В начале 30-х гг. основные представители этой группы отказались от своих ошибочных взглядов и подвергли их критике.

  Лит.:О журнале «Под знаменем марксизма» [Из постановления ЦК ВКП(б)], в сборнике: О партийной и советской печати, М., 1954; Нарский И. С., Суворов Л. Н., Позитивизм и механистическая ревизия марксизма, М., 1962.

  Л. Н. Суворов.

Механицизм

Механици'зм,односторонний метод познания и миропонимание, основывающиеся на представлении, будто механическая форма движения есть единственно объективная. Последовательное развитие этого взгляда приводит к отрицанию качественного многообразия явлений в природе и обществе или к представлению о нём как лишь о субъективной иллюзии. В более широком смысле М. есть метод «сведения» сложных явлений к их более простым составляющим, метод разложения целого на части, неспецифичные для данного целого (на биологические отношения, когда речь идёт о социальных явлениях, на физико-химические, когда речь идёт о биологии, и т. д.).

  Исторически М. выступал в качестве господствующего направления научно-материалистической мысли на протяжении 16-18 вв., когда механика была единственной развитой наукой, получившей применение в производстве, и потому казалась «наукой вообще», абсолютной наукой, располагающей соответственно абсолютным методом - математикой, понимаемой в основном механистически. Классическими представителями М. могут считаться Г. Галилей, И. Ньютон, П. С. Лаплас (в естествознании), Т. Гоббс, Ж. Ламетри, П. Гольбах ( в философии). Типичными представителями М. в 19 в. являлись Л. Бюхнер, К. Фохт, Я. Молешотт, Е. Дюринг. Односторонне механистический подход к познанию природных и общественных явлений подвергался критике Б. Спинозой, Г. В. Лейбницем, отчасти Д. Дидро. Как ограниченно оправданный метод мышления, он был преодолен («снят») Г. Гегелем (ему принадлежит и сам термин «М.») в диалектическом понимании задач и природы мышления. Критикуя М., Гегель одновременно отождествлял его недостатки с природой материализма вообще. Гегель «...хотел унизить материализм эпитетом “механический”. Но дело в том, что критикуемый Гегелем материализм - французский материализм XVIII века - был действительно исключительно механическим...» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 568-69).

  М. есть пройденный исторический этап развития материалистической философии, и всякая попытка возродить его в современных условиях должна расцениваться как шаг назад в научном отношении. Возможность рецидивов М. коренится в том, что любая, сколь угодно сложная и развитая форма движения материи заключает в своём составе механическое движение как одну из сторон. Поэтому с законами механики и могут быть согласованы не только различные, но и прямо противоположные процессы и явления. Как раз при таком «согласовании» совершается та нивелировка, в ходе которой подвергаются забвению их качественное своеобразие и противоречивость. По отношению к любой форме движения, кроме чисто механической, М. приводит в конечном итоге к признанию принципиальной невозможности её познания. М. у Галилея, Гоббса, французских материалистов ещё ни в малейшей степени не затронут . Но в 19 в. среди естествоиспытателей-механистов распространяются агностические взгляды. В соответствии с принципом: что не механика, то не наука, всякое знание, раскрывающее природу надмеханических областей движения, объявляется ненаучным. М. выдвигает понятие особых внешних «сил», в котором реальные моменты, абстрагированные от движения, превращаются в самостоятельно существующие механические «причины» этого движения. «В механике причины движения принимают за нечто данное и интересуются не их происхождением, а только их действиями. Поэтому если ту или иную причину движения называют силой, то это нисколько не вредит механике как таковой; но благодаря этому привыкают переносить это обозначение также и в область физики, химии и биологии, и тогда неизбежна путаница» (там же, с. 407). Особенно наглядно несостоятельность М. проявляется в области проблем мышления, сознания, жизни. Здесь М. оказывается почвой для витализма, телеологии и идеализма.

  М. как позиция в философии представляет собой типичное проявление метафизического метода мышления, неспособного справиться с противоречием. Сталкиваясь с противоположными определениями предмета, М. всегда стремится зачеркнуть одно из них (например, качество в угоду количеству) или же полагает только одно из них как истинное, в противоположность другому, принимаемому за неистинное: то абсолютная случайность, то столь же абсолютная необходимость, то дискретность, то непрерывность и т. д. М. мистифицирует и само понятие действующей причины, понимает движение не как самодвижение материи, а как результат действия внешней силы, поэтому и материя представляется ему инертной и косной массой.

  Диалектический материализм установил на основе обобщения данных науки, что механическое движение есть сторона, абстрактно-всеобщее условие всякого движения. В составе высших, надмеханических процессов оно оказывается «побочной формой», необходимой, но далеко не достаточной для характеристики природы этих процессов.

  Лит.:Энгельс Ф., Диалектика природы, Маркс К. и Энгельс ф., Соч., 2 изд., т. 20; его же, Анти-Дюринг, там же; Гегель Г. В, Ф., Энциклопедия философских наук, ч. 1, Логика, Соч., т. 1, М. - Л., 1929; его же, Наука логики, там же, т. 5-6, М., 1937-39; Самускевич А. В., Некоторые философские вопросы атомистики и борьба против механицизма в современной физике, в сборнике: Научные труды по философии [Белорус. университета], в. 1, Минск, 1956; Вислобоков А. Д., Марксистская диалектика и современный механицизм, М., 1962.

  Л. В. Потемкин.

Механическая запись

Механи'ческая за'письзвука, система записи звука посредством изменения формы носителя при механическом воздействии на него. М. з. является первой практической системой звукозаписи. Ещё в начале 19 в. при исследовании звуковых сигналов физики стали записывать колебания некоторых источников звука. Эти записи предназначались только для визуального изучения и не могли быть воспроизведены. В 1877 французский учёный Ш. Кро впервые научно обосновал принципы записи звука на барабан (или диск) и её последующего воспроизведения. Первым аппаратом механической записи и воспроизведения звука был (заявка на изобретение 1877) американского изобретателя Т. . Его фонограф с восковым валиком не получил широкого распространения ввиду сложности копирования записи, быстрого изнашивания валиков и плохого качества воспроизведения. В 1888 немецкий инженер Э. Берлинер предложил использовать для записи носитель в форме диска. После записи с диска гальваническим способом получали матрицы, которые использовались для прессования . До 50-х гг. 20 в. М. з. была монофонической (см. ). В дальнейшем получила распространение также стереофоническая М. з., обеспечивающая лучшее качество звучания (см. ). В начале 70-х гг. 20 в. предложена квадрофоническая М. з., в которой звуковые сигналы, передаваемые по 4 независимым каналам, записываются в одной канавке диска. Такая запись воспроизводится 4 громкоговорителями, располагаемыми по углам комнаты.

  Процесс М. з. делится на 3 этапа: перезапись с магнитной ленты на лаковый диск, изготовление матриц и прессование грампластинок. Установка для перезаписи на лаковый диск состоит из магнитофона, электронного устройства для усиления и коррекции электрических сигналов и станка записи ( рис. ), имеющего движущий механизм, рекордер и устройство управления. Преобразование электрических сигналов в механические колебания осуществляется рекордером, резец которого вырезает на лаковом диске канавку, модулированную звуковым сигналом. Стереофонический рекордер имеет две (по числу каналов) независимые динамические системы, связанные с одним резцом. Сигналы каждого канала раздельно записываются на левую и правую стенки канавки. Для получения металлических оригиналов и матриц, с которых затем будут изготавливаться грампластинки, запись с лакового диска переносится гальванопластическим способом на металлические диски. Для этого лаковый диск сначала покрывают тонким слоем серебра, а затем - никелевой плёнкой, на которую наращивают слой меди. После отделения лакового диска получают первый оригинал. Аналогичным образом получают вторые оригиналы, с которых изготавливают никелевые . Эти матрицы прикрепляются к подогреваемым . Прессование грампластинок из синтетических материалов производится гидравлическими прессами.

  Для воспроизведения М. з. служат . Преимущества М. з. - массовое тиражирование грампластинок, их относительная дешевизна и простота обращения, а также возможность надёжного хранения записи длительное время в металлических оригиналах (матрицах), основные недостатки - сравнительно быстрый износ грампластинки из-за непосредственного механического контакта с ней, невозможность монтажа и стирания записи.

  Лит.:Калашников Л. А., Очерк развития техники механической записи звука, «Тр. института истории естествознания и техники», 1959, т. 26; Аполлонова Л. П., Шумова Н. Д., Механическая звукозапись, М. - Л., 1964; Волков-Ланнит Л. Ф., Искусство запечатленного звука, М., 1964.

  Ю. А. Вознесенский.

Станок для механической звукозаписи: 1 - микроскоп для контроля качества записи; 2 - трубка отсоса воздуха из-под лакового диска; 3 - вращающаяся планшайба со стробоскопическими метками, по которым контролируется скорость вращения; 4 - каретка, обеспечивающая передвижение рекордера 5 при записи.

Механическая лопата

Механи'ческая лопа'та,1) вид одноковшового экскаватора, характеризуемый жёсткой связью между стрелой и ковшом. М. л. выполняется в виде прямой либо обратной лопаты. Прямая лопата ( рис. , а) применяется для земляных работ в строительстве, для вскрышных и добычных работ в карьерах, для выемки руды в камерах подземных рудников (крепкие горные породы предварительно рыхлятся взрывом). Строительная М. л. выпускаются обычно с ковшом ёмкостью до 3 м 3,карьерные - с ковшом 2-22 м 3,вскрышные - с ковшом до 150 м 3,подземные - с ковшом до 3 м 3.Прямая лопата выпускается в СССР с ковшами ёмкостью 0,25-35 м 3;готовятся к выпуску М. л. с ковшом 100 м 3. В зависимости от условий работ годовая выработка М. л. составляет на 1 м 3ёмкости ковша 120-250 тыс. м 3,а расход энергии 0,4-0,8 квтЧ ч/м 3.Обратная М. л. ( рис. , б) отличается от прямой направлением рабочего движения ковша и применяется для проходки канав, траншей и др. вспомогательных работ, когда забой расположен ниже уровня установки экскаватора. Обратная лопата выпускается в СССР с ковшами ёмкостью 0,15-2 м 3.Производительность её примерно на 20 % меньше, чем прямой при той же ёмкости ковша. 2) Канатно-скреперная установка для выгрузки из крытых вагонов сыпучих грузов (зерна, цемента и т. п.).

  В. Г. Афонин.

Механическая лопата: а - прямая; б - обратная; 1 - ковш; 2 - рукоять; 3 - стрела; 4 - кузов.

Механические музыкальные инструменты

Механи'ческие музыка'льные инструме'нты,инструменты, снабженные техническими приспособлениями для исполнения зафиксированных на дисках произведений или наигрышей без непосредственного участия музыкантов. М. м. и. бывают самых различных конструкций и форм - от маленьких примитивных табакерок, , часов-будильников до сложных по устройству стационарных напольных часов, полифонов, , башенных , «озвученных» карет. Первые сведения о М. м. и. относятся к 16 в. Особенно много систем М. м. и. появилось, в том числе и в России, в конце 19 - начале 20 вв. Применялись они в трактирах, ресторанах, мещанско-купеческом быту. Широкое распространение в это время получила . С появлением граммофона, а затем радиомагнитофонной аппаратуры М. м. и. вышли из употребления. См. также .

Механические свойства материалов

Механи'ческие сво'йства материа'лов,совокупность показателей, характеризующих сопротивление материала воз действующей на него нагрузке, его способность деформироваться при этом, а также особенности его поведения в процессе разрушения. В соответствии с этим М. с. м. измеряют напряжениями (обычно в кгс/мм 2или Мн/м 2) ,деформациями (в %), удельной работой деформации и разрушения (обычно в кгсЧ м/см 2или Мдж/м 2) ,скоростью развития процесса разрушения при статической или повторной нагрузке (чаще всего в ммза 1 секили за 1000 циклов повторений нагрузки, мм/кцикл) .М. с. м. определяются при механических испытаниях образцов различной формы.

  В общем случае материалы в конструкциях могут подвергаться самым различным по характеру нагрузкам ( рис. 1 ): работать на ,сжатие, , , срез и т. д. или подвергаться совместному действию нескольких видов нагрузки, например растяжению и изгибу. Также разнообразны условия эксплуатации материалов и по температуре, окружающей среде, скорости приложения нагрузки и закону её изменения во времени. В соответствии с этим имеется много показателей М. с. м. и много методов механических испытаний. Для металлов и конструкционных пластмасс наиболее распространены испытания на растяжение, , ударный изгиб; хрупкие конструкционные материалы (например, керамику, металлокерамику) часто испытывают на сжатие и статический изгиб; механические свойства композиционных материалов важно оценивать, кроме того, при испытаниях на сдвиг.

  Диаграмма деформации.Приложенная к образцу нагрузка вызывает его . Соотношения между нагрузкой и деформацией описываются т. н. диаграммой деформации ( рис. 2 ). Вначале деформация образца (при растяжении - приращение длины D l) пропорциональна возрастающей нагрузке Р, затем в точке nэта пропорциональность нарушается, однако для увеличения деформации необходимо дальнейшее повышение нагрузки Р; при D l> D l вдеформация развивается без приложения усилия извне, при постепенно падающей нагрузке. Вид диаграммы деформации не меняется, если по оси ординат откладывать напряжение

а по оси абсцисс - относительное удлинение

( F 0и l 0- соответственно начальная площадь поперечного сечения и расчётная длина образца).

  Сопротивление материалов измеряется напряжениями, характеризующими нагрузку, приходящуюся на единицу площади поперечного сечения образца

в кгс/мм 2.Напряжение

при котором нарушается пропорциональный нагрузке рост деформации, называется пределом пропорциональности. При нагрузке Р< Р nразгрузка образца приводит к исчезновению деформации, возникшей в нём под действием приложенного усилия; такая деформация называется упругой. Небольшое превышение нагрузки относительно Р nможет не изменить характера деформации - она по-прежнему сохранит упругий характер. Наибольшая нагрузка, которую выдерживает образец без появления остаточной пластической деформации при разгрузке, определяет предел упругости материала:

  У конструкционных неметаллический материалов (пластмассы, резины) приложенная нагрузка может вызвать упругую, высокоэластическую и остаточную деформации. В отличие от упругой, высокоэластическая деформация исчезает не сразу после разгрузки, а с течением времени. Высокопрочные армированные полимеры (стеклопластики, углепластики и др.) разрушаются при удлинении 1-3%. На последних стадиях нагружения у некоторых армированных полимеров появляется высокоэластическая деформация. Высокоэластический модуль ниже модуля упругости, поэтому диаграмма деформации в этом случае имеет тенденцию отклоняться к оси абсцисс.

  Упругие свойства.В упругой области напряжение и деформация связаны коэффициентом пропорциональности. При растяжении s = Еd, где Е- т. н. модуль нормальной упругости, численно равный тангенсу угла наклона прямолинейного участка кривой s = s(d) к оси деформации ( рис. 2 ). При испытании на растяжение цилиндрического или плоского образца одноосному (s 1>0; (s 2= s 3= 0) напряжённому состоянию соответствует трёхосное деформированное состояние (приращение длины в направлении действия приложенных сил и уменьшение линейных размеров в двух других взаимно перпендикулярных направлениях): d 1>0; d 2= d 3< 0. Соотношение между поперечной и продольной деформацией (коэффициент Пуассона)

в пределах упругости для основных конструкционных материалов колеблется в довольно узких пределах (0,27-0,3 для сталей, 0,3-0,33 для алюминиевых сплавов). Коэффициент Пуассона является одной из основных расчётных характеристик. Зная m и Е, можно расчётным путём определить и модуль сдвига

и модуль объёмной упругости

  Для определения Е, G, и m пользуются .

  Сопротивление пластической деформации.При нагрузках Р> Р внаряду со всё возрастающей упругой деформацией появляется заметная необратимая, не исчезающая при разгрузке пластическая деформация. Напряжение, при котором остаточная относительная деформация (при растяжении - удлинение) достигает заданной величины (по ГОСТ - 0,2 %), называется условным пределом текучести и обозначается

Практически точность современных методов испытания такова, что s пи s еопределяют с заданными допусками соответственно на отклонение от закона пропорциональности [увеличение ctg(90 - a) на 25-50 %] и на величину остаточной деформации (0,003-0,05 %) и говорят об условных пределах пропорциональности и упругости. Кривая растяжения конструкционных металлов может иметь максимум (точка в на рис. 2 ) или обрываться при достижении наибольшей нагрузки Р в . Отношение

характеризует временное сопротивление (предел прочности) материала. При наличии максимума на кривой растяжения в области нагрузок, лежащих на кривой левее в, образец деформируется равномерно по всей расчётной длине l 0, постепенно уменьшаясь в диаметре, но сохраняя начальную цилиндрическую или призматическую форму. При пластической деформации металлы упрочняются, поэтому, несмотря на уменьшение сечения образца, для дальнейшей деформации требуется прикладывать всё возрастающую нагрузку. s в, как и условные s 0,2, s nи s е, характеризует сопротивление металлов пластической деформации. На участке диаграммы деформации правее в форма растягиваемого образца изменяется: наступает период сосредоточенной деформации, выражающейся в появлении «шейки». Уменьшение сечения в шейке «обгоняет» упрочнение металлов, что и обусловливает падение внешней нагрузки на участке Р в- P k.

  У многих конструкционных материалов сопротивление пластической деформации в упруго-пластической области при растяжении и сжатии практически одинаково. Для некоторых металлов и сплавов (например, магниевые сплавы, высокопрочные стали) характерны заметные различия по этой характеристике при растяжении и сжатии. Сопротивление пластической деформации особенно часто (при контроле качества продукции, стандартности режимов термической обработки и в др. случаях) оценивается по результатам испытаний на твёрдость путём вдавливания твёрдого наконечника в форме шарика (твёрдость по Бринеллю или Роквеллу), конуса (твёрдость по Роквеллу) или пирамиды (твёрдость по Виккерсу). Испытания на твёрдость не требуют нарушения целостности детали и потому являются самым массовым средством контроля механических свойств. Твёрдость по Бринеллю (HB) при вдавливании шарика диаметром Dпод нагрузкой Рхарактеризует среднее сжимающее напряжение, условно вычисляемое на единицу поверхности шарового отпечатка диаметром d:

  Характеристики пластичности.Пластичность при растяжении конструкционных материалов оценивается удлинением

или сужением

при сжатии - укорочением

(где h 0и h k- начальная и конечная высота образца), при кручении - предельным углом закручивания рабочей части образца Q, радили относительным сдвигом g = Q r(где r- радиус образца). Конечная ордината диаграммы деформации (точка kна рис. 2 ) характеризует сопротивление разрушению металла S k, которое определяется

( F k- фактическая площадь в месте разрыва).

  Характеристики разрушения.Разрушение происходит не мгновенно (в точке k), а развивается во времени, причём начало в разрушения может соответствовать какой-то промежуточной точке на участке вк, а весь процесс заканчиваться при постепенно падающей до нуля нагрузке. Положение точки к на диаграмме деформации в значительной степени определяется жёсткостью испытательной машины и иннерционностью измерительной системы. Это делает величину S kв большой мере условной.

  Многие конструкционные металлы (стали, в том числе высокопрочные, жаропрочные хромоникелевые сплавы, мягкие алюминиевые сплавы и др.) разрушаются при растяжении после значительной пластической деформации с образованием шейки. Часто (например, у высокопрочных алюминиевых сплавов) поверхность разрушения располагается под углом примерно 45° к направлению растягивающего усилия. При определенных условиях (например, при испытании хладноломких сталей в жидком азоте или водороде, при воздействии растягивающих напряжений и коррозионной среды для металлов, склонных к коррозии под напряжением) разрушение происходит по сечениям, перпендикулярным растягивающей силе (прямой излом), без макропластической деформации.

  Прочность материалов, реализуемая в элементах конструкций, зависит не только от механических свойств самого металла, но и от формы и размеров детали (т. н. эффекты формы и масштаба), упругой энергии, накопленной в нагруженной конструкции, характера действующей нагрузки (статическая, динамическая, периодически изменяющаяся по величине), схемы приложения внешних сил (растяжение одноосное, двухосное, с наложением изгиба и др.), рабочей температуры, окружающей среды. Зависимость прочности и пластичности металлов от формы характеризуется т. н. чувствительностью к надрезу, оцениваемой обычно по отношению пределов прочности надрезанного и гладкого образцов

(у цилиндрических образцов надрез обычно выполняют в виде круговой выточки, у полос - в виде центрального отверстия или боковых вырезов). Для многих конструкционных материалов это отношение при статической нагрузке больше единицы, что связано со значительной местной пластической деформацией в вершине надреза. Чем острее надрез, тем меньше локальная пластическая деформация и тем больше доля прямого излома в разрушенном сечении. Хорошо развитый прямой излом можно получить при комнатной температуре у большинства конструкционных материалов в лабораторных условиях, если растяжению или изгибу подвергать образцы массивного сечения (тем толще, чем пластичнее материал), снабдив эти образцы специальной узкой прорезью с искусственно созданной трещиной ( рис. 3 ). При растяжении широкого, плоского образца пластическая деформация затруднена и ограничивается небольшой областью размером 2 r y(на рис. 3 , б заштрихована), непосредственно примыкающей к кончику трещины. Прямой излом обычно характерен для эксплуатационных разрушений элементов конструкций.

  Широкое распространение получили предложенные американским учёным Дж. Р. Ирвином в качестве констант для условий хрупкого разрушения такие показатели, как критический коэффициент интенсивности напряжений при плоской деформации