- << Первая
- « Предыдущая
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- Следующая »
- Последняя >>
Лит.:Леви Л. И., Кантоник С. К., Литейные сплавы, М., 1967.
А. А. Жуков.
Модифицированный чугун
Модифици'рованный чугу'н, чугун,в который в жидком состоянии при определённых условиях введены модификаторы.
Модификаторы инокулирующего действия (ферросилиций, силикокальций, С, Аl, сплавы титана, циркония, некоторых лантаноидов, бария, стронция) позволяют снизить в чугуне содержание Si и С без появления отбела, размельчают графит, в результате чего увеличивается количество перлита и улучшаются механические свойства серого чугуна. Введение Sn, Pb, Р, Sb, N и других модификаторов способствует получению перлитных серых чугунов. Введение Bi и повышение содержания S резко отбеливают чугун. В ковком чугуне некоторые модификаторы связывают такие вредные примеси, как азот (в виде AIN, BN) и хром (в виде атомных сегрегаций типа Sb 2Cr 3). Некоторые модификаторы (магний, большинство лантаноидов, иттрий) при определённой их дозе вызывают выделение графита округлой формы, вследствие чего образуется чугун с шаровидным графитом, называемый высокопрочным. Такой вид модифицирования существенно увеличивает прочность чугуна и резко повышает его пластичность и вязкость. Основные способы модифицирования: на жёлобе печей, в автоклавах, в специальных ковшах, например герметизированных, вдуванием, введением модификаторов через лигатуры или соли, в литниковых системах литейных форм.
Лит.:Гиршович Н. Г., Кристаллизация и свойства чугуна в отливках, М. - Л., 1966.
А. А. Жуков.
Модлонское свайное поселение
Мо'длонское сва'йное поселе'ние,неолитическое поселение 2-й половины 3-го тыс. до н. э. на р. Модлона, на территории Кирилловского района Вологодской обл. РСФСР. Открыто и исследовалось А. Я. Брюсовым в 1938-40, 1945-57 и С. В. Ошибкиной в 1970. Открыты остатки четырёх домов на сваях и соединяющие их мостки. Найдены каменные и костяные орудия, керамическая и деревянная (украшенная резьбой и скульптурой) посуда, подвески из янтаря, шифера и кости. М. с. п. является инородным среди неолитических культур севера Европейской части СССР. Стоянки этого типа во 2-й половины 3-го тыс. до н. э. были распространены южнее - главным образом в Восточной Латвии; известны также в Псковской обл. и на верхней Волге.
Лит.:Брюсов А. Я., Свайное поселение на р. Модлоне и другие стоянки в Чарозерском районе Вологодской области, в сборнике: Материалы и исследования по археологии СССР, № 20, М., 1951.
Модлонское свайное поселение. Реконструкция жилища.
Модсли Генри (механик)
Мо'дсли(Maudslay) Генри (22.8.1771, Вулидж, - 14.2.1831, Ламбет, похоронен в Вулидже), английский механик. С 12 лет начал работать в мастерских Вулиджского арсенала. В 1797 построил токарно-винторезный станок с суппортом (механизированным на основе винтовой пары) и набором зубчатых колёс; тем самым внедрил в промышленность идеи, разработанные А. К. Нартовым и др., и механизировал производство винтов и гаек. Дальнейшая механизация станков, осуществлённая М. и др., привела к машинному производству деталей машин. В 1810 основал крупный машиностроительный завод, на котором было разработано много новых конструкций станков, паровых и других машин. В 1815 создал станочную линию по производству канатных корабельных блоков.
Модсли Генри (психиатр)
Мо'дсли(Maudsley) Генри [5.2.1835, близ г. Сетл, Йоркшир, - 23 (или 24).1.1918, Баши Хит], английский психиатр и философ. В 1857 окончил Лондонский университет. Член Королевского медицинского колледжа (1869). В 1869-79 профессор Лондонского университета, затем работал в психиатрических больницах и созданном им в Лондоне психиатрическом госпитале. Основоположник эволюционного направления в психиатрии; последователь Ч. Дарвина,который высоко ценил книгу М. «Физиология и патология души» (1867, рус. пер. 1871). Заложил основы детской психиатрии в Великобритании, внёс существенный вклад в развитие судебной психиатрии. В философских взглядах был представителем позитивизма,стоял на позициях психофизиологического параллелизма и переносил биологические законы эволюции в область общественно-исторического развития человека, оправдывал колониальную политику, считал, что войны «полезны человечеству» и т. п.
Соч.: Ogranic to human: psychological and sociological, L., 1916; в рус. пер. - Наследственность в здоровье и в болезни, СПБ, 1886; Ответственность при душевных болезнях, СПБ, 1875.
Лит.:Морозов В. М., Эволюционное направление в психиатрии, «Журнал невропатологии и психиатрии им. С. С. Корсакова», 1957, т. 57, в. 4.
Модули упругости
Мо'дули упру'гости,величины, характеризующие упругие свойства материала. В случае малых деформаций, когда справедлив Гука закон,т. е. имеет место линейная зависимость между напряжениями и деформациями, М. у. представляют собой коэффициент пропорциональности в этих соотношениях. Одностороннему нормальному напряжению s, возникающему при простом растяжении (сжатии), соответствует в направлении растяжения модуль продольной упругости Е(модуль Юнга). Он равен отношению нормального напряжения s к относительному удлинению e, вызванному этим напряжением в направлении его действия: Е= s/ e, и характеризует способность материала сопротивляться растяжению. Напряжённому состоянию чистого сдвига, при котором по двум взаимно перпендикулярным площадкам действуют только касательные напряжения t, соответствует модуль сдвига G. Модуль сдвига равен отношению касательного напряжения t к величине угла сдвига g, определяющего искажение прямого угла между плоскостями, по которым действуют касательные напряжения, т. е. G= t/g. Модуль сдвига определяет способность материала сопротивляться изменению формы при сохранении его объёма. Всестороннему нормальному напряжению s, одинаковому по всем направлениям (возникающему, например, при гидростатическом давлении), соответствует модуль объёмного сжатия K- объёмный модуль упругости. Он равен отношению величины нормального напряжения s к величине относительного объёмного сжатия D, вызванного этим напряжением: K = s/D. Объёмный модуль упругости характеризует способность материала сопротивляться изменению его объёма, не сопровождающемуся изменением формы. К постоянным величинам, характеризующим упругие свойства материала, относится также Пуассона коэффициент n. Величина его равна отношению абсолютному значения относительного поперечного сжатия сечения e' (при одностороннем растяжении) к относительному продольному удлинению e, т. е. n= |e'|/e.
В случае однородного изотропного тела М. у. одинаковы по всем направлениям. Четыре постоянные величины Е, G, Kи n связаны между собой двумя соотношениями:
Следовательно, только две из них являются независимыми величинами и упругие свойства изотропного тела определяются двумя упругими постоянными. В случае анизотропного материала постоянные Е, Gи n принимают различные значения в различных направлениях и величины их могут изменяться в широких пределах. Количество М. у. анизотропного материала зависит от структуры материала. Анизотропное тело, лишённое всякой симметрии в отношении упругих свойств, имеет 21 М. у. При наличии симметрии в материале число М. у. сокращается.
М. у. устанавливаются экспериментально-механическим испытанием образцов изучаемых материалов. М. у. не являются строго постоянными величинами для одного и того же материала, их значения меняются в зависимости от химического состава материала, от его предварительной обработки (термическая обработка, прокат, ковка и др.). Значения М. у. также зависят от температуры материала.
Лит.:Фридман Я. Б., Механические свойства металлов, 2 изд., М., 1952.
Модулор
Модуло'р,модулёр, модюлор (франц. modulor), система пропорций, предложенная в 1940-х гг. французским архитектором Ле Корбюзье и его сотрудниками. М. основывается на размерах и пропорциях человеческого тела (исходные величины - условный рост человека, его высота до солнечного сплетения и с поднятой рукой, принятые равными 183, 113 и 226 см) ,на золотом сечении и рядах Фибоначчи чисел.Введение М. преследовало цели внести в современную архитектуру и художественное конструирование модуль,основанный на измерении человека. М. последовательно использован в ряде построек самого Ле Корбюзье и оказал известное влияние на практику мировой архитектуры и особенно дизайна.
Лит.:Ле Корбюзье Ш. Э., Архитектура 20 века, пер. с франц., [М.], 1970; Le Corbusier Ch., Le modulor, Boulogne sur Seine, [1951].
Модуль (в архитектуре)
Мо'дуль(от лат. modulus - мера) в архитектуре, условная единица, принимаемая для координации размеров частей здания или комплекса. В архитектуре разных народов в зависимости от особенностей строительной техники и композиции зданий за М. принимались разные величины. М. сооружения могут быть: одно из основных его измерений (диаметр купола или стороны помещения в средневековых сводчатых постройках Европы и Средней Азии), размер отдельного элемента сооружения (диаметр колонны, ширина триглифа в ордерной античной архитектуре) или размер строительного изделия (длина кирпича, бревна). В качестве М. используются также и непосредственно меры длины (фут, сажень, метр и др.), образуя т. н. линейный М.
Возникнув вследствие технической необходимости, М. стал и одним из средств архитектурной композиции, которое используется для приведения в гармоническое соответствие размеров целого и его частей (например, золотое сечение в античной архитектуре, модулор в практике Ле Корбюзье). Однако применение М. никогда не означало механического расчёта всех величин: в поисках выразительных соотношений архитекторы вносили в соразмерность частей поправки, учитывающие особенности зрительного восприятия. В архитектуре 2-й половины 20 в., в связи с развитием методов сборного индустриального строительства, постоянные линейные М. получили особенно большое техническое значение как средство согласования планировочных и конструктивных элементов зданий, их унификации и стандартизации.
Основной М. размером в 10 см,производные от него укрупнённые (3 М., 6 М., 12 М., 15 М., 30 М., 60 М.) и дробные М. вместе с правилами их применения составляют модульную систему. Они установлены советскими, зарубежными и международными нормами и стандартами.
Лит.:Хазанов Д. Б., Модуль в архитектуре, в сборнике: Вопросы теории архитектурной композиции, [в.] 2, М., 1958; Архитектура жилого комплекса, М., 1969.
Д. Б. Хазанов.
Модуль (в математике)
Мо'дульв математике, 1) М. (или абсолютная величина) комплексного числа z= х+ iyесть число (корень берётся со знаком плюс). При представлении комплексного числа zв тригонометрической форме z= r(cos j + isin j) действительное число rравно М. числа z. М. допускает следующее геометрическое истолкование: комплексное число z= х+ iyможно изобразить вектором, исходящим из начала прямоугольной системы координат и имеющим конец в точке с координатами ( х, у); длина этого вектора и есть М. комплексного числа z.
2) М. перехода от системы логарифмов при основании ак системе логарифмов при основании bесть число М= 1/log a b; для получения логарифмов чисел хпри основании b, если известны логарифмы этих чисел при основании а, надо последние умножить на М. перехода:
log b x= Мlog a x.
Модуль (в электронике)
Мо'дульв электронике, унифицированный функциональный узел, функционально законченный узел радиоэлектронной аппаратуры, оформленный конструктивно как самостоятельное изделие. По конструкции М. разделяют на плоские, объёмные и объёмно-плоскостные, по типу электронных приборов - на транзисторные и ламповые. Чаще всего М. собирают на печатных платах . Технология изготовления М. допускает высокую степень автоматизации, что обеспечивает высокую надёжность М. в работе. М. могут быть отдельно настроены и проверены, что позволяет при ремонте производить их замену без дополнительных подстроек и регулировок. Применение М. (функционально-узловой метод конструирования) сокращает сроки проектирования, удешевляет проектирование и изготовление аппаратуры, упрощает её эксплуатацию и модернизацию.
Лит.:Гусев В. П., Технология радиоаппаратостроения, М., 1972.
Рис. 2. Объёмный модуль (без кожуха) - усилитель звуковой частоты: 1 - верхняя печатная плата; 2 - резисторы; 3 - металлическая перемычка между печатными платами; 4 - конденсатор; 5 - нижняя печатная плата; 6 - выводы; 7 - транзистор.
Рис. 1. Плоский модуль - логическая ячейка узла электронной вычислительной машины: 1 - выводы; 2 - полупроводниковый диод; 3 - транзистор; 4 - конденсатор; 5 - печатная плата (основание модуля); 6 - резистор.
Модуль высокоэластический
Мо'дуль высокоэласти'ческий,мера сопротивления деформированию резин и др. каучукоподобных материалов, представляющая собой отношение напряжения s к обратимой деформации e. При малых e величина s пропорциональна e (линейная область механического поведения материала), и поэтому здесь, по определению, М. в. аналогичен обычному модулю продольной упругости (модулю Юнга) или модулю сдвига (см. Модули упругости ) в зависимости от того, при каком виде напряжённого состояния измеряется М. в. При больших e (обычно называемых высокоэластическими) пропорциональность s и e нарушается, и под М. в. в этом случае понимают эквивалентную величину, зависящую от e и по-прежнему определяемую как отношение s/e. М. в. обычно составляет от долей Мн/м 2 до нескольких Мн/м 2(от долей кгс/см 2до десятков кгс/см 2) ,тогда как, например, для металлов и полимерных стекол модуль Юнга достигает величин порядка 10 5или 10 3 Мн/м 2соответственно (10 6или 10 4 кгс/см 2). Теоретически М. в. должен возрастать с повышением температуры линейно, практически температурной зависимостью М. в. можно пренебречь. Для высокоэластического состояния характерно отсутствие изменений объёма при растяжении, поэтому М. в., измеренный при сдвиге, составляет 1/ 3М. в., определённого при одноосном растяжении.
Резкая разница значений М. в. каучукоподобных веществ и модуля Юнга кристаллических тел и стекол связаны с различием природы деформаций. Определяющим фактором в случае высокоэластической деформации является гибкость полимерной цепи: деформация тела в целом осуществляется прежде всего путём изменения конформаций макромолекул (см. Высокоэластическое состояние ) .Упругая же деформация происходит вследствие изменения межатомных расстояний и валентных углов. Силы упругости, препятствующие таким изменениям, существенно больше, чем силы, необходимые для предотвращения упругого восстановления каучукоподобного тела. Абсолютные значения М. в. возрастают по мере усиления межмолекулярного взаимодействия полимерных цепей и увеличения густоты пространственной сетки химических связей.
А. Я. Малкин.
Модуль зубчатого колеса
Мо'дуль зу'бчатого колеса',геометрический параметр зубчатых колёс. Для прямозубых цилиндрических зубчатых колёс модуль mравен отношению диаметра делительной окружности d дк числу зубьев zили отношению шага tпо делительной окружности к числу: m= d д /z= ts/p. Для косозубых цилиндрических колёс различают: окружной модуль m s= d д /z= ts/p, нормальный модуль m n= t n/p, осевой модуль m a= t а/p, где t s, t nи t a- соответственно окружной, нормальный и осевой шаги по делительному цилиндру. Значения М. з. к. стандартизованы, что является основой для стандартизации других параметров зубчатых колёс (геометрические размеры зубчатых колёс выбираются пропорционально модулю) и зуборезного инструмента (см. Зубчатая передача ) .
Модуль расстояния
Мо'дуль расстоя'ния,разность между видимой ( m) и абсолютной ( М) звёздными величинами небесного светила, применяемая в астрономии для описания расстояний до звёзд и звёздных систем. В то время как Мзависит только от собственной светимости звезды, mзависит также и от расстояния r(в пс) до неё: m- М= 5 lg r- 5.
Модуль Юнга
Мо'дуль Ю'нга,то же что, модуль продольной упругости Е; см. Модули упругости.
Модульон
Модульо'н,модильон (франц. modillon, от итал. modiglione), архитектурная деталь типа кронштейна,которая поддерживает выносную плиту венчающего карниза, преимущественно в ордерной архитектуре (см. Ордер архитектурный). Иногда М. играет лишь декоративную роль.
Модульон.
Модулятор
Модуля'торв радиотехнике и дальней связи, устройство, осуществляющее модуляцию - управление параметрами высокочастотного электромагнитного переносчика информации в соответствии с электрическими сигналами передаваемого сообщения. М. является составной частью главным образом передающих устройств электросвязи и радиовещания. Переносчиком информации обычно служат гармонические колебания или волны с частотой (называемой несущей или поднесущей) ~ 10 4-10 15 гц.В зависимости от того, какой параметр гармонических колебаний или волн изменяется, различают амплитудную, частотную, фазовую или смешанную (например, при однополосной передаче) модуляцию колебаний.Соответственно различны и виды М. При импульсно-кодовой модуляции переносчиком информации служит регулярная последовательность импульсов электрических,параметрами которых (амплитуда, ширина, частота или фаза повторений) управляют с помощью соответствующих типов импульсных М. Модулирующие электрические сигналы передаваемого сообщения могут иметь самую разнообразную форму: от простых и медленных телеграфных посылок в виде точек и тире или колебаний звукового диапазона частот при передаче речи и музыки до сложных, быстро изменяющихся сигналов, применяемых в телевидении или в многоканальной проводной и радиорелейной связи. Часто в функцию М. входит также усиление модулирующих колебаний.
Непременное требование к модуляции состоит в том, что модулирующее колебание должно изменяться во времени значительно медленнее модулируемого. Поэтому в любом М. сочетаются взаимодействующие цепи модулируемых колебаний или волн с цепями модулирующего сигнала более низкой частоты. Определяющим в М. является управляющий элемент, посредством которого сигнал воздействует на параметры модулируемых колебаний или волн. Электронная лампа как универсальный управляющий элемент сохранилась к 1974 главным образом в М. мощных радиопередающих устройств (для них специально разработаны т. н. модуляторные лампы). При мощностях передатчиков Ј 0,5 квтлампы успешно вытесняются транзисторами и другими полупроводниковыми приборами. В устройствах, работающих на СВЧ, наряду с полупроводниковыми приборами используются клистроны, лампы бегущей волны и др. О М. в оптическом диапазоне волн см. в ст. Модуляция света.
При амплитудной модуляции М. изменяет амплитуду генерируемых (или усиливаемых) колебаний с несущей частотой. В сеточном М. лампового радиопередатчика модулирующее напряжение воздействует на входную (сеточную) цепь генератора или усилителя высокочастотных колебаний, в анодном М. - на выходную (анодную) цепь генераторной лампы. Сеточный М. более экономичен, анодный же может обеспечить большую глубину модуляции при малых искажениях. В транзисторных радиопередатчиках базовый и коллекторный М. ( рис. 1 , а, б) являются транзисторными аналогами соответственно сеточного и анодного ламповых М. Для получения амплитудно-модулированных колебаний с подавленными колебаниями несущей частоты применяют т. н. балансный М. (см. Однополосная модуляция ).
При частотной модуляции и фазовой модуляции в качестве управляющего элемента в М. используются т. н. реактивные устройства, у которых эффективная ёмкость или индуктивность (или то и другое) изменяется под действием модулирующего сигнала. Реактивное устройство включается или непосредственно в резонансный контур задающего генератора,или в последующие фазовращающие цепи радиопередатчика. В ламповых М. такое устройство получило название реактивной лампы,в транзисторных - реактивного транзистора.Кроме того, в некоторых транзисторных фазовых и частотных М. используют явление сдвига фазы генерируемых колебаний, зависящего при определённых режимах работы от значения постоянной составляющей коллекторного тока. Широкое применение в качестве реактивного управляющего элемента в М. находят варикапы ( рис. 2 ).
При импульсной модуляции в М. управляющими элементами также служат электронная лампа или полупроводниковый прибор, например варикап ( рис. 3 ), который запирает или отпирает волноводный тракт при посылках импульсного модулирующего напряжения различного знака.
Иногда М. входит в состав усилительных устройств, работающих в различных диапазонах частот - от звуковых до СВЧ. Магнитный усилитель имеет М. в виде насыщающегося дросселя электрического,индуктивностью которого управляет ток усиливаемого сигнала. В этом случае обычно модулируется переменный ток промышленной частоты, более высокой по сравнению с частотами спектра сигналов - обычно команд в системах автоматики. В диэлектрическом усилителе М. представляет собой нелинейный конденсатор, ёмкостью которого управляет напряжение сигнала. М. является составной частью некоторых параметрических усилителей.
Лит.:Кукк К. И., Соколинский В. Г., Передающие устройства многоканальных радиорелейных систем связи, М., 1968; Модель З. И., Радиопередающие устройства, М., 1971; Радиопередающие устройства, под ред. Б. П. Терентьева, М., 1972; Радиопередающие устройства на полупроводниковых приборах, под ред. Р. А. Валитова и И. А. Попова, М., 1973.
М. Д. Карасёв.
Рис. 3. Волноводный импульсный модулятор сверхвысоких частот: 1 - радиоволновод; 2 - диодная камера; Д - переключательный диод или парикап, открывающий радиоволновод (импульс электромагнитной волны на выходе) при положительном u Mи запирающий его (пауза на выходе) при отрицательном модулирующем напряжении u M.
Рис. 2. Варикапный частотный модулятор: В - варикап, ёмкость которого с индуктивностью катушки L образуют резонансный контур генератора на транзисторе Т; Е B, E T- напряжения, подаваемые соответственно на варикап и транзистор; C 1, С 2- конденсаторы развязывающих цепей; R, R 1, R 2- резисторы в развязывающих цепях. Эффективной ёмкостью варикапа управляет модулирующее напряжение u M.
Рис. 1. Транзисторные амплитудные модуляторы: а - базовый; б - коллекторный; u ВЧ- напряжение модулируемых колебаний: Tp - низкочастотный трансформатор; C 1, С 2, L 1- конденсаторы и катушка индуктивности развязывающих цепей по высоким и низким частотам; R и R 1- резисторы делителя постоянного напряжения в цепи питания транзистора; Е К- напряжение, подаваемое на коллектор транзистора. Транзистор Т с резонансным контуром из катушки индуктивности L и конденсатора С образуют управляемый усилитель колебаний с несущей частотой, коэффициент усиления которого изменяется при изменении u M.
Модуляция (в музыке)
Модуля'цияв музыке, смена тональности со смещением тоники (тональная М.). В обычной функциональной М. связь тональностей устанавливает общий для них посредствующий аккорд, меняющий свою функцию при появлении гармонического оборота, характерного для новой тональности. Решающее значение приобретает модулирующий аккорд с соответствующей альтерацией.
Особый вид функциональной М. - энгармоническая М. (см. Энгармонизм ) ,в которой посредствующий аккорд оказывается общим для обеих тональностей благодаря энгармоническому переосмыслению его структуры. Такая М. легко связывает отдалённые тональности и часто производит впечатление неожиданного крутого модуляционного поворота.
Большое значение в М. имеют мелодические связи аккордов, естественное голосоведение.Они могут играть ведущую роль в М., отстраняя на задний план функциональные связи аккордов и даже совсем их заменяя. Такая мелодико-гармоническая М. без общего аккорда наиболее характерна при непосредственном переходе в отдалённую тональность, в котором связующим звеном служит только модулирующий мелодически-подводящий аккорд. В одноголосном (или октавном) движении встречается мелодическая М. (как таковая, без гармонии), которая может идти и в далёкую тональность.