Страница:
Концентрацию твердых частиц (фазы) пытались определить с помощью от эхолота (ультразвук) до рентгеновских лучей. На чем остановились, не помню, но как будто проблему решили. Дальше пошло еще труднее. Для определения плотности, а точнее зольности, твердой фазы перепробовали все коротко живущие радиоактивные изотопы, на какие удалось достать разрешение. Начались 90–е годы, и с радиоактивными изотопами стало сложнее, не то, что в 60–х. На одни разрешения всякие ушло несколько лет, что не помешало, конечно, сегодня ребятишкам и любознательным мужикам играть с ними на свалках после ухода Зарецкого на преподавательскую работу.
Каждый из этих трех приборов в отдельности Госстандарт одобрял, но в целом система этих приборов никак не дотягивала до заданной точности отображения действительности, которую уже задали экономисты. Общая ошибка не должна была быть выше, чем, если бы пробы брались в «сухом» угле и сжигались по всем правилам 100–летней давности. Иначе овчинка не стоила выделки. На многочисленные попытки «довести» приборы учета до ума ушло еще лет 5–6, но тут терпение Зарецкого кончилось. Он понял, что до точности прямого отбора проб и их сжигания для получения результата, приборы ему не довести до конца жизни, а потому и нечего стараться, Нобелевская премия ему не нужна посмертно. Если принять во внимание, что он сделал приборы только для вертикального вверх потока, а предстояло еще сделать и для горизонтальных труб, а также для открытого потока, чтобы замерять пульпу из каждого забоя, то он, разумеется, сделал правильно, что бросил эту затею.
Конструкторские потуги ВНИИгидроугля
Как немедленно оказалось после опытного внедрения гидродобычи, она вовсе не малооперационна, и, тем более не однооперационна, а еще менее универсальна, как ее продекларировал В.С.Мучник в своем дипломном проекте. Все выработки на гидрошахте должны были быть пройдены с наклоном 3.5–4 градуса в сторону главного ствола, а единственный ствол для экономии капитальных вложений должен был вмещать только одну клеть для спуска–подъема немногих людей (производительность труда высока), немного леса для крепления выемочных выработок, отрезков труб для технологической воды и гидромониторов, очень незначительных по габаритам и весу.
Первый облом произошел со стволом. Никто из «основоположников», гордых своей технологией, не вспомнил, что двигатель углесоса мощностью 1600 киловатт, который нужно спустить в шахту, не входит в «экономичную» клеть. Кроме того, сам подъемный канат и сама подъемная машина не могут спускать–поднимать по правилам безопасности десять тонн, которые заключены в этом электродвигателе. «Ученые» разводили руками, а практики нашли решение: они сняли клеть, прикрепили электродвигатель непосредственно к подъемному канату, приварили к нему направляющие «башмаки» от клети и таким образом спустили 6 электродвигателей, чтобы не сорвать введение в эксплуатацию готовой, построенной уже гидрошахты. «Ученые» же запроектировали задним числом новый ствол, наклонный, который и был построен впоследствии только для спуска–подъема этих электродвигателей. Ничего себе, каков коэффициент использования этого ствола, сколько нулей перед первой значащей цифрой после запятой в этом коэффициенте? Двигатели эти спускают–поднимают раз в году по одной штуке. Но без нового ствола шахта вообще не могла работать по «Правилам безопасности в угольных и сланцевых шахтах», раздел «Водоотлив».
Второй облом – это доставка различных грузов в забои: крепежного леса, металла, оборудования, наконец, людей, ибо это предусмотрено все теми же «Правилами…», как говорит Жириновский, однозначно. В слабо наклонных выработках не может действовать рельсовый транспорт, вагонетка по рельсам самопроизвольно разгоняется до бешеной скорости. Центральная часть выработки занята, кроме того, желобами для гидротранспорта. Подземные электровозы не могут буксировать не только состав вагонов, но даже двигать сами себя вверх по уклону. Кроме того, в «малооперационной» гидрошахте по «задумке» Мучника не предусмотрено вообще применение электроэнергии. ВНИИгидроуголь в срочном порядке, не являясь специалистом в области конструирования специальных горных машин, взялся конструировать целую их гамму. Что из этого вышло, я и хочу рассмотреть в некоем порядке. Начну с шахтного подземного вспомогательного транспорта.
В среднем шахта имеет от 50 до 200 километров действующих выработок, гидрошахта не является исключением. Почти по всем из них в обычной шахте проложен рельсовый путь, по которому ездят вагонетки, в основных выработках с помощью электровозов, во вспомогательных – с помощью лебедок, а в иных – с помощью шахтерского плеча. Толкать одну 1–3–х тонную вагонетку по рельсам не такая уж трудная работа, как может показаться на первый взгляд, недаром эту работу выполняли раньше женщины и подростки. В гидрошахте рельсы прокладывать бессмысленно, да и там уже проложены желоба для гидротранспорта угля. Не знаю, думал ли об этом «основоположник», когда изобретал технологию, но первые же опыты гидротехнологии показали, что с доставкой по шахте – неразрешимая проблема. Надо добавить, что, например, на крутом залегании мощных пластов со слоевой их разработкой, только крепежного леса расходуется 50–60 кубометров на 1000 тонн добычи, а при гидродобыче – не меньше. Одной взрывчатки только одним взрывником расходуется за смену от 30 до 100 килограммов. На пологозалегающих пластах средней мощности при комплексной механизации только комбайн весит 12–15 тонн, а весь комплекс весит 300–500 тонн железа, а единичный вес неделимого на части оборудования составляет от 0.2 тонны до 7–10 тонн. Весь грузопоток этот, направленный навстречу углепотоку, составляет от 8 до 10 процентов от этого углепотока. А в целом шахта добывает от 1000 до 10000 тонн в сутки угля. Значит, в забои должно быть доставлено от 80 до 1000 тонн различных грузов в сутки. И гидрошахта практически ничем не отличается в этом смысле от обычной «сухой» шахты. Я это хорошо посчитал, потому что около двух лет работал начальником внутришахтного транспорта именно на гидрошахте.
ВНИИгидроуголь, разумно отказавшись от рельсового транспорта по везде наклонным выработкам, выдал идею монорельсового транспорта, когда монорельс подвешивался к кровле выработки, а вагонетки, очень похожие на люльки канатно–кресельных дорог на горнолыжных курортах, подвешивались к монорельсу на колесиках. Грузоподъемность этих люлек составляла 500 килограммов, а я уже говорил, какие грузы надо было возить. Выдал идею и тут же ее нарисовал, а в качестве локомотива для этих люлек тут же выдумал, так называемые, гиротельферы на монорельсе, так как электроэнергии в гидрошахте не предусматривалось. Это чудо 20 века тоже нарисовали. В нем был гиромаховик, который должен был запасать энергию. Раскручивать маховик надо было специальной турбиной, на которую действовала струя воды от высоконапорного водовода. На водоводе через определенное расстояние должны были быть сооружены отводы с задвижкой и шланг. Видите ли, гиромаховик делал возможным не разогнаться гиротельферу на уклоне сверх меры, ведь при движении вниз он должен был раскручивать этот самый маховик, что не давало ему сильно разгоняться. Идея, в общем–то, красивая, но беда в том, что вся эта конструкция не была отработана ни в конструкторском, ни в технологическом, ни в эксплуатационном аспектах, а поэтому ломались то турбина, то задвижка, то сам маховик, то, редуктор, то еще что–нибудь. Притом стыки монорельса были разработаны так плохо, что на каждом из тысяч этих стыков гиротельфер начинал буксовать.
Но гидрошахта–то работала, и ей был дан план–закон по добыче угля. В общем, выбросили шахтеры гиротельферы, поставили лебедки через каждые 300 метров, провели «не предусмотренную проектом» электроэнергию и стали тягать эти люльки канатом, перецепляя от лебедки к лебедке. Но проявился в полную силу «закон подлости». Очень часто, когда одну из люлек заклинивало на стыке монорельса, рвался канат и ничем не удерживаемые люльки, набирали «сверхзвуковую» скорость, гладко проходя те же самые стыки монорельса и круша все вокруг, в том числе и людей, попадавшихся на их пути. Горнотехническая инспекция запретила эту самодеятельность, но «голь на выдумки хитра», монорельс сдали в металлолом, люльки – тоже, а вместо этого сварили лодки, точную копию речных плоскодонок, и того же приблизительно размера, но не плавающих, а волочащихся по почве горной выработки канатом с помощью лебедки. Правда, лебедки пришлось заменить другими лебедками, раз в десять более мощными. Сами по себе не заскользят, космической скорости не наберут. Вот в этих лодках и возили многие тысячи тонн многие годы, с 1967 года. По–моему, и сейчас на гидрошахте «Юбилейная» возят. А институт ВНИИгидроуголь, под руководством «основателя», напрочь забыл о проблеме, как только шахтеры «изобрели лодки по сухому месту», наверное, посчитав ее решенной раз и навсегда. Грузы двигались со скоростью от 14 до 21 сантиметра в секунду, т.е. от 500 до 700 метров в час, что равно 0.5–0.7 км/ч, ровно в 10 раз меньше, чем идет никуда не спешащий человек.
«Сбросивший с плеч» эту проблему, как решенную, ВНИИгидроуголь забеспокоился о другой транспортной проблеме гидрошахт. Причиной было то, что в институте узнали о серийно выпускаемом гировозе на рельсовом ходу. Этот гировоз был разработан другим институтом специально для очень опасных по метану шахт, на которых на вентиляционном горизонте все еще применяли лошадей, а не электровозы, даже аккумуляторные, так как малейшая искра грозила взрывом всей шахте. Маховик там был весом в 1.7 тонны, а раскручивался он сжатым воздухом. Правда, шахтеры предпочитали лошадей, а не этот гировоз, так как он ломался беспрерывно. ВНИИгидроуголь тут же купил гировоз, снял с него пневмодвигатель и заменил водяной турбиной, а затем притащил на шахту «Юбилейная», где я работал начальником внутришахтного транспорта, для промышленных испытаний. Раскрутив маховик до 1000 оборотов в минуту, этот гировоз мог затащить две вагонетки с кирпичем (опытная нагрузка) на 1200 метров вверх на уклон в 3.5 градуса и маховик у него терял почти всю свою энергию, сокращая обороты с 1000 до 200. Но и эта работа была лучше, чем знаменитая на гидрошахтах лодка на сухом месте.
Однако, непосредственно отвечая за безопасность своих рабочих, я предъявил ряд условий безопасности, которые надо было обеспечить в этой машине в связи с использованием ее на уклоне пути, саморазгон машины на котором мог привести к тяжелым последствиям. Без устранения этих претензий я не соглашался даже близко подпускать гировоз к своей шахте. А недостатки были существенные. 10–ти тонная машина удерживалась от саморазгона по наклонным рельсам соединением ее колес специальной зубчатой муфтой, в свою очередь, соединенной с маховиком через редуктор. Маховик, обладая инерцией, гасил возможность неконтролируемого разгона. Но муфта, то вводилась в зацепление, то выводилась из него вручную, рычагом. Это можно было терпеть, если рельсовый путь горизонтальный, машина далеко не уедет, если муфту расцепили с маховиком, сама остановится. На уклоне – совсем другое дело, машина начинает стремительно набирать скорость на рельсах при расцеплении муфты с маховиком и после набора определенной скорости муфту вообще нельзя ввести в зацепление, так как синхронизаторов не было, раздавался скрежет зубьев, шестеренки не входили в зацепление. Оставалось выпрыгивать из мчащейся машины, а она, 10–тонная громадина, пролетала молнией и, сойдя с рельсов, ломала все вокруг. Случаев таких было несколько, я успевал выпрыгивать, а на пути ее следования стояли посты, никого не пропуская на место испытаний. Я предложил поставить синхронизаторы и «эластичную» муфту сцепления типа гидравлической, обеспечивающей 100–процентное включение муфты в любых условиях. Кроме того, потребовал, чтобы был создан аварийный, не связанный с маховиком тормоз, действующий автоматически, как только гировоз набирал определенную критическую скорость. Мои требования не имели ничего сверхневозможного. Принципиальные решения таких вопросов давно известны. Гировоз увезли и больше его ни на одной из гидрошахт не видели.
Хочу здесь заметить, что в Соединенных штатах идеальные горно–геологические условия, системы разработки, поэтому дедовские, но очень эффективные из–за имеющегося у них комплекса механизации. Так, во многих случаях, уголь из забоев они вывозят самоходными дизельными вагонетками на резиновом ходу, и проблем с доставкой материалов и оборудования в забои у них нет. Оттуда уголь – туда, что потребуется. Почему не позаимствовали у них опыт, не пойму? Зато в начале девяностых годов ВНИИгидроуголь изобрел, так называемый, шнекоход. Они почему–то посчитали, что на колесах ездить можно только в Америке, а в СССР нужен новый движитель. Представьте себе два шнека от мясорубки, лежащих рядом. Только один шнек с левой винтовой линией, а другой – с правой винтовой линией, а вращаются они в разных направлениях, но объединены одной платформой. Вращаясь, они приобретают и поступательное движение, цепляясь за почву. Это, если представить, что фарш стоит на месте, тогда шнек будет ввинчиваться в него как болт в гайку. Красивая идея? Но она до гидрошахт так и не дошла, не успела. Гидрошахты, кроме двух, закрыли, устав от выкрутас ВНИИгидроугля, а ВНИИгидроуголь и поныне жив, сдавая свои площади кооперативам, или по–современному «ООО», «АО» и т.д.
Чтобы закончить с разработками ВНИИгидроугля в области вспомогательного транспорта в гидрошахтах по слабонаклонным выработкам, надо упомянуть дизелевоз и погрузочно–доставочную машину. Дизелевоз спроектировали монорельсовый вместо бесславно почившего в бозе гиротельфера. Все в нем оставили прежнее, а вместо маховика вмонтировали дизель. Машина эта немного поездила по монорельсу, но так как сам монорельс не могли сделать «гладкопроходимым» на стыках, то и эта идея потерпела крах. Погрузочно–доставочная машина, сокращенно ПДМ, также представляла собой дизель, но на гусеничном ходу и возила только себя, да еще немного груза на своей «спине». Она сильно напоминала трелевочный трактор с лесосеки, только сильно уменьшенный в размерах. Успеха не добилась. Ее работа смахивала на еду человека, который сидел в столовой, затем брал ложку, шел с ней на кухню, зачерпывал в кастрюльке и нес эту ложку в столовую, здесь он отправлял ложку в рот и опять шел на кухню. Дизель же применили потому, что он взрывобезопасен и меньше чем карбюраторный бензиновый отравлял замкнутую атмосферу. Американцы применяли его успешно, но все равно ставили на выхлоп довольно дорогую каталитическую очистку, каковой в СССР, разумеется, не было.
Широко развернулись работы по конструированию горных выемочных комбайнов. Ведь и саму гидродобычу бы закрыли на первой же ее промышленной гидрошахте, не сообрази ее главный инженер заменить гидроотбойку механической отбойкой, которую «основоположники» лихо переименовали в механогидравлическую. К этому смелому решению тут же примазались «ученые» и начали скрещивать опять же монитор с зубком, как жирафу с тигром. На проходческий комбайн навесили гидромонитор, потом гидромонитор заменили импульсным водометом, потом – повысителем давления воды. Все эти модернизации, безусловно, имели смысл и право на жизнь. Беда в том, что для их конструкторской «доводки» требовались многие годы и много испытаний в самых различных горно–геологических условиях, чтобы выработать оптимальный вариант безотказной и ремонтопригодной конструкции. Но объемы гидродобычи были малы, а горные инженеры–практики из–за вышеприведенных недостатков очень скептически воспринимали саму идею гидродобычи, с энтузиазмом воспринимая только гидротранспорт. «Основоположники» же, встав в позу непонятых толпой гениев, не желали хоть сколько–нибудь критически оценить свои притязания на «универсальность» своей технологии. И неплохие идеи конструкторов комбинированных машин заглохли. Я считаю, что в этом сыграла и национальная принадлежность заведующего лабораторией горных машин – одного из немногих, русского, из почти двадцати лабораторий. Ему не хватало еврейской наглости, некоторой доли цинизма и пробойности. Он только работал на свои идеи, но не толкал их и, тем более, не дрался за них, хотя, по большому счету, они этого и заслуживали, не в пример другим, еврейским.
Особых успехов добился Отто Майер, стареющий инженер, насильно переселенный из Поволжья в годы войны в Сибирь, создавший механогидравлическую породопроходческую машину, сокращенно МГПП. Весь фокус состоял в том, что для тунелепроходческих машин, какими впоследствии пробуравили три дырки под Ла–Маншем, из Франции в Англию, требовалась очень большая мощность электродвигателей, осуществить которую можно было только в очень большой машине, для угольных шахт непригодной по размерам. Майер создал очень маленькую машину с гигантской мощностью. Вместо электропривода он применил реактивную водяную турбину, работающую на технологической воде гидрошахты. Главной прелестью турбины являлось то, что она очень «плавно», автоматически изменяла число оборотов и усилие резания без изменения мощности в зависимости от крепости разрушаемой породы. На крепких породах она сама по себе уменьшала обороты, увеличивая усилие резания и, наоборот, на слабых породах уменьшала усилие, увеличивая число оборотов, а значит и скорость проходки. Асинхронный электродвигатель, всегда применяемый для таких целей, практически не изменяет оборотов, чуть изменяя «скольжение» ротора относительно статора, но сразу же и «опрокидывается», останавливается и без предохранительных устройств (реле максимального тока) у него «сгорает» обмотка статора от запредельного электрического тока. Саму конструкцию комбайна и его рабочего органа рассматривать нечего, все они приблизительно одинаковы. Жалко, что отсутствие высоконапорной технологической воды на обычных шахтах сузило область применения МГПП, и он никому не понадобился, за исключением «Полысаевской–Северной», где и износился дотла опытный образец. Майер ушел на пенсию, и идея заглохла.
Лаборатории систем разработки и горного давления отдельно для пологих и крутых пластов занимались сизифовым трудом. Которым, впрочем, занималось еще лабораторий сто в ста других институтах Минуглепрома СССР. Поэтому дальнейшие строки относятся не только к ВНИИгидроуглю, но и к прочим, решившим в эпоху советского детерминизма, что все можно определить однозначно математическими формулами. Горное дело, основоположник его научной интерпретации в России, Борис Иванович Бокий, всю жизнь, именно в шахтах, а не за письменным столом, изучая его, недаром назвал к концу жизни горным искусством. Он понял, что математизировать, формализовать его невозможно, ибо каждый минимальный кусок пласта, месторождения, глубины разработки и еще сотен тысяч объектов при горных разработках должен иметь свою формулу, этих формул миллионы и даже сгруппировать их в какие–то, даже очень приблизительные классы для инженерного пользования, невозможно. Они объективно существуют, каждая для своих единственных условий. Искусство тем и отличается от инженерии, что ему можно научиться, только делая дело, а, не «изучая» его. К концу жизни, став советским академиком, он написал свою выдающуюся книгу «Горное искусство». Эта книга – его завещание горным инженерам, но книгу не переиздавали, и сегодня мало кто читал эту «Библию горняков». Наступила советская эра, слова пророка были забыты.
Целая армия «естествоиспытателей» сидела в забоях и замеряла смещения кровли, наклеивала тензометрические датчики, завинчивала в скважины манометры и изводила на самописцах десятки тысяч метров рулонной бумаги с типографской разлиновкой. Потом садилась за стол и выдавала формулу горного давления и толщину стойки, чтобы противостоять ему. К этому времени данный участок был отработан, а к следующему формула абсолютно не подходила. Чтобы одновременно во всех забоях страны, сделать замеры и выдать формулы, надо было посадить в забоях вообще всех ученых в стране, от физиков до животноводов. Они бы выдали все формулы для всей страны, но именно для этого дня. На следующий день формулы уже бы не действовали. В общем, вся эта армия на практике доказывала слово великого Боки – «искусство». По–видимому, про горное давление и его исследования ВНИИгидроуглем – хватит.
Самое смешное, наконец, дождалось. Я имею в виду комплексную автоматизацию гидрошахт, уточняю, не механизация, даже не комплексная механизация, а именно автоматизация, да еще и комплексная. В начале «поветрия» автоматизации в институте, конечно, не знали, что через год–другой на гидрошахтах появятся пресловутые «сухие лодки», но уже тогда можно было, чуточку подумав, сообразить, что автоматизируются только технологические операции и процессы, которые контролируются каким–либо образом, и данные контроля являются руководящими для управления ими. Кроме того, для автоматизации нужна не инерционность процесса, то есть, попросту, чтобы управляющее решение не опаздывало, а сам датчик, посылающий управляющий сигнал, замечал отклонения возможно раньше, а не тогда, когда было уже поздно что–нибудь менять. Но мода эта только началась (начало 70–х) и всем охота была покрасоваться в коротких юбках круглыми коленками. Тем более, технология–то была «малооперационной и непрерывной».
К этому времени на «показательных для Политбюро» шахтах вообще–то существовали автоматические системы (один процент от всех шахт). Автоматизированы на них были, как правило, только главные вентиляторы, реже главные водоотливы. Это была эра магнитных реле, которые щелкали наподобие баб на завалинке семечками. Эра микропроцессоров еще не наступила. Поэтому девок–мотористок, которые сидели и ждали, когда задымит подшипник, чтобы переключиться на другой вентилятор или насос и позвонить дежурному слесарю, убрали. Вместо них посадили слесарей–автоматчиков с зарплатой в три раза выше, но с другой уже задачей – чинить постоянно «отказывающую» автоматику. Одновременно они же следили и за подшипниками, пока чинили сломавшиеся реле и контроллеры.
ВНИИгидроуголь смотрел на проблему шире. Он поставил в дежурке шахты «Байдаевская–Северная» №1 советскую ЭВМ типа «Днепр». Она состояла штук из десяти «письменных» столов, установленных в ряд, в конце их стоял триммер, напоминающий платяной трехдверный шкаф. Три инженера–электронщика дежурили около этой машины круглосуточно, а ломалась она чаще, чем автоматика на главном вентиляторе. У дежурного по шахте на панели перед ним висело штук сорок приборов со стрелочками, некоторые и с кнопочками. Такой вид любят телевизионщики, когда показывают электростанции. Но это все одна видимость, антураж «высокой автоматики». На самом деле, даже на электростанциях более половины таких приборов не работает, да они и не нужны никому, за немногим их исключением. На самом деле это не автоматика, а информация, как в сбербанке курсы валют. Современную настоящую автоматику не видно, она заключена в небольшом ящике меньше телевизора и называется он компьютер. Современный «пентиум» может управлять всей шахтой, но только к нему надо подключить тысячи концов кабеля, а вторые концы этих кабелей должны быть разбросаны на десятки–сотни километров по всей шахте, к каждой задвижке из сотен, к каждому мотору из тысяч, к тысячам других информационных датчиков, к тысячам исполнительных приводов. Вот что такое автоматика и далеко не комплексная. Кабели должны быть только медными, цепи, электродвигатели и коммутационные аппараты – взрывобезопасными или искробезопасными. Надежность всей системы выражаться цифрой 0.99, а элементы, в нее входящие – 0.9999, наработка на отказ – тысячи часов. Стоить все это будет дороже самой шахты. Забыл сказать еще, что обыкновенный выключатель, каким дома мы включаем свою люстру, во взрывобезопасном исполнении весит килограммов пять. Пускатель, которым мы, например, на поверхности включаем 5–киловаттный электродвигатель, размером с полкирпича и таким же весом, в шахте преображается в подобие письменного стола весом в 120 килограммов. А обыкновенный телефонный аппарат до изобретения искробезопасных электросхем в шахте едва отрывали от земли два дюжих мужика. И каждый датчик в шахте, если в нем есть хоть один силовой электрический контакт, должен быть заключен в стальную взрывобезопасную оболочку толщиной в палец. К каждой лампочке в шахте подходит бронированный кабель тоже толщиной в палец, сам светильник, даже люминесцентный «холодного» свечения из дюралюминия весит килограммов 8–10.
А теперь обратимся к тому, что же собрались автоматизировать. Первым на очереди стоял гидроподъем, камеру которого постоянно затапливало пульпой в первые годы эксплуатации, пока главный механик не выбросил один из углесосов, заменив его на землесос с приемлемой высотой всасывания (см. выше). Действительно, не автоматизировать же «лодку», о которой я говорил выше? Автоматизировать работу камеры гидроподъема, в которой имеется 200–процентный резерв оборудования из–за его ненадежности, можно только по принципу автоматического включения резерва в случае надобности. Но резерв в это время может находиться в разобранном виде. Компьютеру надо у кого–то спросить, не разобран ли резерв? Кроме того, зачем компьютер, если рядом с углесосом все равно стоит мужик и металлическим сачком ловит в зумпфе плавающую там деревянную щепу от топоров шахтных крепильщиков, чтобы она не попала во всас углесоса и не застряла в его рабочем колесе, после чего 6–тонная махина с 10–тонным электроприводом начинают плясать на фундаменте как детская игрушка на пружинках? Что ему трудно выключить углесос? И зачем тратить деньги на автоматику, измеряющую амплитуду «скачки» углесоса, если ловщик щепы из–за низкой зарплаты едва сводит концы с концами? Нет, я больше не могу говорить о комплексной автоматизации гидрошахт, на которую впустую и для всех очевидно, кроме разработчиков, потратили уйму денег, ничего не автоматизировав, а только разъярив мужиков, таскающих в одиночку на плечах 3–метровые бревна, и перекидывающих за смену до 20 тонн угля лопатой каждый.
Каждый из этих трех приборов в отдельности Госстандарт одобрял, но в целом система этих приборов никак не дотягивала до заданной точности отображения действительности, которую уже задали экономисты. Общая ошибка не должна была быть выше, чем, если бы пробы брались в «сухом» угле и сжигались по всем правилам 100–летней давности. Иначе овчинка не стоила выделки. На многочисленные попытки «довести» приборы учета до ума ушло еще лет 5–6, но тут терпение Зарецкого кончилось. Он понял, что до точности прямого отбора проб и их сжигания для получения результата, приборы ему не довести до конца жизни, а потому и нечего стараться, Нобелевская премия ему не нужна посмертно. Если принять во внимание, что он сделал приборы только для вертикального вверх потока, а предстояло еще сделать и для горизонтальных труб, а также для открытого потока, чтобы замерять пульпу из каждого забоя, то он, разумеется, сделал правильно, что бросил эту затею.
Конструкторские потуги ВНИИгидроугля
Как немедленно оказалось после опытного внедрения гидродобычи, она вовсе не малооперационна, и, тем более не однооперационна, а еще менее универсальна, как ее продекларировал В.С.Мучник в своем дипломном проекте. Все выработки на гидрошахте должны были быть пройдены с наклоном 3.5–4 градуса в сторону главного ствола, а единственный ствол для экономии капитальных вложений должен был вмещать только одну клеть для спуска–подъема немногих людей (производительность труда высока), немного леса для крепления выемочных выработок, отрезков труб для технологической воды и гидромониторов, очень незначительных по габаритам и весу.
Первый облом произошел со стволом. Никто из «основоположников», гордых своей технологией, не вспомнил, что двигатель углесоса мощностью 1600 киловатт, который нужно спустить в шахту, не входит в «экономичную» клеть. Кроме того, сам подъемный канат и сама подъемная машина не могут спускать–поднимать по правилам безопасности десять тонн, которые заключены в этом электродвигателе. «Ученые» разводили руками, а практики нашли решение: они сняли клеть, прикрепили электродвигатель непосредственно к подъемному канату, приварили к нему направляющие «башмаки» от клети и таким образом спустили 6 электродвигателей, чтобы не сорвать введение в эксплуатацию готовой, построенной уже гидрошахты. «Ученые» же запроектировали задним числом новый ствол, наклонный, который и был построен впоследствии только для спуска–подъема этих электродвигателей. Ничего себе, каков коэффициент использования этого ствола, сколько нулей перед первой значащей цифрой после запятой в этом коэффициенте? Двигатели эти спускают–поднимают раз в году по одной штуке. Но без нового ствола шахта вообще не могла работать по «Правилам безопасности в угольных и сланцевых шахтах», раздел «Водоотлив».
Второй облом – это доставка различных грузов в забои: крепежного леса, металла, оборудования, наконец, людей, ибо это предусмотрено все теми же «Правилами…», как говорит Жириновский, однозначно. В слабо наклонных выработках не может действовать рельсовый транспорт, вагонетка по рельсам самопроизвольно разгоняется до бешеной скорости. Центральная часть выработки занята, кроме того, желобами для гидротранспорта. Подземные электровозы не могут буксировать не только состав вагонов, но даже двигать сами себя вверх по уклону. Кроме того, в «малооперационной» гидрошахте по «задумке» Мучника не предусмотрено вообще применение электроэнергии. ВНИИгидроуголь в срочном порядке, не являясь специалистом в области конструирования специальных горных машин, взялся конструировать целую их гамму. Что из этого вышло, я и хочу рассмотреть в некоем порядке. Начну с шахтного подземного вспомогательного транспорта.
В среднем шахта имеет от 50 до 200 километров действующих выработок, гидрошахта не является исключением. Почти по всем из них в обычной шахте проложен рельсовый путь, по которому ездят вагонетки, в основных выработках с помощью электровозов, во вспомогательных – с помощью лебедок, а в иных – с помощью шахтерского плеча. Толкать одну 1–3–х тонную вагонетку по рельсам не такая уж трудная работа, как может показаться на первый взгляд, недаром эту работу выполняли раньше женщины и подростки. В гидрошахте рельсы прокладывать бессмысленно, да и там уже проложены желоба для гидротранспорта угля. Не знаю, думал ли об этом «основоположник», когда изобретал технологию, но первые же опыты гидротехнологии показали, что с доставкой по шахте – неразрешимая проблема. Надо добавить, что, например, на крутом залегании мощных пластов со слоевой их разработкой, только крепежного леса расходуется 50–60 кубометров на 1000 тонн добычи, а при гидродобыче – не меньше. Одной взрывчатки только одним взрывником расходуется за смену от 30 до 100 килограммов. На пологозалегающих пластах средней мощности при комплексной механизации только комбайн весит 12–15 тонн, а весь комплекс весит 300–500 тонн железа, а единичный вес неделимого на части оборудования составляет от 0.2 тонны до 7–10 тонн. Весь грузопоток этот, направленный навстречу углепотоку, составляет от 8 до 10 процентов от этого углепотока. А в целом шахта добывает от 1000 до 10000 тонн в сутки угля. Значит, в забои должно быть доставлено от 80 до 1000 тонн различных грузов в сутки. И гидрошахта практически ничем не отличается в этом смысле от обычной «сухой» шахты. Я это хорошо посчитал, потому что около двух лет работал начальником внутришахтного транспорта именно на гидрошахте.
ВНИИгидроуголь, разумно отказавшись от рельсового транспорта по везде наклонным выработкам, выдал идею монорельсового транспорта, когда монорельс подвешивался к кровле выработки, а вагонетки, очень похожие на люльки канатно–кресельных дорог на горнолыжных курортах, подвешивались к монорельсу на колесиках. Грузоподъемность этих люлек составляла 500 килограммов, а я уже говорил, какие грузы надо было возить. Выдал идею и тут же ее нарисовал, а в качестве локомотива для этих люлек тут же выдумал, так называемые, гиротельферы на монорельсе, так как электроэнергии в гидрошахте не предусматривалось. Это чудо 20 века тоже нарисовали. В нем был гиромаховик, который должен был запасать энергию. Раскручивать маховик надо было специальной турбиной, на которую действовала струя воды от высоконапорного водовода. На водоводе через определенное расстояние должны были быть сооружены отводы с задвижкой и шланг. Видите ли, гиромаховик делал возможным не разогнаться гиротельферу на уклоне сверх меры, ведь при движении вниз он должен был раскручивать этот самый маховик, что не давало ему сильно разгоняться. Идея, в общем–то, красивая, но беда в том, что вся эта конструкция не была отработана ни в конструкторском, ни в технологическом, ни в эксплуатационном аспектах, а поэтому ломались то турбина, то задвижка, то сам маховик, то, редуктор, то еще что–нибудь. Притом стыки монорельса были разработаны так плохо, что на каждом из тысяч этих стыков гиротельфер начинал буксовать.
Но гидрошахта–то работала, и ей был дан план–закон по добыче угля. В общем, выбросили шахтеры гиротельферы, поставили лебедки через каждые 300 метров, провели «не предусмотренную проектом» электроэнергию и стали тягать эти люльки канатом, перецепляя от лебедки к лебедке. Но проявился в полную силу «закон подлости». Очень часто, когда одну из люлек заклинивало на стыке монорельса, рвался канат и ничем не удерживаемые люльки, набирали «сверхзвуковую» скорость, гладко проходя те же самые стыки монорельса и круша все вокруг, в том числе и людей, попадавшихся на их пути. Горнотехническая инспекция запретила эту самодеятельность, но «голь на выдумки хитра», монорельс сдали в металлолом, люльки – тоже, а вместо этого сварили лодки, точную копию речных плоскодонок, и того же приблизительно размера, но не плавающих, а волочащихся по почве горной выработки канатом с помощью лебедки. Правда, лебедки пришлось заменить другими лебедками, раз в десять более мощными. Сами по себе не заскользят, космической скорости не наберут. Вот в этих лодках и возили многие тысячи тонн многие годы, с 1967 года. По–моему, и сейчас на гидрошахте «Юбилейная» возят. А институт ВНИИгидроуголь, под руководством «основателя», напрочь забыл о проблеме, как только шахтеры «изобрели лодки по сухому месту», наверное, посчитав ее решенной раз и навсегда. Грузы двигались со скоростью от 14 до 21 сантиметра в секунду, т.е. от 500 до 700 метров в час, что равно 0.5–0.7 км/ч, ровно в 10 раз меньше, чем идет никуда не спешащий человек.
«Сбросивший с плеч» эту проблему, как решенную, ВНИИгидроуголь забеспокоился о другой транспортной проблеме гидрошахт. Причиной было то, что в институте узнали о серийно выпускаемом гировозе на рельсовом ходу. Этот гировоз был разработан другим институтом специально для очень опасных по метану шахт, на которых на вентиляционном горизонте все еще применяли лошадей, а не электровозы, даже аккумуляторные, так как малейшая искра грозила взрывом всей шахте. Маховик там был весом в 1.7 тонны, а раскручивался он сжатым воздухом. Правда, шахтеры предпочитали лошадей, а не этот гировоз, так как он ломался беспрерывно. ВНИИгидроуголь тут же купил гировоз, снял с него пневмодвигатель и заменил водяной турбиной, а затем притащил на шахту «Юбилейная», где я работал начальником внутришахтного транспорта, для промышленных испытаний. Раскрутив маховик до 1000 оборотов в минуту, этот гировоз мог затащить две вагонетки с кирпичем (опытная нагрузка) на 1200 метров вверх на уклон в 3.5 градуса и маховик у него терял почти всю свою энергию, сокращая обороты с 1000 до 200. Но и эта работа была лучше, чем знаменитая на гидрошахтах лодка на сухом месте.
Однако, непосредственно отвечая за безопасность своих рабочих, я предъявил ряд условий безопасности, которые надо было обеспечить в этой машине в связи с использованием ее на уклоне пути, саморазгон машины на котором мог привести к тяжелым последствиям. Без устранения этих претензий я не соглашался даже близко подпускать гировоз к своей шахте. А недостатки были существенные. 10–ти тонная машина удерживалась от саморазгона по наклонным рельсам соединением ее колес специальной зубчатой муфтой, в свою очередь, соединенной с маховиком через редуктор. Маховик, обладая инерцией, гасил возможность неконтролируемого разгона. Но муфта, то вводилась в зацепление, то выводилась из него вручную, рычагом. Это можно было терпеть, если рельсовый путь горизонтальный, машина далеко не уедет, если муфту расцепили с маховиком, сама остановится. На уклоне – совсем другое дело, машина начинает стремительно набирать скорость на рельсах при расцеплении муфты с маховиком и после набора определенной скорости муфту вообще нельзя ввести в зацепление, так как синхронизаторов не было, раздавался скрежет зубьев, шестеренки не входили в зацепление. Оставалось выпрыгивать из мчащейся машины, а она, 10–тонная громадина, пролетала молнией и, сойдя с рельсов, ломала все вокруг. Случаев таких было несколько, я успевал выпрыгивать, а на пути ее следования стояли посты, никого не пропуская на место испытаний. Я предложил поставить синхронизаторы и «эластичную» муфту сцепления типа гидравлической, обеспечивающей 100–процентное включение муфты в любых условиях. Кроме того, потребовал, чтобы был создан аварийный, не связанный с маховиком тормоз, действующий автоматически, как только гировоз набирал определенную критическую скорость. Мои требования не имели ничего сверхневозможного. Принципиальные решения таких вопросов давно известны. Гировоз увезли и больше его ни на одной из гидрошахт не видели.
Хочу здесь заметить, что в Соединенных штатах идеальные горно–геологические условия, системы разработки, поэтому дедовские, но очень эффективные из–за имеющегося у них комплекса механизации. Так, во многих случаях, уголь из забоев они вывозят самоходными дизельными вагонетками на резиновом ходу, и проблем с доставкой материалов и оборудования в забои у них нет. Оттуда уголь – туда, что потребуется. Почему не позаимствовали у них опыт, не пойму? Зато в начале девяностых годов ВНИИгидроуголь изобрел, так называемый, шнекоход. Они почему–то посчитали, что на колесах ездить можно только в Америке, а в СССР нужен новый движитель. Представьте себе два шнека от мясорубки, лежащих рядом. Только один шнек с левой винтовой линией, а другой – с правой винтовой линией, а вращаются они в разных направлениях, но объединены одной платформой. Вращаясь, они приобретают и поступательное движение, цепляясь за почву. Это, если представить, что фарш стоит на месте, тогда шнек будет ввинчиваться в него как болт в гайку. Красивая идея? Но она до гидрошахт так и не дошла, не успела. Гидрошахты, кроме двух, закрыли, устав от выкрутас ВНИИгидроугля, а ВНИИгидроуголь и поныне жив, сдавая свои площади кооперативам, или по–современному «ООО», «АО» и т.д.
Чтобы закончить с разработками ВНИИгидроугля в области вспомогательного транспорта в гидрошахтах по слабонаклонным выработкам, надо упомянуть дизелевоз и погрузочно–доставочную машину. Дизелевоз спроектировали монорельсовый вместо бесславно почившего в бозе гиротельфера. Все в нем оставили прежнее, а вместо маховика вмонтировали дизель. Машина эта немного поездила по монорельсу, но так как сам монорельс не могли сделать «гладкопроходимым» на стыках, то и эта идея потерпела крах. Погрузочно–доставочная машина, сокращенно ПДМ, также представляла собой дизель, но на гусеничном ходу и возила только себя, да еще немного груза на своей «спине». Она сильно напоминала трелевочный трактор с лесосеки, только сильно уменьшенный в размерах. Успеха не добилась. Ее работа смахивала на еду человека, который сидел в столовой, затем брал ложку, шел с ней на кухню, зачерпывал в кастрюльке и нес эту ложку в столовую, здесь он отправлял ложку в рот и опять шел на кухню. Дизель же применили потому, что он взрывобезопасен и меньше чем карбюраторный бензиновый отравлял замкнутую атмосферу. Американцы применяли его успешно, но все равно ставили на выхлоп довольно дорогую каталитическую очистку, каковой в СССР, разумеется, не было.
Широко развернулись работы по конструированию горных выемочных комбайнов. Ведь и саму гидродобычу бы закрыли на первой же ее промышленной гидрошахте, не сообрази ее главный инженер заменить гидроотбойку механической отбойкой, которую «основоположники» лихо переименовали в механогидравлическую. К этому смелому решению тут же примазались «ученые» и начали скрещивать опять же монитор с зубком, как жирафу с тигром. На проходческий комбайн навесили гидромонитор, потом гидромонитор заменили импульсным водометом, потом – повысителем давления воды. Все эти модернизации, безусловно, имели смысл и право на жизнь. Беда в том, что для их конструкторской «доводки» требовались многие годы и много испытаний в самых различных горно–геологических условиях, чтобы выработать оптимальный вариант безотказной и ремонтопригодной конструкции. Но объемы гидродобычи были малы, а горные инженеры–практики из–за вышеприведенных недостатков очень скептически воспринимали саму идею гидродобычи, с энтузиазмом воспринимая только гидротранспорт. «Основоположники» же, встав в позу непонятых толпой гениев, не желали хоть сколько–нибудь критически оценить свои притязания на «универсальность» своей технологии. И неплохие идеи конструкторов комбинированных машин заглохли. Я считаю, что в этом сыграла и национальная принадлежность заведующего лабораторией горных машин – одного из немногих, русского, из почти двадцати лабораторий. Ему не хватало еврейской наглости, некоторой доли цинизма и пробойности. Он только работал на свои идеи, но не толкал их и, тем более, не дрался за них, хотя, по большому счету, они этого и заслуживали, не в пример другим, еврейским.
Особых успехов добился Отто Майер, стареющий инженер, насильно переселенный из Поволжья в годы войны в Сибирь, создавший механогидравлическую породопроходческую машину, сокращенно МГПП. Весь фокус состоял в том, что для тунелепроходческих машин, какими впоследствии пробуравили три дырки под Ла–Маншем, из Франции в Англию, требовалась очень большая мощность электродвигателей, осуществить которую можно было только в очень большой машине, для угольных шахт непригодной по размерам. Майер создал очень маленькую машину с гигантской мощностью. Вместо электропривода он применил реактивную водяную турбину, работающую на технологической воде гидрошахты. Главной прелестью турбины являлось то, что она очень «плавно», автоматически изменяла число оборотов и усилие резания без изменения мощности в зависимости от крепости разрушаемой породы. На крепких породах она сама по себе уменьшала обороты, увеличивая усилие резания и, наоборот, на слабых породах уменьшала усилие, увеличивая число оборотов, а значит и скорость проходки. Асинхронный электродвигатель, всегда применяемый для таких целей, практически не изменяет оборотов, чуть изменяя «скольжение» ротора относительно статора, но сразу же и «опрокидывается», останавливается и без предохранительных устройств (реле максимального тока) у него «сгорает» обмотка статора от запредельного электрического тока. Саму конструкцию комбайна и его рабочего органа рассматривать нечего, все они приблизительно одинаковы. Жалко, что отсутствие высоконапорной технологической воды на обычных шахтах сузило область применения МГПП, и он никому не понадобился, за исключением «Полысаевской–Северной», где и износился дотла опытный образец. Майер ушел на пенсию, и идея заглохла.
Лаборатории систем разработки и горного давления отдельно для пологих и крутых пластов занимались сизифовым трудом. Которым, впрочем, занималось еще лабораторий сто в ста других институтах Минуглепрома СССР. Поэтому дальнейшие строки относятся не только к ВНИИгидроуглю, но и к прочим, решившим в эпоху советского детерминизма, что все можно определить однозначно математическими формулами. Горное дело, основоположник его научной интерпретации в России, Борис Иванович Бокий, всю жизнь, именно в шахтах, а не за письменным столом, изучая его, недаром назвал к концу жизни горным искусством. Он понял, что математизировать, формализовать его невозможно, ибо каждый минимальный кусок пласта, месторождения, глубины разработки и еще сотен тысяч объектов при горных разработках должен иметь свою формулу, этих формул миллионы и даже сгруппировать их в какие–то, даже очень приблизительные классы для инженерного пользования, невозможно. Они объективно существуют, каждая для своих единственных условий. Искусство тем и отличается от инженерии, что ему можно научиться, только делая дело, а, не «изучая» его. К концу жизни, став советским академиком, он написал свою выдающуюся книгу «Горное искусство». Эта книга – его завещание горным инженерам, но книгу не переиздавали, и сегодня мало кто читал эту «Библию горняков». Наступила советская эра, слова пророка были забыты.
Целая армия «естествоиспытателей» сидела в забоях и замеряла смещения кровли, наклеивала тензометрические датчики, завинчивала в скважины манометры и изводила на самописцах десятки тысяч метров рулонной бумаги с типографской разлиновкой. Потом садилась за стол и выдавала формулу горного давления и толщину стойки, чтобы противостоять ему. К этому времени данный участок был отработан, а к следующему формула абсолютно не подходила. Чтобы одновременно во всех забоях страны, сделать замеры и выдать формулы, надо было посадить в забоях вообще всех ученых в стране, от физиков до животноводов. Они бы выдали все формулы для всей страны, но именно для этого дня. На следующий день формулы уже бы не действовали. В общем, вся эта армия на практике доказывала слово великого Боки – «искусство». По–видимому, про горное давление и его исследования ВНИИгидроуглем – хватит.
Самое смешное, наконец, дождалось. Я имею в виду комплексную автоматизацию гидрошахт, уточняю, не механизация, даже не комплексная механизация, а именно автоматизация, да еще и комплексная. В начале «поветрия» автоматизации в институте, конечно, не знали, что через год–другой на гидрошахтах появятся пресловутые «сухие лодки», но уже тогда можно было, чуточку подумав, сообразить, что автоматизируются только технологические операции и процессы, которые контролируются каким–либо образом, и данные контроля являются руководящими для управления ими. Кроме того, для автоматизации нужна не инерционность процесса, то есть, попросту, чтобы управляющее решение не опаздывало, а сам датчик, посылающий управляющий сигнал, замечал отклонения возможно раньше, а не тогда, когда было уже поздно что–нибудь менять. Но мода эта только началась (начало 70–х) и всем охота была покрасоваться в коротких юбках круглыми коленками. Тем более, технология–то была «малооперационной и непрерывной».
К этому времени на «показательных для Политбюро» шахтах вообще–то существовали автоматические системы (один процент от всех шахт). Автоматизированы на них были, как правило, только главные вентиляторы, реже главные водоотливы. Это была эра магнитных реле, которые щелкали наподобие баб на завалинке семечками. Эра микропроцессоров еще не наступила. Поэтому девок–мотористок, которые сидели и ждали, когда задымит подшипник, чтобы переключиться на другой вентилятор или насос и позвонить дежурному слесарю, убрали. Вместо них посадили слесарей–автоматчиков с зарплатой в три раза выше, но с другой уже задачей – чинить постоянно «отказывающую» автоматику. Одновременно они же следили и за подшипниками, пока чинили сломавшиеся реле и контроллеры.
ВНИИгидроуголь смотрел на проблему шире. Он поставил в дежурке шахты «Байдаевская–Северная» №1 советскую ЭВМ типа «Днепр». Она состояла штук из десяти «письменных» столов, установленных в ряд, в конце их стоял триммер, напоминающий платяной трехдверный шкаф. Три инженера–электронщика дежурили около этой машины круглосуточно, а ломалась она чаще, чем автоматика на главном вентиляторе. У дежурного по шахте на панели перед ним висело штук сорок приборов со стрелочками, некоторые и с кнопочками. Такой вид любят телевизионщики, когда показывают электростанции. Но это все одна видимость, антураж «высокой автоматики». На самом деле, даже на электростанциях более половины таких приборов не работает, да они и не нужны никому, за немногим их исключением. На самом деле это не автоматика, а информация, как в сбербанке курсы валют. Современную настоящую автоматику не видно, она заключена в небольшом ящике меньше телевизора и называется он компьютер. Современный «пентиум» может управлять всей шахтой, но только к нему надо подключить тысячи концов кабеля, а вторые концы этих кабелей должны быть разбросаны на десятки–сотни километров по всей шахте, к каждой задвижке из сотен, к каждому мотору из тысяч, к тысячам других информационных датчиков, к тысячам исполнительных приводов. Вот что такое автоматика и далеко не комплексная. Кабели должны быть только медными, цепи, электродвигатели и коммутационные аппараты – взрывобезопасными или искробезопасными. Надежность всей системы выражаться цифрой 0.99, а элементы, в нее входящие – 0.9999, наработка на отказ – тысячи часов. Стоить все это будет дороже самой шахты. Забыл сказать еще, что обыкновенный выключатель, каким дома мы включаем свою люстру, во взрывобезопасном исполнении весит килограммов пять. Пускатель, которым мы, например, на поверхности включаем 5–киловаттный электродвигатель, размером с полкирпича и таким же весом, в шахте преображается в подобие письменного стола весом в 120 килограммов. А обыкновенный телефонный аппарат до изобретения искробезопасных электросхем в шахте едва отрывали от земли два дюжих мужика. И каждый датчик в шахте, если в нем есть хоть один силовой электрический контакт, должен быть заключен в стальную взрывобезопасную оболочку толщиной в палец. К каждой лампочке в шахте подходит бронированный кабель тоже толщиной в палец, сам светильник, даже люминесцентный «холодного» свечения из дюралюминия весит килограммов 8–10.
А теперь обратимся к тому, что же собрались автоматизировать. Первым на очереди стоял гидроподъем, камеру которого постоянно затапливало пульпой в первые годы эксплуатации, пока главный механик не выбросил один из углесосов, заменив его на землесос с приемлемой высотой всасывания (см. выше). Действительно, не автоматизировать же «лодку», о которой я говорил выше? Автоматизировать работу камеры гидроподъема, в которой имеется 200–процентный резерв оборудования из–за его ненадежности, можно только по принципу автоматического включения резерва в случае надобности. Но резерв в это время может находиться в разобранном виде. Компьютеру надо у кого–то спросить, не разобран ли резерв? Кроме того, зачем компьютер, если рядом с углесосом все равно стоит мужик и металлическим сачком ловит в зумпфе плавающую там деревянную щепу от топоров шахтных крепильщиков, чтобы она не попала во всас углесоса и не застряла в его рабочем колесе, после чего 6–тонная махина с 10–тонным электроприводом начинают плясать на фундаменте как детская игрушка на пружинках? Что ему трудно выключить углесос? И зачем тратить деньги на автоматику, измеряющую амплитуду «скачки» углесоса, если ловщик щепы из–за низкой зарплаты едва сводит концы с концами? Нет, я больше не могу говорить о комплексной автоматизации гидрошахт, на которую впустую и для всех очевидно, кроме разработчиков, потратили уйму денег, ничего не автоматизировав, а только разъярив мужиков, таскающих в одиночку на плечах 3–метровые бревна, и перекидывающих за смену до 20 тонн угля лопатой каждый.