительные (условные) согласно обычному смыслу данных терминов. В современной модальной логике и логической семантике к М. причисляются иногда понятия «истинно» и «ложно», а также «доказуемо», «недоказуемо» и «опровержимо».
Ю. А. Гастев.
Моделей теория
Моде'лей тео'рия,раздел математики, возникший при применении методов математической логики в алгебре. Ко 2-й половине 20 в. М. т. оформилась в самостоятельную дисциплину, методы и результаты которой находят применение как в алгебре, так и в др. разделах математики.
Основные понятия М. т. - понятия алгебраической системы, формализованного языка, истинности высказывания рассматриваемого языка в данной алгебраической системе. Типичным примером алгебраической системы является система натуральных чисел вместе с операциями сложения и умножения, отношением порядка и выделенными элементами 0, 1. Простейшие высказывания об этой системе - высказывания типа: « х+ у= zпри х= 2, у= 3, z= 5», « x у= zпри х= 4, у= 2, z= 8», « x< упри х= 2, у= 3». Из простейших высказываний более сложные получаются при помощи пропозициональных связок «и», «или», «если..., то...», «не», а также кванторов «для каждого x...», «существует такое х, что...». Например, утверждение, что числа uи vвзаимно просты, более подробно записывается в виде: «для каждых х, уи z, если u= х · у и v=х · z, то x= 1» и, значит, получается из простейших при помощи пропозициональных связок и кванторов.
В общем случае под алгебраической системой понимается непустое множество вместе с заданными на этом множестве совокупностями отношений и операций от конечного числа аргументов. Эти операции и отношения называются основными в алгебраической системе. Каждой такой операции и каждому такому отношению ставится в соответствие определённый символ. Набор W этих символов называется сигнатурой алгебраической системы. Обычно изучаются классы алгебраических систем одной сигнатуры.
Важнейшим из формализованных языков является язык 1-й ступени. Алфавит этого языка состоит из набора W символов отношений и операций; знаков &, V, ®, щ, ", $, обозначающих пропозициональные связки и кванторы (см. ниже); набора символов, называемых предметными переменными, а также скобок и запятой. При этом каждому символу отношения или операции приписывается натуральное число, называемое местностью этого символа; оно равно числу аргументов той операции или того отношения, которым соответствует рассматриваемый символ. В число символов отношений включается специальный символ = для отношения равенства. Индуктивно определяются понятия терма и формулы. Предметные переменные являются термами. Если f- символ n-местной операции, а про g 1 , ..., g nуже известно, что они термы, то f( g 1 , ..., g n) есть тоже терм. Простейшие формулы - выражения вида P( g 1 , ... , g n), где Ресть n-местный символ отношения, а g 1 , ..., g n- термы. Более сложные формулы получаются из простейших с помощью конечного числа связываний их знаками кванторов и пропозициональных связок. Символы предметных переменных, встречающиеся в формуле, разделяются на свободные и связанные. Связанные те, которые находятся в области действия квантора по этому переменному, а остальные свободные. Например, в формуле
(" x) ($y) ( f( x, у) = zV f( x, у) = u)
свободными являются zи u, а хи усвязаны кванторами. Формулы без свободных переменных называются высказываниями. Каждая формула со свободными переменными x 1 , ..., x nна каждой алгебраической системе Асигнатуры W определяет n-местное отношение. Например, формула, записывающая утверждение, что числа uи vвзаимно простые, определяет на натуральных числах отношение взаимной простоты, которое для пары (3, 5) истинно, а для пары (2, 4) ложно. Для простейших формул соответствующее отношение фактически задаётся самой системой А. Для более сложных формул соответствующее отношение определяется путём интерпретации кванторов и пропозициональных связок: (Ф 1& Ф 2) интерпретируется как «Ф 1и Ф 2», (Ф 1V Ф 2) - как «Ф 1или Ф 2», (Ф 1® Ф 2) - как «если Ф 1, то Ф 2», щФ - как «неверно, что Ф», ($ x)Ф - как «для всех хФ», ($ х)Ф - как «существует х, для которого Ф». Согласно этому определению, каждое высказывание в каждой алгебраической системе соответствующей сигнатуры либо ложно, либо истинно. Например, если символу fставится в соответствие операция сложения на натуральных числах, то формула (" x) f( x, х) = f( f( x, х), х), утверждающая, что 2 x= 3 хдля всех х, ложна на натуральных числах, а формула (" x( f( x, x) = x® f( x, х) = f( f( x, х), х)), утверждающая, что если 2 x= х, то 2 x= 3 х, истинна. Алгебраическая система Аназывается моделью данного множества S высказываний, если каждое высказывание из S истинно в А. Класс Калгебраических систем называется аксиоматизируемым, если Кесть совокупность всех моделей некоторого множества высказываний. Многие важные классы алгебраических систем, например классы групп, колец, полей, аксиоматизируемы.
Изучение общих свойств аксиоматизируемых классов - важная часть М. т. Во многих случаях по форме высказываний из S удаётся судить о некоторых алгебраических свойствах класса всех моделей S. Например, тот факт, что гомоморфные образы и прямые произведения групп снова оказываются группами, есть следствие того, что класс групп может быть определён как совокупность всех моделей такой совокупности высказываний S, что каждое высказывание из S имеет вид (" x 1)... ... (" x n) f= g, где f, g- термы.
Фундаментальный результат М. т. - локальная теорема Мальцева (1936), согласно которой если каждая конечная подсовокупность совокупности S высказываний имеет модель, то и S имеет модель. А. И. Мальцев нашёл многочисленные применения своей теоремы для доказательства т. н. локальных теорем алгебры.
Важным фактом в теории аксиоматизируемых классов является теорема Лёвенхейма - Сколема: всякий аксиоматизируемый класс конечной или счетной сигнатуры, содержащий бесконечные системы, содержит и счётную систему. В частности, нельзя написать такую совокупность высказываний, все модели которой были бы изоморфны одной бесконечной алгебраической системе, например полю комплексных чисел или кольцу целых чисел. Но тем не менее существуют аксиоматизируемые классы, все системы которых данной бесконечной мощности изоморфны.
Одной из важных конкретных совокупностей высказываний является совокупность, определяющая понятие множества. Это понятие описывается на языке 1-й ступени, сигнатура которого состоит из одного символа - символа бинарного отношения, интерпретируемого как « хесть элемент y». Существует несколько вариантов таких описаний, каждый из которых осуществляется при помощи своей совокупности высказываний. Эти совокупности называются системами аксиом для теории множеств. Развитие М. т. показало, что нельзя выбрать такую систему аксиом для теории множеств, которая удовлетворила бы все потребности математики (см. также Аксиоматическая теория множеств ).
Центральная часть современной М. т. - это изучение элементарных теорий, т. е. теорий, описываемых на языке 1-й ступени. Однако постепенно всё возрастающее место отводится и изучению теорий, описываемых при помощи более богатых языков.
Историческая справка.Основные понятия М. т. возникли в математике в 19 в., главным образом в работах по основаниям геометрии. К понятию модели данного множества высказываний вплотную подошёл Н. И. Лобачевский в работах по геометрии. В полной мере оно появилось в работах Э. Бельтрами и Ф. Клейна , построивших модели геометрии Лобачевского. Современной формулировки основных понятий М. т. сложились в работах школ Д. Гильберта и А. Тарского . М. т. возникла в начале 30-х гг. 20 в. в результате применения методов математической логики в алгебре, одним из инициаторов которого был А. И. Мальцев.
Лит.:Мальцев А. И., Алгебраические системы, М., 1970; Робинсон А., Введение в теорию моделей и метаматематику алгебры, пер. с англ., М., 1967.
А. Д. Тайманов, М. А. Тайцлин.
Модели (в биологии)
Моде'лив биологии применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций и экосистем.
В биологии применяются в основном три вида М.: биологические, физико-химические и математические (логико-математические). Биологические М. воспроизводят на лабораторных животных определённые состояния или заболевания, встречающиеся у человека или животных. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких М. - искусственно вызванные генетические нарушения, инфекционные процессы, интоксикации, воспроизведение гипертонического и гипоксического состоянии, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозов и эмоциональных состояний. Для создания биологической М. применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или введение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические М. широко используются в генетике, физиологии, фармакологии.
Физико-химические М. воспроизводят физическими или химическими средствами биологические структуры, функции или процессы и, как правило, являются далёким подобием моделируемого биологического явления. Начиная с 60-х гг. 19 в. были сделаны попытки создания физико-химической М. структуры и некоторых функций клеток. Так, немецкий учёный М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSО 4в водном растворе К 4[Fе(СN) 6]: французский физик С. Ледюк (1907), погружая в насыщенный раствор К 3РО 4сплавленный СаСl 2, получил - благодаря действию сил поверхностного натяжения и осмоса - структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и помещая эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешнее сходство с протоплазмой; такая М. воспроизводила даже амёбоидное движение. С 60-х гг. 19 в. предлагались также разные физические М. проведения возбуждения по нерву. В М., созданной итальянским учёным К. Маттеуччи и немецким - Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. При соединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок «нерва» электрического «раздражения». Такая М. воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский учёный Р. Лилли на М. распространяющейся по нерву волны возбуждения воспроизвёл ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, «всё или ничего» закон , двустороннее проведение). М. представляла собой стальную проволоку, которую помещали сначала в крепкую, а затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные М., показавшие возможность воспроизведения некоторых свойств и проявлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.
Позднее более сложные М., основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. Так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, её отростке и в синапсе . Построены также механические машины с электронным управлением, моделирующие сложные акты поведения (образование условного рефлекса , процессы центрального торможения и пр.). Этим М. обычно придают форму мыши, черепахи, собаки (см. рис. 1-3 ). Такие М. также слишком упрощают явления, наблюдаемые в организме, и имеют большее значение для бионики , чем для биологии.
Значительно бо'льшие успехи достигнуты в моделировании физико-химических условий существования живых организмов или их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых вне организма клеток (см. Культуры тканей ).
М. биологических мембран (плёнка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов, - дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т. д.
Математические М. (математическое и логико-математическое описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математической М. и дают материал для её дальнейшей корректировки. Вместе с тем «проигрывание» математического М. биологического явления на ЭВМ часто позволяет предвидеть характер изменения исследуемого биологического процесса в условиях, трудно воспроизводимых в эксперименте. Математическая М. в отдельных случаях позволяет предсказать некоторые явления, ранее не известные исследователю. Так, М. сердечной деятельности, предложенная голландскими учёными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математической М. физиологических явлений следует назвать также М. возбуждения нервного волокна, разработанную английскими учёными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских учёных У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов.Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А. Н. Колмогоров). Марковская математическая М. процесса эволюции построена О. С. Кулагиной и А. А. Ляпуновым. И. М. Гельфандом и М. Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. В частности, показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков - синергий, а не путём независимого управления каждой мышцей. Создание и использование математических и логико-математических М., их совершенствование способствуют дальнейшему развитию математической и теоретической биологии.
Лит.:Моделирование в биологии. Сб. ст., пер. с англ., М., 1963; Новик И. Б., О моделировании сложных систем, М., 1965; Кулагина О. С., Ляпунов А. А., К вопросу о моделировании эволюционного процесса, в кн.: Проблемы кибернетики, в. 16, М., 1966; Модели структурно-функциональной организации некоторых биологических систем. [Сб. ст.], М., 1966; Математическое моделирование жизненных процессов. Сб. ст., М., 1968; Теоретическая и математическая биология, пер. с англ., М., 1968; Моделирование в биологии и медицине, Л., 1969; Бейли Н., Математика в биологии и медицине, пер. с англ., М., 1970; Управление и информационные процессы в живой природе, М., 1971; Эйген М., Молекулярная самоорганизация и ранние стадии эволюции, «Успехи физических наук», 1973, т. 109, в. 3.
Е. Б. Бабский, Е. С. Геллер.
Рис. 3. К. Шеннон пускает «мышь» в лабиринт.
Рис. 2. «Мышь» К. Шеннона - автомат, моделирующий «обучение» при повторном прохождении лабиринта.
Рис. 1. Общий вид «черепахи» Института автоматики и телемеханики АН СССР.
Модели (в экономике)
Моде'лив экономике используются начиная с 18 в. В «Экономических таблицах» Ф. Кенэ,которые К. Маркс назвал идеей «...бесспорно самой гениальной из всех, какие только выдвинула до сего времени политическая экономия» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 26, ч. 1, с. 345), по существу была впервые сделана попытка формализации всего процесса общественного воспроизводства.Огромное влияние на экономическую науку оказали схемы воспроизводства, созданные Марксом и развитые В. И. Лениным. Непосредственным следствием этого подхода явилась теория межотраслевого баланса (см. Баланс межотраслевой ) .
Особенно широко М. употребляются в экономических исследованиях начиная с середины 20 в., когда возник ряд новых областей математики (см., например, Операций исследование ) и были созданы электронные вычислительные машины (ЭВМ). Экономико-математические М. используют за рубежом такие учёные, как Л. Вальрас,Дж. Нейман (создатель первой ЭВМ и один из основоположников игр теории и вообще математической экономики), Дж. М. Кейнс,Р. Фриш, Я. Тинберген, П. Сэмюэлсон,К. Арроу, В. Леонтьев,а также Г. Дж. Данциг, Дж. Дебре, Т. Купманс, Х. Никайдо, М. Морисима, Р. Харрод, Дж. Хикс.
В СССР развитие метода М. в экономике связано прежде всего с именами Л. В. Канторовича (впервые в мировой науке сформулировал М. социалистической экономики в виде математической задачи линейного программирования ) ,А. Л. Лурье, В. С. Немчинова,В. В. Новожилова,а также А. Г. Аганбегяна,А. Л. Вайнштейна, В. А. Волконского, Л. М. Дудкина, А. А. Макарова, В. Л. Макарова, С. М. Мовшовича, Ю. А. Олейника, В. Ф. Пугачёва, Е. Ю. Фаермана, Н. П. Федоренко,С. С. Шаталина.
Процесс экономического исследования с помощью М. можно условно подразделить на ряд этапов. На первом этапе формулируется общая задача, в соответствии с которой фиксируется объект исследования (например, мировая экономика в целом, экономика мирового капиталистического и социалистического хозяйства, отдельные страны, отрасли, предприятия, фирмы или определённый аспект функционирования экономических систем: спрос и потребление, распределение доходов, ценообразование и т. п.). Далее выдвигаются требования к характеру исходной информации, которая может быть статистической (получаемой в результате наблюдений за ходом экономических процессов) или нормативной (коэффициенты затрат выпуска, рациональные нормы потребления). Затем изучаются наиболее простые (исходные) свойства моделируемого объекта и выдвигаются гипотезы о характере его развития. Так, для решения ряда задач эффективного управления экономической системой фундаментальное значение имеют такие свойства, как ограниченность в каждый момент времени материальных, трудовых и природных ресурсов, достигнутый уровень научно-технических знаний общества, определяющий набор технологических способов получения нужных продуктов из имеющихся ресурсов, а также многовариантность допустимых траекторий экономического развития (диктующая задачу выработки критерия выбора наиболее эффективной траектории).
Информация, полученная на первом этапе, нужна для создания М. экономической системы, которая и составляет содержание второго этапа. Для изучения различных аспектов функционирования экономических систем используются разные М. Наиболее общие закономерности развития экономики исследуются при помощи народно-хозяйственных М. (балансовых, оптимизационных, равновесных, игровых и др.). Для анализа и прогнозов динамики и соотношения различных синтетических показателей (национального дохода, занятости, процента на фонды, потребления, сбережений, инвестиций и т. п.) применяются макроэкономические М., а исследование конкретных хозяйственной ситуации производится с помощью микроэкономической М. производства, транспорта, торговли, снабжения и сбыта и т. п. Для исследования сложных экономических систем используются преимущественно математические М., ибо они лучше всего приспособлены для анализа простейших экономических процессов (например, на транспорте), - т. н. аналоговые М. (электрические, механические, гидравлические). Начиная с 1960-х гг. большую известность приобрели т. н. имитационные М., используемые для изучения реальных процессов функционирования экономических систем в тех случаях, когда их математический анализ затруднён или невозможен (и в определенной степени заменяющие экспериментальное изучение экономических систем), а также применяемые для обучения руководителей правилам наиболее эффективного ведения хозяйства (т. н. деловые игры). Экономические М. классифицируются по следующим основным критериям: целям и задачам, объекту, применяемому аппарату исследования, характеру исходной информации. С точки зрения последнего критерия различаются статистические и нормативные модели. Все эти классификации, разумеется, весьма условны, т. к. реальные М. могут занимать промежуточное положение (например, часть информации задаётся нормативно, а часть из статистического анализа поведения экономической системы). Кроме того, более общие М. могут включать в себя частные. Например, элементом М. народного хозяйства страны могут быть М. отраслей, предприятий и т. д, (субмодели), и наоборот, в локальные М. вводятся требования, вытекающие из анализа всей экономики.