, отвечающей постоянному, обычно простому отношению между числами атомов, образующих соединение. Отсутствие такой точки и переменный состав твёрдой фазы являются признаками Дальтониды среди М. сравнительно немногочисленны. Примерами их могут служить соединения магния с элементами главной подгруппы IV и V групп системы Менделеева. Эти М. построены по типам HSi (Mg 2Si, Mg 2Ge, Mg 2Sn, Mg 2Pb) и (Mg 3P 2, Mg 3As 2, Mg 3Sb 2, Mg 3Bi 2). Для них характерны преобладание ионной и связей, практическое отсутствие твёрдых растворов с компонентам М большая хрупкость, низкая электропроводность, т. е. по свойствам они близки к ионным соединениям (солям).

  Многие соединения, образуемые переходными металлами и металлами подгруппы меди с элементами главной подгруппы III, IV, V, VI групп системы Менделеева, кристаллизуются по структурному типу решётка с координационным числом 6) и обладают довольно широкими областями однородности на диаграммах состояния, т. е. образуют твёрдые растворы со своими компонентам. Среди встречаются и дальтониды (например, и (например, где хравен 0,72-0,92).

  В 1914 Н. С. Курнаков с сотрудниками нашёл, что на диаграммах «состав свойство» твёрдых растворов системы после отжига и медленного охлаждения появляются сингулярные точки, отвечающие образованию определённых соединений CuAu и впоследствии появление М. при охлаждении твёрдых растворов было обнаружено в ряде др. металлических систем; в частности, найдены соединения MnAu 2. М. образующиеся при превращении растворов, соединениями анализ дал ещё одно подтверждение правильности признания этих М. химическими соединениями: на диаграммах «состав - степень упорядоченности» наблюдаются сингулярные максимумы, отвечающие отношениям компонентов.

  Наиболее обширный класс М. составляют соединения, в которых преобладает металлическая связь. Сюда относятся прежде всего М образованные Cu, и а также переходными металлами с Be. Как показали состав этих соединений определяется электронной концентрацией равна отношению общего числа электронов (таковыми считаются электроны, находящиеся на внешних оболочках) к общему числу атомов в структурной ячейке (например, в имеем 5 + 2·821 внеш. электрон и 5 + 8 = 13 атомов; h= 21/ 13). При h= 2/ 3образуются фазы с объёмноцентрированной кубической структурой, при h= 21/ 13- имеющие кристаллическую структуру гранецентрированного куба, при h= 7/ 4- фазы или электронные соединения, распространенные в сплавах типа бронзы и латуни, например: Cu 31Sn CuZn 3, Нем. учёный показал (1934), что при соотношении атомных радиусов в пределах 1,1-1,3 и при составе, описываемом формулой AB 2, возникают весьма компактные структуры с числами 12 и 16 и с упорядоченным расположением атомов. К фазам (структурные типы Mgu 2, и Mgi 2) относится около 50% всех известных в двойных системах. (О более редких типах М а также о тройных М. см. лит. ниже.) Многие М. получили применение (и в чистом состоянии, и в виде сплавов) как магнитные материалы (в частности, SCo для изготовления постоянных магнитов), , материалы. М. являются важной составляющей , конструкционных материалов, антифрикционных материалов, типографских сплавов и др.

  Лит:Курнаков Н. С.  Труды т. 1-3, М., 1960-63; его же, Тройные металлические фазы в сплавах М., 1964; Кристаллохимия, изд., М., 1971; Теория фаз в сплавах, пер. с англ., М., 1961; пер. с англ., в. 1, М., 1967; Интерметаллические соединения, пер. с англ., М., 1970; «Металлофизика», 1973, в. 46 (статьи о фазах Лавеса).

  С. А. Погодин, Ю. А. Скаков, Я. С. Умайский.

Металлизация

Металлиза'ция,покрытие поверхности изделия металлами и сплавами для сообщения физико-химических и механических свойств, отличных от свойств металлизируемого (исходного) материала. М. применяют для защиты изделий от коррозии, износа, эрозии, в декоративных и др. целях. По принципу взаимодействия металлизируемой поверхности (подложки) с наносимым металлом различают М., при которой сцепление покрытия с основой (подложкой) осуществляется механически - силами адгезии (см. табл., группа 1), и М., при которой сцепление обеспечивается силами металлической связи (группа 2): с образованием диффузионной зоны на границе сопрягающихся поверхностей, за пределами которой покрытие состоит из наложенного слоя металла или сплава (подгруппа 2а), и с образованием диффузионной зоны в пределах всего слоя покрытия (подгруппа 2б).

  Технология М. по типам 1 и 2а предусматривает наложение слоя вещества на поверхность холодного или нагретого до относительно невысоких температур изделия. К этим видам М. относятся: электролитические (см. ) ,химические, газопламенные процессы получения покрытий (см. ); нанесение покрытий ,осаждением химических соединений из газовой фазы, ; вакуумная М.; М. взрывом, воздействием лучей лазера, плазмы, погружением в расплавленные металлы и др. способы. В этих процессах М. сопровождается изменением геометрии и размеров изделия соответственно толщине слоя наносимого металла или сплава. Технология М. по типу 2б предусматривает диффузионное насыщение металлическими элементами поверхности деталей, нагретых до высоких температур, в результате которого в зоне диффузии элемента образуется сплав (см. ) .В этом случае геометрия и размеры металлизируемой детали практически не меняются.

  М. изделий по типу 1 производится в декоративных целях, для повышения твёрдости и износостойкости, для защиты от коррозии. Из-за слабого сцепления покрытия с подложкой этот вид М. нецелесообразно применять для деталей, работающих в условиях больших нагрузок и температур. М. деталей по типу 2 придаёт им высокую твёрдость и износостойкость, высокую коррозионную и эрозионную стойкость, жаростойкость, необходимые теплофизические и электрические свойства. М. по типу 2б применяется для деталей, претерпевающих действие значительных механических напряжений (статических, динамических, знакопеременных) при низких и высоких температурах. Эти виды М., за некоторым исключением, используются для нанесения защитного слоя на подложки из различных металлов, сплавов и неметаллических материалов (пластмассы, стекла, керамика, бумага, ткани и др.). М. находит применение в электротехнике. радиоэлектронике, оптике, ракетной технике, автомобильной промышленности, судостроении, самолётостроении и др. областях техники.

  В табл. приведены основные технологические процессы, с помощью которых осуществляется М. различными металлами. О видах М. см. в статьях , , , , , , , , , , , , , , , , , , .

  Лит.:Высокотемпературные неорганические покрытия, [пер. с англ.], М., 1968; Ротрекл Б., Дитрих З., Тамхина И., Нанесение металлических покрытий на пластмассы, пер. с чеш., Л., 1968; Ройх И. Л., Колтунова Л. Н., Защитные вакуумные покрытия на стали, М., 1971; Катц Н. В., Металлизация тканей, 2 изд., М., 1972.

  Г. Н. Дубинин.

Схема к ст. Металлизация.

Металлилхлорид

Металлилхлори'д,1-хлор-2-метилпропен-2, химическое средство (жидкость) для газового обеззараживания зерна и зернопродуктов от вредителей; см. в ст. .

Металлистическая теория денег

Металлисти'ческая тео'рия де'нег,см. в ст. ,раздел Буржуазные теории денег.

Металлическая связь

Металли'ческая связь,тип связи атомов в кристаллических веществах, обладающих металлическими свойствами ( , ) .М. с. обусловлена большой концентрацией в таких кристаллах квазисвободных электронов ( ). Отрицательно заряженный электронный газ «связывает» положительно заряженные ионы друг с другом (см. , ) .

Металлические изделия

Металли'ческие изде'лия,то же, что .

Металлические конструкции

Металли'ческие констру'кции,металлоконструкции, общее название конструкций, выполненных из металлов и применяемых в строительстве. Современные М. к. подразделяются на стальные (см. ) и из лёгких сплавов (например, ) .До начала 20 в. в строительстве применялись в основном металлические строительные конструкции из чугуна (главным образом в колоннах, балках, лестницах и т.д. Из металла изготовлен, например, купол Исаакиевского собора в Ленинграде диаметром 22 м) .В современном строительстве получили распространение стальные конструкции, используемые в несущих каркасах промышленных сооружений, жилых и общественных зданий, в пролётных строениях мостов, каркасах доменных печей, газгольдерах, резервуарах, мачтах, опорах линий электропередачи и др. Конструкции из алюминиевых сплавов,. обладающие рядом достоинств (лёгкость, коррозионная стойкость, технологичность, высокие декоративные свойства), наиболее широко применяются в качестве ограждающих элементов и в виде отделочных деталей зданий. М. к. изготовляются преимущественно из профилированного и листового металла. По характеру соединения элементов между собой различают М. к. сварные, клёпаные и с болтовыми соединениями. В машиностроении обычно под М. к. подразумеваются детали, изготовленные из профилированного металла, в отличие от литых деталей и поковок. См. также , , .

  Л. В. Касабьян.

Металлические соединения

Металли'ческие соедине'ния,интерметаллические соединения, то же, что .

Металлический мост

Металли'ческий мост,мост, пролётные строения которого выполнены из металла, преимущественно стали (опоры в современных М. м. обычно бетонные или железобетонные); см. , .

Металловедение

Металлове'дение,наука, изучающая связи состава, строения и свойств металлов и сплавов, а также закономерности их изменения при тепловых, механических, физико-химических и др. видах воздействия. М. - научная основа изысканий состава, способов изготовления и обработки металлических материалов с разнообразными механическими, физическими и химическими свойствами. Уже народам древнего мира было известно получение металлических сплавов ( и др.), а также повышение твёрдости и прочности стали посредством .Как самостоятельная наука М. возникло и оформилось в 19 в., вначале под названием .Термин «М.» введён в 20-х гг. 20 в. в Германии, причём было предложено сохранить термин «металлография» только для учения о макро- и микроструктуре металлов и сплавов. Во многих странах М. по-прежнему обозначают термином «металлография», а также называют «физической металлургией». Возникновение М. как науки было обусловлено потребностями техники. В 1831 П. П. ,разрабатывая способ получения ,изучал под микроскопом строение отполированной поверхности стали, предварительно протравленной кислотой. В 1864 Г. К. произвёл подобные же исследования микроструктуры железных метеоритов и образцов стали, применив при этом микрофотографию. В 1868 Д. К. указал на существование температур, при которых сталь претерпевает превращения при нагревании и охлаждении (критические точки). Эти температуры измерил Ф. (1888) при помощи термоэлектрического термометра, изобретённого А. .У. Робертс-Остен (Великобритания) исследовал методами и микроструктуры нескольких двойных металлических систем, в том числе (1897). Его результаты критически пересмотрел в 1900 с точки зрения ,теоретически выведенного Дж. У. (1873-76), Г. В. .Ле Шателье значительно улучшил технику изучения микроструктуры. Н. С. сконструировал самопишущий пирометр (1903) и на основе изучения ряда металлических двойных систем совместно с сотрудниками (С. Ф. ,Н. И. ,Г. Г. и др.) установил закономерности, явившиеся основой учения о сингулярных точках и физико-химического анализа. С 1903 диаграммы состояния металлических сплавов изучал Г. с сотрудниками. В России А. А. исследовал явления закалки сплавов (1902), значительно улучшил методику М. введением автоматической записи дифференциальных кривых нагревания и охлаждения (1910) и травления микрошлифов при высокой температуре (1909). Байков основал в Петербургском политехническом институте первую в России учебную лабораторию М., в которой работали Н. Т. ,Г. А. Кащенко, М. П. Славинский, В. Н. Свечников и др. Пионерами применения М. в заводской практике были А. А. ,создавший лабораторию М. на Обуховском заводе (1895), и Н. И. ,основавший такую же лабораторию на Путиловском заводе (1904). В 1908 А. М. организовал в Высшем техническом училище первую в Москве металлографическую лабораторию, в которой работали И. И. Сидорин, А. А. Бочвар ,С. М. Воронов и др. специалисты в области М. цветных металлов.

  В 1918 А. Портевен и М. Гарвен (Франция) установили зависимость критических точек стали от скорости охлаждения. С 1929-30 начались исследования превращений в стали в изотермических условиях (Э. Давеппорт и Э. Бейн, Р. Мейл в США, С. С. ,Н. А. в СССР, Ф. Вефер в Германии и др.). Одновременно развивалась физическая теория металлов, экспериментальные основы которой были заложены в начале 20 в. Тамманом (Я. И. ,В. И. Данилов в СССР, М. в Германии, И. Странский в Болгарии).

  Исключительную роль в развитии М. играл начиная с 20-х гг. 20 в. ,который позволил определить кристаллическую структуру различных фаз, описать её изменения при , и (структуру ,изменения структуры твёрдых растворов при их распаде и т.д.). В этой области важнейшее значение имели работы Г. В. ,С. Т. ,Н. В. и др., а за рубежом - А. Вестгрена (Швеция), У. Юм-Розери (Великобритания), У. Делингера, В. Кёстера (Германия) и др. Курдюмов, в частности, разработал теорию закалки и отпуска стали и исследовал основные типы фазовых превращений в твёрдом состоянии («нормальные» и мартенситные). В 20-х гг. А. Ф. и Н. Н. Давиденков положили начало теории кристаллов. Теория фазовых превращений, изучение атомно-кристаллического и электронного строения металлов и сплавов, природы механических, тепловых, электрических и магнитных свойств металлов были новыми этапами в истории М. как пограничной науки между физической химией и физикой твёрдого тела (см. ) .

 Развитие М. во 2-й половине 20 в. характеризуется значительным расширением методических возможностей. Кроме рентгеноструктурного анализа, для изучения атомнокристаллического строения металлов применяют ,которая позволяет изучать локальные изменения строения сплавов, взаимное расположение структурных составляющих и несовершенства кристаллического строения (см. ) .Существенное значение имеют методы электронной дифракции, ,радиоизотопных индикаторов, внутреннего трения, микрорентгеноспектрального анализа, ,магнитометрии и др.

  М. условно разделяется на теоретическое, рассматривающее общие закономерности строения и процессов, происходящих в металлах и сплавах при различных воздействиях, и прикладное (техническое), изучающее основы технологических процессов обработки (термическая обработка, литьё, обработка. давлением) и конкретные классы металлических материалов.

  Основные разделы теоретического М.: теория металлического состояния и физических свойств металлов и сплавов, кристаллизация, фазовые равновесия в металлах и сплавах, диффузия в металлах и сплавах, фазовые превращения в твёрдом состоянии, физическая теория процессов пластической деформации, упрочнения, разрушения и рекристаллизации. Содержание теоретического М. в значительной мере связано с металлофизикой.

  Теория металлического состояния рассматривает металл как совокупность электронов, движущихся в периодическом поле положительных ионов (см. ) .На основе учёта сил межатомного взаимодействия оценена теоретическая прочность металлических монокристаллов, которая в 100-1000 раз больше практической. Электрическое сопротивление металлов рассматривается как следствие нарушений идеального расположения атомов в кристаллической решётке, обусловленных её колебаниями, наличием статических дефектов и примесей. В зависимости от особенностей межатомного взаимодействия возникают различные фазы: упорядоченные твёрдые растворы, электронные соединения, фазы внедрения, сигма-фазы и т.д. Развитие электронной теории металлов и сплавов сыграло большую роль в создании сплавов с особыми физическими свойствами (сверхпроводящих, магнитных и др.).

  Кристаллизация металлов характеризуется большими значениями скорости зарождения центров кристаллизации и скорости роста кристаллов при малом интервале переохлаждений, в котором происходит затвердевание. Строение реального металлического слитка определяется закономерностями кристаллизации, условиями теплоотвода, а также влиянием примесей. Механизм эвтектической кристаллизации сплавов был изучен А. А. Бочваром (1935).

  Один из важнейших разделов теоретического М. - изучение фазовых равновесий в сплавах. Построены для многих двойных, тройных и более сложных систем и установлены температуры фазовых переходов. При определённых условиях (например, быстром охлаждении) могут возникать метастабильные состояния с относительным, при данных термодинамических условиях, минимумом свободной энергии. Наиболее важные примеры таких состояний - стали и пересыщенные твёрдые растворы металлов (например, Al - Cu). Кинетика фазовых превращений и условия возникновения метастабильных состояний определяются степенью отклонения системы от равновесия, подвижностью атомов (характеристики ) ,структурным и химическим соответствием возникающих и исходных фаз.

  Превращения в твёрдом состоянии (фазовые превращения) в условиях сильного межатомного взаимодействия в кристаллических фазах сопровождаются возникновением полей напряжений. При некоторых условиях и наличии полиморфных модификаций (см. ) наблюдается упорядоченная перестройка кристаллической решётки на границе фаз ( ) .В области температур, при которых быстро происходят релаксационные процессы, образование кристаллов новой фазы может протекать путём неупорядоченных диффузионных переходов отдельных атомов («нормальное» превращение). Для М. железных сплавов большое значение имеют кинетические диаграммы превращений .В металлических сплавах часто протекают процессы распада пересыщенных твёрдых растворов. Во многих случаях наиболее существенные изменения свойств происходят до возникновения при распаде второй фазы. Рентгенографические исследования показали, что эти изменения связаны с процессами перераспределения атомов в решётке матрицы, образованием обогащенных зон внутри матрицы (см. ) .Равновесия и кинетика фазовых превращений могут в значительной мере изменяться в результате воздействия высоких давлений. В связи с проявлением сил химического взаимодействия между атомами различных элементов в ненасыщенных твёрдых растворах могут также происходить процессы перераспределения атомов элементов. Упорядоченное расположение атомов в определённых узлах кристаллической решётки возникает в твёрдых растворах замещения (например, Cu - Al) и внедрения (мартенсит, Ta - О и т.д.). В некоторых случаях появляются внутрифазовые неоднородности - сегрегации.

  Важное значение для развития М. имеет физическая теория пластической деформации и дефектов кристаллического строения. Расхождение между теоретически вычисленными и наблюдаемыми на опыте значениями прочности привело в 1933-34 к предположению о наличии в кристаллах особых дефектов (несовершенств) - ,перемещение которых под действием сравнительно малых сил осуществляет пластическую деформацию. Экспериментальные исследования, проведённые различными методами и особенно дифракционной электронной микроскопией тонких фольг, подтвердили наличие дислокаций. Методы внутреннего трения и др. позволили выяснить роль точечных дефектов ( ) .Наличие вакансий влияет на физические свойства кристаллов и играет важную роль в диффузионных процессах при термообработке, , ,спекании и т.д. Изучение свойств бездефектных доказало правильность теоретической оценки прочности. В практически важных случаях повышение прочности достигается увеличением плотности дислокаций (например, пластической деформацией, мартенситным превращением при закалке или их сочетанием). Примеси могут скапливаться у дислокаций и блокировать их. Одно из наиболее ярких проявлений влияния реальной структуры на процессы в металлах и сплавах - различия в скорости диффузии и распределении элементов по границам и объёму поликристаллов. В некоторых случаях очень малые примеси изменяют скорость граничной диффузии. Поскольку многие процессы распада твёрдых растворов начинаются преимущественно в приграничных областях, малые примеси могут существенно изменять кинетику этих процессов и конечную структуру. Взаимодействие дислокации с примесями внедрения (в железе - углерод и азот) - одна из главных причин металлов с объёмноцентрированной кубической решёткой. Движением и взаимодействием дислокаций определяется протекание металлов, разупрочнения, ,полигонизации, рекристаллизации и др. процессов. Наиболее эффективные средства изменения структуры и свойств металлических материалов - ,термическая обработка, поверхностное упрочнение, , .

 Содержанием прикладного (технического) М. является изучение состава, структуры, процессов обработки и свойств различных конкретных классов металлических материалов (например, железоуглеродистых сплавов, конструкционной стали, нержавеющей стали, жаропрочных сплавов, алюминиевых сплавов, магниевых сплавов, металлокерамики). В связи с развитием новых областей техники возникли задачи изучения поведения металлов и сплавов при радиационных воздействиях, весьма низких температурах, высоких давлениях и т.д.

  Лит.:Бунин К. П., Железоуглеродистые сплавы, К. - М., 1949; физические основы металловедения, М., 1955; Бочвар А. А., Металловедение, 5 изд., М., 1956; Курдюмов Г. В., Явления закалки и отпуска стали, М., 1960; Лившиц Б. Г., Металлография, М., 1963; Физическое металловедение, пер с англ., в. 1-3, М. 1967-68.

  Р. И. Энтин.

Образец металлогенической карты.

«Металловедение и термическая обработка металлов»

«Металлове'дение и терми'ческая обрабо'тка мета'ллов»,ежемесячный научно-технический и производственный журнал, орган министерства станкостроительной и инструментальной промышленности СССР и Центрального правления Научно-технического общества машиностроительной промышленности. Выходит в Москве с 1955. Публикует материалы о свойствах металлов и сплавов, освещает вопросы теории и технологии термической обработки, помещает статьи о достижениях зарубежной техники в этой области, техническую информацию, хронику, персоналии. Тираж (1973) 10 тыс. экземпляров. Переиздаётся на английском языке в США.

Металлогенические карты

Металлогени'ческие ка'рты,геологические карты, показывающие закономерности размещения рудных месторождений в связи с особенностями геологического строения местности.

  По масштабу М. к. разделяются на три группы: обзорные, или мелкомасштабные (от 1: 500 000 и мельче); среднемасштабные (1: 200000 - 1: 100 000); крупномасштабные (1: 50 000 - 1: 25 000). Геологической основой обзорных М. к. является карта формаций осадочных, магматических и метаморфических пород, последовательно возникающих в процессе преобразования геосинклиналей в складчатые области и платформы. На среднемасштабных картах, кроме того, отображаются крупные складчатые и разрывные тектонические структуры. При составлении крупномасштабных М. к. изображаются возраст пород, их состав и все существенные тектонические структуры.

  Месторождения полезных ископаемых показываются внемасштабными условными знаками, отображающими их генетический класс, минеральный и химический состав, размеры запасов минерального сырья и его качество. Совокупность сходных месторождений оконтуривается с выделением на М. к. площадей их распространения, определяемых каким-либо элементом геологического строения местности или их комбинацией. При этом выделяются металлогенические области, районы и зоны, подчиненные породам определённого возраста, состава или строения.

  Лит.:Смирнов В. И., Очерки металлогении, М., 1963; Основные принципы составления, содержание и условные обозначения металлогенических и прогнозных карт рудных районов, М., 1964.

  В. И. Смирнов.

Металлогенические эпохи

Металлогени'ческие эпо'хи,эпохи формирования , отвечающие основным этапам геологического развития земной коры. Архейская М. э. выделялась по глубоко метаморфизированным месторождениям железистых кварцитов и сравнительно ограниченным по распространению керамическим пегматитам. Раннепротерозойская М. э. отличалась широким распространением метаморфогенных руд (джеспилиты, итабириты), ураносодержащих золотоносных конгломератов, медистых песчаников, магматических месторождений хрома, титана, меди, никеля. Среднепротерозойской М. э. также были свойственны метаморфогенные месторождения железа и металлоносных конгломератов; кроме того, в это время формировались древнейшие колчеданные медные, свинцово-цинковые и гидротермальные урановые месторождения. Раннерифейская М. э. характеризовалась формированием метаморфогенных месторождений железа, марганца, а также магматических месторождений железа, марганца, а также магматических месторождений сульфидных медно-никелевых руд и редкометальных пегматитов. Позднерифейская М. э. отличалась массовым развитием месторождений медистым песчаников, проявлением гидротермальных месторождений золота, меди, олова и вольфрама. Каледонская М. э. характеризовалась преобладанием месторождений, связанных с базальтоидной магмой и представленных магматическими месторождениями железа, титана, хрома, платиноидов; известны также гидротермальные месторождения золота. Герцинская М. э. отличалась разнообразными полезными ископаемыми; среди них - магматические месторождения железа, титана, хрома, платиноидов; скарновые месторождения железа и меди; колчеданные месторождения меди, свинца и цинка; пегматитовые и грейзеновые месторождения вольфрама, олова, лития, бериллия; гидротермальные месторождения меди, свинца, цинка, молибдена, золота, урана. Альпийская М. э. выделялась по развитию разнообразных плутогенных и вулканогенных гидротермальных месторождений меди, цинка, свинца, золота, вольфрама, олова, молибдена и особенно сурьмы и ртути.