- << Первая
- « Предыдущая
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- Следующая »
- Последняя >>
Большое значение для теории ферромагнитных явлений имели работы С. П. Шубина, С. В. Вонсовского и их сотрудников ( s-d-oбменная модель, 1935-46). Н. С. Акулов, К. П. Белов, С. В. Вонсовский, Л. В. Киренский, Е. И. Кондорский, Я. С. Шур, Р. И. Янус и др. выполнили работы по теории и экспериментальному изучению технической кривой намагничения мягких и высококоэрцативных ферромагнетиков.
Обнаруженный в 1937 Б. Г. Лазаревым и Л. В. Шубниковым в Украинском физико-техническом институте ядерный парамагнетизм твёрдого водорода - одно из важных открытий экспериментальной техники. Чрезвычайно большое значение имел открытый Е. К. Завойским в 1944 электронный парамагнитный резонанс - явление, нашедшее широкое применение в физике и химии; важные работы в этой области принадлежат С. А. Альтшулеру и Б. М. Козыреву. Парамагнитный резонанс был предсказан в 1923 Дорфманом. Аналогичный резонанс наблюдался в ферромагнитных телах - ферромагнитный резонанс (Завойский, 1947). Начало теории ферромагнитного резонанса было положено работами Ландау и Лифшица в 1935, а само явление задолго до этого (в 1913) наблюдалось В. К. Аркадьевым в виде т. н. магнитных спектров.
Теоретическая физика.Основные результаты, полученные советскими теоретиками, относятся к приложению общих квантовомеханических соотношений к различным областям электронной теории твёрдых тел, квантовых жидкостей, ядерной физики. Важное значение имела работа Л. И. Мандельштама и М. А. Леонтовича по соотношению неопределённостей для энергии - времени, открывшая путь для объяснения ряда процессов микрофизики в рамках представлений о туннельном эффекте (1928). В. А. Фоку принадлежит релятивистское обобщение уравнения Шрёдингера (уравнение Клейна - Гордона - Фока, 1926), классические работы по вторичному квантованию (1932), разработка общей методики решения квантовомеханической задачи многих тел (метод Хартри - Фока, 1930). В 40-х гг. И. Е. Таммом был разработан получивший широкую известность метод рассмотрения процессов взаимодействия частиц, вышедший за рамки обычной теории возмущений (метод Тамма - Данкова).
Советские физики в 50-60-х гг. внесли основополагающий вклад в развитие квантовой теории поля (В. А. Фок, Н. Н. Боголюбов, Л. Д. Ландау, И. Я. Померанчук, И. Е. Тамм и их ученики).
Большое значение для прогресса современной статистической физики имели исследования Боголюбова и Леонтовича по теории неравновесных процессов (1944-46). Проблема фазовых переходов, уже более столетия занимающая одно из ключевых положений в статистической физике, была существенно продвинута работами Ландау.
В общей теории относительности классической является работа А. А. Фридмана, показавшего, что существует решение уравнения тяготения, которое предсказывает «разбегание» галактик (1922-24). Фоку принадлежит вывод приближённых уравнений движения системы тел в рамках теории тяготения А. Эйнштейна.
Оптика, физика атома и молекулы, спектроскопия.Важнейшие исследования по физической и прикладной оптике были выполнены в руководимом Д. С. Рождественским (до 1932) Государственном оптическом институте. Они послужили фундаментом для создания оптико-механической промышленности и достижения полной независимости многих отраслей промышленности от поставок иностранных фирм. И. В. Гребенщиковым, Н. Н. Качаловым, А. А. Лебедевым и их сотрудниками была разработана отечественная технология варки и обработки оптического стекла, на основе которой в СССР была создана промышленность оптического стекла. Особенно важным оказалось для развития прикладной оптики создание советской школы оптиков-вычислителей (А. И. Тудоровский, Г. Г. Слюсарев и др.). Своеобразная конструкция астрономического телескопа - зеркально-менисковая - изобретена Д. Д. Максутовым (1941). Был создан ультрафиолетовый микроскоп (Е. М. Брумберг). Под руководством В. П. Линника созданы методы и приборы для контроля оптических систем. Линнику и Лебедеву принадлежат оригинальные конструкции оптических и электроннооптических приборов.
Первыми существенными работами по физической оптике явились исследования Д. С. Рождественского (1910-е гг.) и А. Н. Теренина (оптическая диссоциация молекул, 1924, фотохимия). Фундаментальные результаты были получены в области изучения молекулярного рассеяния света. В 1928 Л. И. Мандельштам и Г. С. Ландсберг открыли явление комбинационного рассеяния света на кристаллах. Оно оказалось важным с принципиальной точки зрения (один из первых примеров проявлений нелинейной оптики), получило широкое практическое применение для прямого физического исследования свойств молекул и легло в основу метода молекулярного спектрального анализа. Более тонкий эффект - смещение спектральных линий при рассеянии на упругих волнах в кристаллах - был предсказан Мандельштамом и экспериментально установлен Е. Ф. Гроссом (1938).
В 1934 П. А. Черенков открыл своеобразное свечение чистых жидкостей под действием излучения радиоактивных веществ. С. И. Вавилов (в лаборатории которого работал Черенков) сразу указал на то, что это свечение связано с движением свободных электронов, а не является люминесценцией (эффект Черенкова - Вавилова). Полная теория этого эффекта была дана в 1937 И. Е. Таммом и И. М. Франком. Интересное с научной точки зрения, это явление приобрело и практическое значение - на его основе были созданы черенковские счётчики.
В 30-40-е гг. С. И. Вавилов и его сотрудники (В. Л. Лёвшин, П. П. Феофилов и др.) исследовали люминесценцию в конденсированных средах (растворах и кристаллофосфорах). Вавилов впервые определил энергетический выход фотолюминесценции в растворах кристалла и показал, что он составляет более 70% (а в ряде случаев близок к 100% ). Теоретическое и экспериментальное изучение свечения кристаллофосфоров (С. И. Вавилов, В. В. Антонов-Романовский и др.) позволило разработать технологию и перейти к массовому производству люминесцентных ламп. Важные исследования люминесценции молекул и кристаллофосфоров были выполнены под рук. К. К. Ребане (лаборатория кристаллофосфоров Института физики и астрономии АН Эстонской ССР), Б. И. Степанова (Институт физики АН Белорусской ССР) и др.
В области атомной спектроскопии выдающееся значение имели работы (20-е гг.) Рождественского и его учеников, в которых модель атома водорода (по Бору) была распространена на случай сложных атомов. А. Н. Терениным и Л. Н. Добрецовым (1928) открыта сверхтонкая структура линий натрия, Терениным и Гроссом (1930) - сверхтонкая структура линий ртути. С. Э. Фриш исследовал сверхтонкую структуру линий многих элементов и установил для них эмпирические закономерности.
Активно участвовали советские физики в развитии молекулярной спектроскопии (Н. А. Борисевич, М. А. Ельяшевич, В. Н. Кондратьев, Б. С. Непорент, Б. И. Степанов). Особенно интенсивно развернулись в 50-60-х гг. исследования и интерпретация оптических свойств сложных молекул органических соединений (И. В. Обреимов, А. Ф. Прихотько, Э. В. Шпольский). В 1959 Шпольским были открыты квазилинейчатые спектры индивидуальных сложных органических соединений (эффект Шпольского). После экспериментального обнаружения экситонов возникла экситонная спектроскопия полупроводников и молекулярных кристаллов, ставшая мощным орудием в изучении их свойств.
После изобретения лазеров (см. ниже ) стала бурно развиваться новая область оптики - голография. Существенный вклад в неё внёс Ю. Н. Денисюк, предложивший для регистрации голограмм использовать трёхмерные среды (1962) и реализовавший эту идею. Голография находит применение в разнообразных областях науки и техники (голографическое исследование деформаций и вибраций, голография плазмы и т. д.).
С появлением лазеров стала быстро развиваться и нелинейная оптика (оптика интенсивных световых пучков), основы которой были заложены в работах Р. В. Хохлова и С. А. Ахманова. После создания лазеров с перестраиваемой частотой начали разрабатываться методы лазерной спектроскопии (Институт спектроскопии АН СССР).
Атомное ядро, элементарные частицы, космические лучи.Исследования по физике ядра получили в СССР развитие в начале 30-х гг., первые её успехи связаны с теоретическими работами: протон-нейтронная модель ядра (Д. Д. Иваненко), обменные силы (И. Е. Тамм и Иваненко), модель ядра-капли и электрокапиллярная теория деления Бора - Френкеля, теория цепной реакции деления естественной смеси изотопов урана, обогащенной изотопом U-235 (Я. Б. Зельдович и Ю. Б. Харитон, 1939-40). Начиная с 1958 существенные результаты в развитии теории ядра были получены с помощью представлений о сверхтекучести (Н. Н. Боголюбов, С. Т. Беляев, А. Б. Мигдал, В. Г. Соловьев).
В 1935 Л. В. Мысовский, И. В. Курчатов и их сотрудники (Л. И. Русинов и др.) открыли явление ядерной изомерии радиоактивных элементов. В лаборатории Курчатова Г. Н. Флёровым и К. А. Петржаком было открыто явление спонтанного деления урана (1940). В 60-70-х гг. Флёров и его сотрудники получили принципиальные результаты и сделали важные открытия, связанные с синтезом трансурановых элементов.
И. В. Курчатову и возглавляемому им огромному коллективу учёных и инженеров принадлежит заслуга решения проблемы урана, задач ядерной энергетики и создания нового оружия. В проведение этого комплекса работ внесли вклад А. П. Александров, А. И. Алиханов, Л. А. Арцимович, Я. Б. Зельдович, И. К. Кикоин, А. И. Лейпунский, Ю. Б. Харитон и многие другие.
Успехи ядерной физики и физики элементарных частиц определяются прогрессом физики и техники ускорителей, который в СССР связан, прежде всего, с деятельностью В. И. Векслера. Предложенный им в 1944 принцип автофазировки оказал революционизирующее влияние на развитие ускорит. техники. В 1957 в Объединённом институте ядерных исследований (Дубна) запущен крупнейший в мире (для того времени) синхрофазотрон, ускоряющий протоны до энергии 10 Гэв(В. И. Векслер, А. Л. Минц и др.). На этом синхрофазотроне были исследованы многие ядерные реакции, в частности в 1960 открыта новая элементарная частица - антисигма-минус гиперон. В 1967 в Ереванском физическом институте состоялся пуск ускорителя электронов на энергию до 6 Гэв -одного из крупнейших в мире (А. И. Алиханьян и др.). В этом же году близ Серпухова был запущен крупнейший в мире (на 1967) ускоритель протонов на 76 Гэв(В. В. Владимирский, А. А. Логунов и др.). На нём были получены уникальные результаты; в частности предложен и разработан новый подход к изучению процессов множественной генерации частиц (инклюзивные процессы, Логунов и др.), впервые зарегистрированы ядра антигелия (1970, Ю. Д. Прокошкин), обнаружена новая элементарная частица (h-мезон) со спином 4 и массой, равной массе 2 нуклонов (1975). Здесь было впервые установлено, что при высоких энергиях полные сечения взаимодействия адронов перестают падать и намечается их рост (серпуховский эффект). На серпуховском ускорителе работают группы учёных из различных институтов СССР, а также учёные других стран.
Большие успехи достигнуты в исследованиях на ускорителях со встречными пучками (Новосибирск, Г. И. Будкер, А. А. Наумов, А. Н. Скринский и др.).
К работам по ядерной физике тесно примыкают начавшиеся ещё в 20-х гг. исследования по физике космических лучей. В 1929 Д. В. Скобельцыну удалось наблюдать в камере Вильсона, помещенной в магнитное поле, ливни космических частиц. Метод камеры Вильсона, помещенной в магнитное поле, был впервые разработан П. Л. Капицей (1923) при исследовании отклонения альфа-частиц в магнитном поле. Обширные работы по изучению явлений, возникающих при взаимодействии первичных космических лучей с ядрами атомов, были выполнены Скобельцыным, В. И. Векслером, С. Н. Верновым, Н. А. Добротиным, Г. Т. Зацепиным.
Широко ведутся исследования в области физики высоких энергий. Наиболее крупные результаты получены Л. Д. Ландау (идея о сохраняющейся комбинированной чётности, 1956), И. Я. Померанчуком (теорема о равенстве сечений взаимодействия частиц и античастиц с одной и той же мишенью при сверхвысоких энергиях, 1958), Б. М. Понтекорво (исследования по нейтринной физике) и М. А. Марковым (идея проведения нейтринных экспериментов под землёй и на ускорителях), В. Н. Грибовым (работа по теории комплексных угловых моментов, 1961), Л. Б. Окунем (составная модель элементарных частиц и свойства симметрии слабых взаимодействий, с 1957), И. М. Франком, Ф. Л. Шапиро, И. И. Гуревичем, П. Е. Спиваком (нейтронная физика).
Важные эксперименты, приведшие к подтверждению существования слабого нуклон-нуклонного взаимодействия, принадлежат Ю. Г. Абову, В. М. Лобашёву и их сотрудникам. В Ереване были созданы искровые камеры с высокой точностью регистрации событий (А. И. Алиханьян, Т. Л. Асатиани, Г. Е. Чиковани и др.).
Физика низких и сверхнизких температур.Первая в СССР криогенная лаборатория была организована в Харькове в Украинском физико-техническом институте в 1931. Её научным руководителем стал Л. В. Шубников, который, находясь в командировке в Лейденской криогенной лаборатории (1926-30), совместно с В. де Хаазом установил осциллирующую зависимость электросопротивления от напряжённости магнитного поля при низких температурах (т. н. эффект Шубникова - де Хааза, 1930).
В развитие советской и мировой техники ожижения газов большой вклад внёс П. Л. Капица. В 1934 он создал первый в мире гелиевый ожижитель с поршневым детандером, работающий на газовой смазке, а в 1939 предложил метод ожижения газов с использованием цикла низкого давления, осуществляемого в высокоэффективном турбодетандере. Эти методы легли в основу всех современных крупных ожижителей.
В 1938 П. Л. Капица открыл сверхтекучесть Не II - явление, имеющее квантовый характер. Объяснение сверхтекучести Не II было вскоре дано Л. Д. Ландау (1941), развившим гидродинамику квантовой жидкости и предсказавшим на основе своей теории ряд парадоксальных эффектов, подтвердившихся экспериментально. К их числу относится предсказание существования в гелии двух скоростей распространения звуковых колебаний.
Важные эксперименты по сверхтекучести были выполнены В. П. Пешковым, Э. Л. Андроникашвили, Б. Г. Лазаревым и др. В частности, в экспериментах Пешкова был открыт т. н. второй звук в Не II. Плодотворно работает над механизмом нарушения сверхтекучести группа физиков под руководством Э. Л. Андроникашвили в Физическом институте АН Грузинской ССР.
Большую роль для развития техники получения сверхнизких температур сыграл открытый И. Я. Померанчуком (1950) эффект поглощения теплоты при затвердевании 3He. Методом Померанчука были достигнуты температуры ~ 0,001 К (70-e гг., Институт физических проблем АН СССР).
С успехом исследовалось советскими физиками явление сверхпроводимости (теоретические работы Л. Д. Ландау и В. Л. Гинзбурга и экспериментальные исследования Л. В. Шубникова, А. И. Шальникова, Н. Е. Алексеевского, Ю. В. Шарвина). Гинзбургом и Ландау была создана обобщённая феноменологическая теория сверхпроводимости. Развитая на её основе А. А. Абрикосовым, Л. П. Горьковым и Гинзбургом теория сверхпроводящих сплавов и свойств сверхпроводников в сильных магнитных полях послужила основой для предсказания существования сплавов, сверхпроводящее состояние которых не разрушается при напряжённости поля вплоть до сотен кэв.Открытие таких сплавов привело к созданию сверхпроводящих магнитов.
Событием в физике явилась разработка Н. Н. Боголюбовым нового метода в квантовой теории поля и статистической физике, который привёл к обоснованию теории сверхтекучести и сверхпроводимости.
Теория колебаний, радиофизика, эмиссионная электроника.Основы советской радиофизики, радиотехники, теории колебаний были заложены исследованиями М. А. Бонч-Бруевича, В. П. Вологдина, А. Ф. Шорина и др. в Нижегородской лаборатории, М. В. Шулейкина в Москве, Л. И. Мандельштама и Н. Д. Папалекси в Одессе, А. А. Чернышева, Д. А. Рожанского и их сотрудников в Ленинграде.
Большая заслуга в разработке теории колебаний принадлежит школе Мандельштама и Папалекси (А. А. Андронов, А. А. Витт, Г. С. Горелик, М. А. Леонтович, С. М. Рытов, С. Э. Хайкин, В. В. Мигулин и др.). Трудами этих учёных создана новая область физики нелинейных колебаний, имеющая важное значение для радиофизики и теории регулирования. Другая серия исследований той же школы физиков посвящена измерению скорости распространения электромагнитных волн вдоль земной поверхности. Мандельштамом и Папалекси был предложен (1930) для этой цели радиоинтерференционный метод, развитие и применение которого позволили выяснить фазовую структуру и скорость радиоволн. Этот метод получил широкое применение в практике. Математические методы теории нелинейных колебаний разрабатывались Н. М. Крыловым, Н. Н. Боголюбовым и др.
А. А. Глаголевой-Аркадьевой и независимо М. А. Левитской в 1923 было получено электромагнитное излучение с длиной волны от 5 смдо 82 мкм,которое заполнило промежуток между инфракрасным и радиодиапазонами на шкале электромагнитных волн.
Создание качественно новых принципов усиления и генерации ВЧ-колебаний позволило продвинуться в область более высоких частот. Идея использования модуляции скорости электронов принадлежит Рожанскому, а первые практические шаги по её реализации - представителям электрофизической школы Чернышева: Н. Д. Девяткову, Н. Ф. Алексееву, Л. Б. Малярову и др. Теория и расчёт приборов СВЧ-диапазона разрабатывались Г. А. Гринбергом.
Важные работы по эмиссионной (катодной ) электронике принадлежат П. И. Лукирскому и С. А. Векшинскому и их школам. Эти работы были теснейшим образом связаны с промышленностью электронных ламп и проводились в конце 20-х - начале 30-х гг. на ленинградском заводе «Светлана». Исследования внешнего фотоэффекта дали прямые выходы в промышленность: прогресс отечественного производства фотоэлементов (кислородно-цезиевых и сурьмяно-цезиевых) связан с именами Н. Д. Моргулиса, А. А. Лебедева, С. Ю. Лукьянова, П. В. Тимофеева, Н. С. Хлебникова. Большое значение для понимания явлений, входящих в круг проблем эмиссионной электроники, имели работы Л. Н. Добрецова. В начале 30-х гг. Л. А. Кубецкий открыл принцип вторичного электронного умножения и построил первый фотоэлектронный умножитель.
Существенный вклад в развитие исследований по распространению радиоволн внесли (40-50-е гг.) работы В. А. Фока, Б. А. Введенского, М. А. Леонтовича, В. Л. Гинзбурга, Е. Л. Фейнберга, Г. А. Гринберга и др. Ещё в конце 30-х гг. ленинградскими физиками под руководством Д. А. Рожанского и Ю. Б. Кобзарева были разработаны принципы импульсной радиолокации и построены радиолокационные станции.
Идея использования радио в астрономии, в частности для радиолокации Луны, была в 40-х гг. высказана Мандельштамом и Папалекси. В 60-х гг. В. А. Котельниковым и коллективом его сотрудников были проведены радиолокационные исследования планет.
Квантовая электроника.Крупнейшим событием в физике и технике явилось создание квантовой электроники. Высокая культура радиофизических исследований, проводимых в Физическом институте АН СССР, во многом определила то, что именно в нём в 1951 по инициативе А. М. Прохорова начались фундаментальные исследования по квантовой электронике. В 1952-55 Прохоров совместно с Н. Г. Басовым доказал возможность создания усилителей и генераторов принципиально нового типа и решил основные задачи его осуществления. Первый молекулярный генератор (мазер) в сантиметровом диапазоне длин волн был построен ими в 1955 (и независимо от них Ч. Таунсом в США). Инверсия населённостей была получена ими в трехуровневой системе с оптической накачкой (1955). В 1957-58 Прохоров предложил использовать в качестве рабочего вещества рубин, выдвинул идею открытых резонаторов и развил методы создания парамагнитных усилителей.
После изобретения мазеров важнейшим достижением в квантовой электронике явилось создание квантовых генераторов в оптическом диапазоне длин волн - лазеров, причём оказалось, что лазерный эффект можно получить на широком классе веществ: полупроводниках, газах, жидкостях, стеклах, растворах. Басов впервые указал на возможность использования полупроводников в квантовой электронике и совместно с сотрудниками развил методы создания полупроводниковых лазеров (1957-61). Первый в СССР полупроводниковый лазер на арсениде галлия был построен в лаборатории, руководимой Б. М. Вулом. В 1963 Ж. И. Алферов предложил использовать для полупроводникового лазера гетероструктуры. Особо перспективен газодинамический лазер на CO 2, предложенный в 1967 А. М. Прохоровым и В. К. Конюховым и построенный в 1970.
Квантовая электроника оказала большое влияние на развитие физики в целом (лазерная спектроскопия, лазерное зондирование атмосферы, лазерная диагностика плазмы и др.). Лазеры используются для целей локации, космической связи, в вычислительной технике, медицине.
Высокотемпературная плазма и проблемы управляемых термоядерных реакций.Исследования по теории плазмы были начаты в 30-х гг. В 1936 Л. Д. Ландау предложил кинетическое уравнение для электронной плазмы. В 1938 А. А. Власов составил уравнение колебаний разреженной плазмы в её собственном самосогласованном поле. Теория колебаний плазмы, основанная на этом уравнении, была развита в 1946 Ландау, который показал, что даже в отсутствие столкновений частиц плазмы колебания в ней затухают (т. н. затухание Ландау). Интерес к исследованию горячей плазмы возрос в связи с проблемой осуществления управляемого термоядерного синтеза. В 1950 И. Е. Тамм и А. Д. Сахаров предложили принцип магнитной термоизоляции плазмы. В 50-е гг. существ. результаты были достигнуты при экспериментальном исследовании мощных импульсных разрядов в газах для получения высокотемпературной плазмы (Л. А. Арцимович, М. А. Леонтович и их сотрудники). При этом была обнаружена неустойчивость плазмы. Дальнейшие исследования многообразных, типов неустойчивостей (Р. З. Сагдеев и др.) привели к разработке способов эффективного подавления некоторых из них (Б. Б. Кадомцев, М. С. Иоффе и др.). Теории турбулентности плазмы и её турбулентного нагрева посвящены исследования А. А. Веденова, Б. Б. Кадомцева, Е. К. Завойского и их сотрудников. Проведению всех этих исследований способствовали работы по созданию методов диагностики плазмы (Б. П. Константинов, Н. В. Федоренко, В. Е. Голант). Особенно большие успехи в получении эффективной термоизоляции плазмы были достигнуты на тороидальных магнитных установках типа «Токамак», исследования на которых были начаты в 1956 под руководством Арцимовича. В 1975 закончено сооружение наиболее крупной установки такого типа - «Токамак-10», которое явилось одним из значительных шагов на пути к осуществлению управляемой термоядерной реакции. На основе полученных результатов начаты разработки термоядерных реакторов (Е. П. Велихов, И. Н. Головин). В 1969 П. Л. Капица получил стабильный плазменный шнур в СВЧ-разряде с температурой порядка 10 5-10 6К. Развивается перспективное направление термоядерных исследований, связанное с применением мощных лазеров для нагрева плазмы (А. М. Прохоров, Н. Г. Басов) и релятивистских электронных пучков (Е. К. Завойский, П. И. Рудаков). Интенсивно проводятся исследования на открытых ловушках (Г. И. Будкер, М. С. Иоффе) и установках с обжатием плазмы магнитным полем (Велихов).
Акустика.Различным разделам акустики - от общей теории акустики движущейся среды до проблем архитектурной акустики и практических методов измерений акустических величин - посвящены работы Н. Н. Андреева, возглавившего школу советских акустиков. Советскими учёными были выполнены работы по распространению звука в неоднородных и слоистых средах (Л. М. Бреховских); по общей теории звуковых явлений в неоднородных и движущихся средах (Д. И. Блохинцев, 1944-46); по распространению звука в средах со случайными неоднородностями (Л. А. Чернов, 1951-58); по звуковой оптике: преломление и фокусировка звука и ультразвука (Л. Д. Розенберг, 1949-55): по акустике речи (Л. А. Чистович, М. А. Сапожков). В 30-40-х гг. были проведены исследования в области музыкальной акустики (А. В. Римский-Корсаков, Л. С. Термен и др.). По архитектурной акустике и электроакустике работы выполнили В. В. Фурдуев, Ю. М. Сухаревский, С. Н. Ржевкин, А. А. Харкевич, Г. Д. Малюжинец и др. Важные результаты по нелинейной акустике получены Б. П. Константиновым, одним из пионеров этой области науки, и др. Начиная с 50-х гг. получила развитие физика ультразвука и гиперзвука (И. Г. Михайлов, С. Я. Соколов и др.). Ультразвуковая дефектоскопия в СССР начала быстро развиваться благодаря основополагающим работам Соколова.
В начале 60-х гг. И. А. Викторов, Ю. А. Гуляев, В. Л. Гуревич, В. И. Пустовойт установили эффект усиления ультразвуковых волн в полупроводниках и слоистых структурах полупроводник - диэлектрик при дрейфе через них носителей тока, на основе которого были созданы различные акустоэлектронные приборы. Магнитоакустический резонанс, возникающий при взаимодействии гиперзвуковых и спиновых волн в ферромагнетиках (А. И. Ахиезер и др.), лег в основу генераторов гипер- и ультразвука и явился новым инструментом исследования магнитоупорядоченных кристаллов.
Периодические издания: «Акустический журнал» (с 1955), «Атомная энергия» (с 1956), «Журнал технической физики» (с 1931), «Журнал экспериментальной и теоретической физики» (с 1931), «Известия АН СССР. Серия физическая» (с 1936), «Кристаллография» (с 1956), «Оптика и спектроскопия» (с 1956), «Приборы и техника эксперимента» (с 1956), «Радиотехника и электроника» (с 1956), «Успехи физических наук» (с 1918), «Физика металлов и металловедение» (с 1955), «Ядерная физика» (с 1965), «Квантовая электроника» (1971), «Физика плазмы» (1975) и др.