- << Первая
- « Предыдущая
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- Следующая »
- Последняя >>
Контроль качества П. м. весьма сложен и разнообразен и выполняется с помощью специализированной аппаратуры. Основные контролируемые параметры П. м.: химический состав, тип проводимости, удельное сопротивление, время жизни носителей, их подвижность и уровень легирования. Для анализа состава П. м. обычно пользуются оптическими, спектральными, масс-спектроскопическими и активационными методами. Электрофизические характеристики измеряют т. н. зондовыми методами или используют Холла эффект.Совершенство структуры монокристаллов исследуют методами рентгеноструктурного анализа и оптической микроскопии. Толщину слоев измеряют либо бесконтактными оптическими методами, либо методами сошлифовки слоя.
Лит.:Технология полупроводниковых материалов, пер. с англ., М., 1961; Родо М., Полупроводниковые материалы, пер. с франц., М., 1971; Зи С. М., Физика полупроводниковых приборов, пер. с англ., М., 1973; Палатник А. С., Сорокин В. К., Основы пленочного полупроводникового материаловедения, М., 1973; Кристаллохимические, физико-химические и физические свойства полупроводниковых веществ, М., 1973.
Ю. Н. Кузнецов, А. Ю. Малинин.
Полупроводниковые приборы
Полупроводнико'вые прибо'ры, электронные приборы,действие которых основано на электронных процессах в полупроводниках. В электронике П. п. служат для преобразования различных сигналов, в энергетике-для непосредственного преобразования одних видов энергии в другие.
Известно много разнообразных способов классификации П. п., например по назначению и принципу действия, по типу материала, конструкции и технологии, по области применения. Однако к основным классам П. п. относят следующие: электропреобразовательные приборы, преобразующие одни электрические величины в др. электрические величины ( полупроводниковый диод, транзистор, тиристор) ;оптоэлектронные приборы, преобразующие световые сигналы в электрические и наоборот ( оптрон, фоторезистор, фотодиод, фототранзистор, фототиристор. полупроводниковый лазер, светоизлучающий диод,твердотельный преобразователь изображения - аналог видикона и т.п.); термоэлектрические приборы, преобразующие тепловую энергию в электрическую и наоборот ( термоэлемент, термоэлектрический генератор, солнечная батарея, термистори т.п.); магнитоэлектрич. приборы (датчик, использующий Холла эффект,и т.п.); пьезоэлектрический и тензометрический приборы, которые реагируют на давление или механическое смещение. К отдельному классу П. п. следует отнести интегральные схемы,которые могут быть электропреобразующими, оптоэлектронными и т.д. либо смешанными, сочетающими самые различные эффекты в одном приборе. Электропреобразовательные П. п. - наиболее широкий класс приборов, предназначенных для преобразования (по роду тока, частоте и т.д.), усиления и генерирования электрических колебаний в диапазоне частот от долей гцдо 100 Ггци более; их рабочие мощности находятся в пределах от < 10 -12 втдо нескольких сотен вт,напряжения - от долей вдо нескольких тыс. в и ток - от нескольких надо нескольких тыс. а. В зависимости от применяемого полупроводникового материала различают германиевые, кремниевые и др. П. п. По конструктивным и технологическим признакам П. п. разделяют на точечные и плоскостные; последние, в свою очередь, делят на сплавные, диффузионные, мезапланарные, планарные (наиболее распространены, см. Планарная технология ) ,эпипланарные и др. В соответствии с областью применения различают высокочастотные, высоковольтные, импульсные и др. П. п.
П. п. выпускают в металлостеклянных, металлокерамических или пластмассовых корпусах, защищающих приборы от внешних воздействий; для использования в гибридных интегральных схемах выпускаются т. н. бескорпусные П. п. (см. Микроэлектроника ) .Номенклатура П. п., выпускаемых во всех странах, насчитывает около 100 000 типов приборов различного назначения. См. также Полупроводниковая электроника.
Я. А. Федотов.
Полупроводниковый гетеропереход
Полупроводнико'вый гетероперехо'д, контакт двух различных по химическому составу полупроводников.На границе раздела изменяется обычно ширина запрещенной зоны D E, подвижность носителей тока, их эффективные массы и др. характеристики полупроводников. В «резком» П. г. изменение свойств происходит на расстоянии, сравнимом или меньшем, чем ширина области объёмного заряда (см. Электронно-дырочный переход ) .В зависимости от легирования обеих сторон П. г. можно создать р-n-гетеропереходы (анизотипные), р-р-и n-n-гетеропереходы (изотипные). Комбинации различных П. г. и р-n-переходов образуют гетероструктуры.
Идеальная стыковка кристаллических решёток в П. г. возможна лишь при совпадении типа, ориентации и периода кристаллических решёток сращиваемых материалов. Кроме того, в идеальном П. г. граница раздела должна быть свободна от структурных и др. дефектов ( дислокаций,заряженных центров и т.п.) и механических напряжений. Наиболее широко применяются монокристаллические П. г. между полупроводниковыми соединениями типа A IIIB Vи их твёрдыми растворами на основе арсенидов, фосфидов и антимонидов Ga и Al. Благодаря близости ковалентных радиусов Ga и Al изменение химического состава происходит без изменения периода решётки. Изготовление монокристаллических П. г. и гетероструктур стало возможным благодаря развитию методов эпитаксиального наращивания полупроводниковых кристаллов.
П. г. используются в различных полупроводниковых приборах: полупроводниковых лазерах, светоизлучающих диодах, фотоэлементах, оптронахи т.д.
Лит.:Алферов Ж. И., Гетеропереходы в полупроводниковой электронике близкого будущего, в кн.: Физика сегодня и завтра, под ред. В. М. Тучкевича, Л., 1973; Елисеев П. Г., Инжекционные лазеры на гетеропереходах, «Квантовая электроника», 1972, № 6; Алферов Ж. И., Инжекционные гетеролазеры, в сборнике: Полупроводниковые приборы и их применение, под ред. Я. Федотова, в. 25, М., 1971.
Ж. И. Алферов.
Полупроводниковый детектор
Полупроводнико'вый дете'кторв ядерной физике, прибор для регистрации ионизирующих излучений,основным элементом которого является кристалл полупроводника.П. д. работает подобно ионизационной камере с тем отличием, что ионизация происходит не в газовом промежутке, а в толще кристалла. П. д. представляет собой полупроводниковый диод,на который подано обратное (запирающее) напряжение (~ 10 2 в). Слой полупроводника вблизи границы р-n-перехода ( см. Электронно-дырочный переход) с объёмным зарядом «обеднён» носителями тока (электронами проводимости и дырками) и обладает высоким удельным электросопротивлением. Заряженная частица, проникая в него, создаёт дополнительные (неравновесные) электронно-дырочные пары, которые под действием электрического поля «рассасываются», перемещаясь к электродам П. д. В результате во внешней цепи П. д. возникает электрический импульс, который далее усиливается и регистрируется (см. рис. ).
Заряд, собранный на электродах П. д., пропорционален энергии, выделенной частицей при прохождении через обеднённый (чувствительный) слой. Поэтому, если частица полностью тормозится в чувствительном слое, П. д. может работать как спектрометр. Средняя энергия, необходимая для образования 1 электронно-дырочной пары в полупроводнике, мала (у Si 3,8 эв,у Ge ~ 2,9 эв) .В сочетании с высокой плотностью вещества это позволяет получить спектрометр с высокой разрешающей способностью (~ 0,1% для энергии ~ 1 Мэв) .Если частица полностью тормозится в чувствительном слое, то эффективность её регистрации ~ 100%. Большая подвижность носителей тока в Ge и Si позволяет собрать заряд за время ~10 нсек,что обеспечивает высокое временное разрешение П. д.
В первых П. д. (1956-57) использовались поверхностно-барьерные (см. Шотки диод ) или сплавные p-n-переходы в Ge. Эти П. д. приходилось охлаждать для снижения уровня шумов (обусловленных обратным током), они имели малую глубину чувствительной области и не получили распространения. Практическое применение получили в 60-е гг. П. д. в виде поверхностно-барьерного перехода в Si ( рис. , а). Глубина чувствительной области Wв случае поверхностно-барьерного П. д. определяется величиной запирающего напряжения V:
W= 5,3Ч10 -5 .
Здесь r - удельное сопротивление полупроводника в омЧ см.Для поверхностно-барьерных переходов в Si c r = 10 4 омЧ смпри V= (1 -2)10 2 в,W =1 мм.Эти П. д. имеют малые шумы при комнатной температуре и применяются для регистрации короткопробежных частиц и для измерения удельных потерь энергии dEldx.
Для регистрации длиннопробежных частиц в 1970-71 были созданы П. д. р-i-n-типа ( рис. , б). В кристалл Si р-типа вводится примесь Li. Ионы Li движутся в р-области перехода (под действием электрического поля) и, компенсируя акцепторы, создают широкую чувствительную i-область собственной проводимости, глубина которой определяется глубиной диффузии ионов Li и достигает 5 мм.Такие дрейфовые кремний-литиевые детекторы используются для регистрации протонов с энергией до 25 Мэв,дейтронов - до 20 Мэв,электронов - до 2 Мэви др.
Дальнейший шаг в развитии П. д. был сделан возвращением к Ge, обладающему большим порядковым номером Zи, следовательно, большей эффективностью для регистрации гамма-излучения.Дрейфовые германий-литиевые плоские (планарные) П. д. применяются для регистрации g-квантов с энергией в несколько сотен кэв.Для регистрации g-квантов с энергией до 10 Мэвиспользуются коаксиальные германий-литиевые детекторы ( рис. , в) с чувствительным объёмом достигающим 100 см 3.Эффективность регистрации g-квантов с энергией < 1 Мэв~ десятков % и падает при энергиях >10 Мэвдо 0,1-0,01%. Для частиц высоких энергий, пробег которых не укладывается в чувствительной области, П. д. позволяют, помимо акта регистрации частицы, определить удельные потери энергии dEldx,а в некоторых приборах координату хчастицы (позиционно-чувствительные П. д.).
Недостатки П. д.: малая эффективность при регистрации g-квантов больших энергии; ухудшение разрешающей способности при загрузках > 10 4частиц в сек;конечное время жизни П. д. при высоких дозах облучения из-за накопления радиационных дефектов (см. Радиационные дефекты в кристаллах ) .Малость размеров доступных монокристаллов (диаметр ~ 3 см,объём ~ 100 см 3) ограничивает применение П. д. в ряде областей.
Дальнейшее развитие П. д. связано с получением «сверхчистых» полупроводниковых монокристаллов больших размеров и с возможностью использования GaAs, SiC, CdTe (см. Полупроводниковые материалы ) .П. д. широко применяются в ядерной физике, физике элементарных частиц, а также в химии, геологии, медицине и в промышленности.
Лит.:Полупроводниковые детекторы ядерных частиц и их применение, М., 1967; Дирнли Дж., Нортроп Д., Полупроводниковые счетчики ядерных излучений, пер. с англ., М., 1966; Полупроводниковые детекторы ядерного излучения, в сборнике: Полупроводниковые приборы и их применение, в. 25, М., 1971 (Авт.: Рывкин С. М., Матвеев О. А., Новиков С. Р., Строкан Н. Б.).
А. Г. Беда. В. С. Кафтанов.
Полупроводниковые детекторы; штриховкой выделена чувствительная область; n - область полупроводника с электронной проводимостью, р - с дырочной, i - с собственной проводимостями; а - кремниевый поверхностно-барьерный детектор; б - дрейфовый германий-литиевый планарный детектор; в - германий-литиевый коаксиальный детектор.
Полупроводниковый диод
Полупроводнико'вый дио'д,двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие «П. д.» объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов.В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы.
Наиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода ( р-n-перехода). Если к р-n-переходу диода ( рис. 1 ) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то потенциальный барьер,соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р-области в n-область и электронов из n-области в р-область - течёт большой прямой ток ( рис. 2 ). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р-n-переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3 приведена эквивалентная схема такого П. д.
На резкой несимметричности вольтамперной характеристики (ВАХ) основана работа выпрямительных (силовых) диодов. Для выпрямительных устройств и др. сильноточных электрических цепей выпускаются выпрямительные П. д., имеющие допустимый выпрямленный ток I вдо 300 аи максимальное допустимое обратное напряжение U* оброт 20-30 вдо 1-2 кв.П. д. аналогичного применения для слаботочных цепей имеют I в < 0,1 аи называются универсальными. При напряжениях, превышающих U* o6p,ток резко возрастает, и возникает необратимый (тепловой) пробой р-n-перехода, приводящий к выходу П. д. из строя. С целью повышения U* обрдо нескольких десятков квиспользуют выпрямительные столбы,в которых несколько одинаковых выпрямительных П. д. соединены последовательно и смонтированы в общем пластмассовом корпусе. Инерционность выпрямительных диодов, обусловленная тем, что время жизни инжектированных дырок (см. Полупроводники ) составляет > 10 -5-10 -4 сек,ограничивает частотный предел их применения (обычно областью частот 50-2000 гц) .
Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10 -7 -10 -10 секи создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами,главным образом в слаботочных сигнальных цепях ЭВМ.
При невысоких пробивных напряжениях обычно развивается не тепловой, а обратимый лавинный пробой р-n-перехода - резкое нарастание тока при почти неизменном напряжении, называется напряжением стабилизации U cт. На использовании такого пробоя основана работа полупроводниковых стабилитронов.Стабилитроны общего назначения с U c тот 3-5 вдо 100-150 вприменяют главным образом в стабилизаторах и ограничителях постоянного и импульсного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается исключительно высокая температурная стабильность U cт(до 1Ч10 -5- 5Ч10 -6К -1), - в качестве источников эталонного и опорного напряжений.
В предпробойной области обратный ток диода подвержен очень значительным флуктуациям; это свойство р-n-перехода используют для создания генераторов шума. Инерционность развития лавинного пробоя в р-n-переходе (характеризующаяся временем 10 -9-10 -10 сек) обусловливает сдвиг фаз между током и напряжением в диоде, вызывая (при соответствующей схеме включения его в электрическую цепь) генерирование СВЧ колебаний. Это свойство успешно используют в лавинно-пролётных полупроводниковых диодах,позволяющих осуществлять генераторы с частотами до 150 Ггц.
Для детектирования и преобразования электрических сигналов в области СВЧ используют смесительные П. д. и видеодетекторы, в большинстве которых р-n-переход образуется под точечным контактом. Это обеспечивает малое значение ёмкости С в( рис. 3 ), а специфическое, как и у всех СВЧ диодов, конструктивное оформление обеспечивает малые значения паразитных индуктивности L kи ёмкости С ки возможность монтажа диода в волноводных системах.
При подаче на р-n-переход обратного смещения, не превышающего U* обр,он ведёт себя как высокодобротный конденсатор, у которого ёмкость С взависит от величины приложенного напряжения. Это свойство используют в варикапах,применяемых преимущественно для электронной перестройки резонансной частоты колебательных контуров, в параметрических полупроводниковых диодах , служащих для усиления СВЧ колебаний, в варакторах и умножительных диодах, служащих для умножения частоты колебаний в диапазоне СВЧ. В этих П. д. стремятся уменьшить величину сопротивления r б(основной источник активных потерь энергии) и усилить зависимость ёмкости С в от напряжения U o6p.
У р-n-перехода на основе очень низкоомного (вырожденного) полупроводника область, обеднённая носителями заряда, оказывается очень тонкой (~ 10 -2 мкм) ,и для неё становится существенным туннельный механизм перехода электронов и дырок через потенциальный барьер (см. Туннельный эффект ) .На этом свойстве основана работа туннельного диода,применяемого в сверхбыстродействующих импульсных устройствах (например, мультивибраторах, триггерах) ,в усилителях и генераторах колебаний СВЧ, а также обращенного диода, применяемого в качестве детектора слабых сигналов и смесителя СВЧ колебаний. Их ВАХ ( рис. 4 ) существенно отличаются от ВАХ других П. д. как наличием участка с «отрицательной проводимостью», ярко выраженной у туннельного диода, так и высокой проводимостью при нулевом напряжении.
К П. д. относят также ПП приборы с двумя выводами, имеющие неуправляемую четырёхслойную р-n-р-n-структуру и называют динисторами (см. Тиристор ) ,а также приборы, использующие объёмный эффект доменной неустойчивости в ПП структурах без р-n-перехода - Ганна диоды.В П. д. используют и др. разновидности ПП структур: контакт металл - полупроводник (см. Шотки эффект, Шотки диод) и р-i-n-структуру, характеристики которых во многом сходны с характеристиками р-n-перехода. Свойство р-i-n-структуры изменять свои электрические характеристики под действием излучения используют, в частности, в фотодиодах и детекторах ядерных излучений,устроенных т. о., что фотоны или ядерные частицы могут поглощаться в активной области кристалла, непосредственно примыкающей к р-n-переходу, и изменять величину обратного тока последнего. Эффект излучательной рекомбинации электронов и дырок, проявляющийся в свечении некоторых р-n-переходов при протекании через них прямого тока, используется в светоизлучающих диодах.К П. д. могут быть отнесены также и полупроводниковые лазеры.
Большинство П. д. изготавливают, используя планарно-эпитаксиальную технологию (см. Планарная технология ) ,которая позволяет одновременно получать до нескольких тысяч П. д. В качестве полупроводниковых материалов для П. д. применяют главным образом Si, а также Ge, GaAs, GaP и др., в качестве контактных материалов - Au, Al, Sn, Ni, Cu. Для защиты кристалла П. д. его обычно помещают в металло-стеклянный, металло-керамический, стеклянный или пластмассовый корпус ( рис. 5 ).
В СССР для обозначения П. д. применяют шестизначный шифр, первая буква которого характеризует используемый полупроводник, вторая - класс диода, цифры определяют порядковый номер типа, а последняя буква - его группу (например, ГД402А - германиевый универсальный диод; КС196Б - кремниевый стабилитрон).
От своих электровакуумных аналогов, например кенотрона,газоразрядного стабилитрона, индикатора газоразрядного,П. д. отличаются значительно большими надёжностью и долговечностью, меньшими габаритами, лучшими техническими характеристиками, меньшей стоимостью и поэтому вытесняют их в большинстве областей применения.
С развитием ПП электроники совершился переход к производству наряду с дискретными П. д. диодных структур в ПП монолитных интегральных схемах и функциональных устройствах, где П. д. неотделим от всей конструкции устройства.
Об исторических сведениях см. в ст. Полупроводниковая электроника.
Лит.:Полупроводниковые диоды. Параметры. Методы измерений, М., 1968; Федотов Я. А., Основы физики полупроводниковых приборов, М., 1970; Пасынков В. В., Чиркин Л. К., Шинков А. Д., Полупроводниковые приборы, М., 1973; Зи С. М., Физика полупроводниковых приборов, пер. с англ., М., 1973.
Ю. Р. Носов.
Рис. 4. Вольтамперные характеристики туннельного (1) и обращенного (2) диодов: U - напряжение на диоде; I - ток через диод.
Рис. 2. Типичная вольтамперная характеристика полупроводникового диода с р - n-переходом: U - напряжение на диоде; I - ток через диод; U* o бри I* o бр- максимальное допустимое обратное напряжение и соответствующий обратный ток; U c т- напряжение стабилизации.
Рис. 3. Малосигнальная (для низких уровней сигнала) эквивалентная схема полупроводникового диода с р - n-переходом: r p -n- нелинейное сопротивление р - n-перехода; r б- сопротивление объёма полупроводника (базы диода); r y т- сопротивление поверхностных утечек; С Б- барьерная ёмкость р - n-перехода; С диф- диффузионная ёмкость, обусловленная накоплением подвижных зарядов в базе при прямом напряжении; С к- ёмкость корпуса; L к- индуктивность токоподводов; А и Б - выводы. Сплошной линией показано подключение элементов, относящихся к собственно р - n-переходу.
Рис. 5. Полупроводниковые диоды (внешний вид): 1 - выпрямительный диод; 2 - фотодиод; 3 - СВЧ диод; 4 и 5 - диодные матрицы; 6 - импульсный диод. Корпуса диодов: 1 и 2 - металло-стеклянные; 3 и 4 - металло-керамические; 5 - пластмассовый; 6 - стеклянный.
Рис. 1. Структурная схема полупроводникового диода с р - n-переходом: 1 - кристалл; 2 - выводы (токоподводы); 3 - электроды (омические контакты); 4 - плоскость р - n-перехода.
Полупроводниковый лазер
Полупроводнико'вый ла'зер, полупроводниковый квантовый генератор, лазер с полупроводниковым кристаллом в качестве рабочего вещества. В П. л., в отличие от лазеров др. типов, используются излучательные квантовые переходы не между изолированными уровнями энергии атомов, молекул и ионов, а между разрешенными энергетическими зонами кристалла (см. Твёрдое тело ) .В П. л. возбуждаются и излучают (коллективно) атомы, слагающие кристаллическую решётку. Это отличие определяет важную особенность П. л. - малые размеры и компактность (объём кристалла ~10 -6-10 -2 см 3) .В П. л. удаётся получить показатель оптич. усиления до 10 4 см -1(см. Усиления оптического показатель ) ,хотя обычно для возбуждения генерации лазера достаточны и меньшие значения (см. ниже). Другими практически важными особенностями П. л. являются: высокая эффективность преобразования электрической энергии в энергию когерентного излучения (до 30-50%); малая инерционность, обусловливающая широкую полосу частот прямой модуляции (более 10 9 Ггц) ;простота конструкции; возможность перестройки длины волны l излучения и наличие большого числа полупроводников, непрерывно перекрывающих интервал длин волн от 0,32 до 32 мкм.
Люминесценция в полупроводниках. При рекомбинации электронов проводимости и дырок в полупроводниках освобождается энергия, которая может испускаться в виде квантов излучения (