По Г. И. Бушинскому (1956), среди фосфатов, слагающих Ф., различаются 5 разновидностей апатита: фторапатит, карбонатапатит, гидроксилапатит, франколит, курскит; по А. В. Казакову (1937), фосфатное вещество всех Ф. состоит из высокодисперсного фторапатита, а различия химического состава объясняются наличием минеральных примесей. В составе Ф. почти всегда присутствуют органическое вещество, карбонаты Ca, Mg и Fe, глинистые минералы, пирит, гидроокислы железа, кварц, халцедон; часто концентрируются U, лантаноиды цериевой группы, а также Y, Pb, Sr, реже – примеси V, Sc, Zr, Se, Be. По структурам различают массивные, желваковые (конкреционные), зернистые, кавернозные, шлаковидные, галечные и конгломератовые разновидности Ф.; по текстурам – слоистые и натёчные Ф. По окраске Ф. чаще чёрные, серые, редко белые, а иногда зелёные, красные и жёлтые.
     По морфологическим и петрографическим признакам среди залежей Ф. выделяются пластовые (микрозернистые), зернистые, желваковые Ф., скопления фосфатных раковин и скелетов рыб и др. организмов, костяные брекчии, залежи гуано-фосфатов (образующиеся при разложении экскрементов морских птиц), фосфатизированные известняки, мергели, мел и фосфоритовые галечники.
     Пластовые (геосинклинальные) Ф. представляют собой плотную однородную породу с раковистым изломом, сложенную округлыми фосфатными зёрнами и оолитами с фосфатным, карбонатным или кремнистым цементом. Характерна большая мощность продуктивных пластов (свыше 10 м) ,значительная выдержанность их на площади и высокое качество Ф. (28—36% P 2O 5).
     Месторождения Ф. этого типа известны в кембрийских отложениях Каратау (СССР), Хубсугуча (МНР), Куньяна (КНР), Джорджины (Австралия), а также в пермских отложениях Скалистых гор (США).
     Зернистые (платформенные) Ф. — карбонатная или терригенная осадочная горная порода с многочисленными фосфатными стяжениями и органическими остатками (фосфатизированные обломки ихтиофауны, рептилий, моллюсков и фораминифер), сцементированных карбонатным, кремнистым и глинистым материалом. Мощность продуктивных пластов до 10 м,но чаще 2—3 м,содержат 22—30% P 2O 5. Распространены в меловых и палеогеновых отложениях Европейской части СССР и Северной Африки (Алжир, Тунис, Марокко и др.), в миоценовых толщах района Сечура (Перу).
     По условиям образования среди Ф. различают морские и континентальные скопления. Происхождение залежей морских Ф. спорно. Согласно представлениям одних ученых (А. В. Казаков, А. С. Соколов, А. И. Смирнов, Дж. Мансфилд, В. Мак-Келви и др.), глубинные воды океана, обогащенные растворенным фосфором за счет гибели планктона, выносились течениями на отмели, теряли углекислоту в зоне фотосинтеза и благодаря этому химическим путем осаждался P 2O 5. Отвергая возможность хемогенного образования Ф, другие исследователи (Г. И. Бушинский, В. Н. Холодов и др.) предполагают, что фосфор в определенные моменты геологической истории поступал в большом количестве с континентов, осаждался планктоном и др. организмами вблизи от берега (в устьях палеорек), а затем, вследствие диагенетического перераспределения веществ (см Диагенез ) в иле образовывал фосфоритовые залежи.
     Большинство промышленных запасов фосфора в мире связано с пластовыми и зернистыми Ф., существенное значение имеют желваковые и карстовые Ф. и залежи гуано, остальные типы Ф. представляют лишь теоретический интерес.
     Ф. используются главным образом (до 90%) для приготовления фосфорных удобрений (фосфоритная мука, суперфосфат, преципитат, томасшлак, аммофос и др.). Кроме того, из Ф. попутно в промышленных масштабах извлекается ряд редких элементов (см. Рассеянных элементов руды ).
     Лит.:Казаков А. В., Химическая природа фосфатного вещества фосфоритов и их генезис, Л., 1937. Бушинский Г. И., Фосфаты кальция фосфоритов, в кн. Вопросы геологии агрономических руд, М., 1956, его же, Древние фосфориты Азии и их генезис, М., 1966, Гиммельфарб Б. М., Закономерности размещения месторождений фосфоритов СССР и их генетическая классификация, М., 1965 Шатский Н. С., Фосфоритоносные формации и классификация фосфоритовых залежей, в кн. Доклады Совещания по осадочным породам, в. 2, М., 1955, Холодов В. Н., О редких и радиоактивных элементах в фосфоритах, М., 1963, (Тр. института минералогии геохимии и кристаллохимии редких элементов, в. 17), Mansfield G. R., Origin of the Western phosphates of the United States, «American Journal of Science», 1918, v. 46, № 274.
      В. Н. Холодов.

Фосфор и Фосфаты .

Фосфор .

Фосфора окислы ). Различают ортофосфорную кислоту (обычно называемую фосфорной кислотой) и конденсированные Ф. к. Наиболее изучена и важна ортофосфорная кислота H 3PO 4, образующаяся при растворении P 4O 10(или P 2O 5) в воде.
     Ортофосфорная кислота — бесцветные гидроскопические кристаллы, плотность 1,87 г/см 3, t пл42,35 °С, известен кристаллогидрат H 3PO 4Ч 1/ 2H 2O с t пл29,32 °С. Плотность обычно широко применяемой 85%-ной H 3PO 4при 25 °С 1,685 г/см 3вязкость при 20 °С 47Ч10 -3 мнЧ сек/м 2,удельная теплоемкость в интервале температур 20—120 °С 2064,1 дж/кгЧК (0,493 кал/г°С). С водой H 3PO 4смешивается в любых отношениях Константы диссоциации при 25 °С K 1= 7Ч10 -3, K 2= 8Ч10 -8, K 3= 4Ч10 -13. Ортофосфорная кислота трехосновная, средней силы. Образует три ряда солей — фосфатов.При нагревании растворов кислоты происходит её дегидратация с образованием конденсированных фосфорных кислот.
     В промышленности ортофосфорную кислоту получают экстракционным (сернокислотным) или термическим способами. Экстракционный способ заключается в разложении фосфатов природных серной и фосфорной кислотами:
   Ca 5F (PO 4) 3+ 5H 2SO 4+ nH 3PO 4= (n+3) H 3PO 4+ 5CaSO 4+ HF
   и последующим разделением на фильтрах образовавшейся кислоты и нерастворимого CaSO 4. Термический способ основан на сжигании фосфора до фосфорного ангидрида P 4+ 5O 2   P 4O 10и гидратации последнего P 4O 10+ 6H 2O = 4H 3PO 4. Промышленная ортофосфорная кислота — важнейший полупродукт для производства фосфорных и комплексных удобрений и технических фосфатов, широко используется также для фосфатирования металлов, в качестве катализатора в органическом синтезе. Пищевая фосфорная кислота применяется для приготовления безалкогольных напитков, лекарств, зубных цементов и т.д.
     Конденсированные (полимерные) Ф. к. подразделяются на полифосфорные с линейным строением фосфат-аниона общей формулы H n+2P nO 3n+1, метафосфорные с циклическим строением фосфат-аниона общей формулы (HPO 3) nи ультрафосфорные кислоты, имеющие разветвленную, сетчатую структуру. Наибольшее практическое значение имеют полифосфорные кислоты Из полифосфорных кислот наиболее полно изучена дифосфорная (пирофосфорная) кислота H 4P 2O 7, выделенная в кристаллическом виде в двух формах с температурами плавления 54,3 °С и 71,5 °С. Пирофосфорная кислота четырёхосновна, константы диссоциации при 18 °С K 1= 1,4Ч10 -1, K 2 = 1,1Ч10 -2, K 3 = 2,1Ч10 -7, K 4 = 4,1Ч10 -10. Три- и тетраполифосфорные кислоты выделены в виде разбавленных растворов. Существование более конденсированных Ф. к., содержащих до 12 атомов в цепи, доказано методом бумажной хроматографии. Полифосфорные кислоты — полиэлектролиты. Циклические метафосфорные кислоты (например, H 3P 3O 9, H 4P 4O 12) представляют собой сильные кислоты. Ультрафосфорные кислоты мало изучены.
     Конденсированные Ф. к. получают дегидратацией ортофосфорных кислот, гидратацией фосфорного ангидрида соответствующим количеством воды, а также путем ионного обмена из соответствующих конденсированных фосфатов. Применяют в основном для производства высококонцентрированных фосфорных удобрений, в качестве катализаторов при получении нефтепродуктов и в органическом синтезе, для производства различных полифосфатов.
     Лит.:Краткая химическая энциклопедия, т. 5, М., 1967, Везер Ван Дж., Фосфор и его соединения, пер. с англ., т. 1, М., 1962, Постников Н. Н., Термическая фосфорная кислота, М., 1970, Копылов Б. А., Технология экстракционной фосфорной кислоты, Л., 1972.
      Л. В. Кубасова.

фосфоритов и апатитов . В качестве Ф. у. применяют также органические вещества, например костную муку, навоз, богатые фосфором отходы промышленности — фосфатшлак, томасшлак и др. Ф. у. — первые из минеральных удобрений,полученные промышленным путем. Их (суперфосфат) впервые стали вырабатывать в Великобритании в 1842 (до этого в 1-й половине 19 в. в качестве Ф. у. использовали в основном костную муку), в России – с 1868. Разработка фосфоритов для производства удобрений была начата в 1855 во Франции. В России первая попытка их непосредственного использования в земледелии принадлежит А. Н. Энгельгардту, проводившему с 1866 опыты с фосфоритной мукой (измельченным фосфоритом) в своём имении Батищево Смоленской губернии. В 1867–69 Д. И. Менделеев изучал действие Ф. у. на урожайность с.-х. растений в Смоленской, Петербургской, Московской и Симбирской губерниях. В своих работах учёный пропагандировал необходимость применения размолотых фосфоритов и суперфосфата в земледелии. Промышленная разработка апатитов впервые осуществлена в СССР в 1935 (Хибинское месторождение, крупнейшее в мире).
     Мировое производство Ф. у. к 1900 составило около 1 млн. т(в пересчёте на P 2O 5), в России около 20 тыс. т.В 20 в. (особенно с его середины) применение Ф. у. значительно увеличилось (табл. 1). Однако относительный рост потребления их в сельском хозяйстве меньше, чем азотных и калийных удобрений, что объясняется недостаточными запасами фосфатного сырья.
   Табл. 1. – Мировое потребление в сельском хозяйстве фосфорных минеральных удобрений, тыс. тP 2O 5

Страны 1950 1960 1970 1974
Все страны в том числе: США СССР Франция КНР Австралия ФРГ Польша Япония Бразилия Индия Испания Канада Великобритания Италия 5918 1869 532 370 331 336 55 232 25 8 126 113 413 247 9600 2427 1088 783 536 707 180 440 62 66 275 133 436 389 18802 4145 3184 1684 730 862 857 595 702 237 420 389 284 460 486 24255 4600 4496 2152 1390 1171 917 848 793 725 634 481 480 478 472

     Обеспечение Ф. у. 1 гапашни в 1974 составляло (в кгP 2O 5): 16,5 в мировом земледелии, 198,4 в Бельгии, 74 в Чехословакии, 66,8 в Великобритании, 56 в Польше, 53,6 в ГДР, 24,1 в США, 18,7 в СССР. Расширился ассортимент Ф. У.
     Ф. у. по растворимости разделяют на 3 группы. В водорастворимых удобрениях (простой, двойной и аммонизированный суперфосфаты) фосфор содержится в виде одноосновного фосфата кальция Ca (P 2O 4) 2ЧH 2O. Их производят преимущественно гранулированными и используют для основного и припосевного (в рядки) внесения. В цитратнорастворимых (растворимы в щелочном растворе цитрата аммония реактиве Петермана) и лимоннорастворимых (в лимонной кислоте) удобрениях (преципитат, томасшлак, фосфатшлак, обесфторенный фосфат, плавленный фосфат магния) фосфор находится в виде двухосновного фосфата кальция CaHPO 4ЧH 2O или тетракальциевого фосфата Ca 4P 2O 5. Эти удобрения применяют для основного внесения под вспашку или культивацию. В труднорастворимых Ф. у. (фосфоритная мука, костная мука) фосфор содержится в виде трикальцийфосфата Ca 3(PO 4) 2. Вносят их как основное удобрение в повышенных дозах на кислых почвах, в которых труднорастворимые фосфаты переходят в доступную для растений форму. Все Ф. у. негигроскопичны, не слёживаются, хорошо рассеваются туковыми сеялками.
     Перспективны новые высококонцентрированные Ф. у. (полифосфаты аммония, метафосфаты калия), содержащие от 50 до 80% P 2O 5. По эффективности они равноценны, а в ряде случаев превосходят стандартные формы Ф. у. В США и некоторых странах Западной Европы получают применение жидкие удобрения, изготовляемые на основе полифосфорных кислот. Использование этих удобрений позволяет полностью механизировать их внесение, до минимума сократить потери, равномерно заделывать в почву, одновременно вносить микроэлементы и пестициды. Характеристика основных минеральных Ф. у. приведена в табл. 2.
   Табл. 2. – Характеристика основных минеральных удобрений

Удобрения Химическая формула Содержание P 2О 5, %
Суперфосфат простой и гранулированный Са (Н 2РО 4) 2Н 2О + 2CaSO 4 14–19,5
Суперфосфат двойной гранулированный Са (Н 2РО 4) 2ЧН 2О 45
Фосфоритная мука СаF (РО 4) 3+ СаОН (РO 4) 3+ СаСО 3 19–30
Преципитат СаНРO 4Ч2Н 2O 27–35
Фосфатшлак 4СаОЧР 2O 5ЧСaSiO 3 16–19
Томасшлак 4СаОЧР 2О 5+ 4СаОЧP 2O 5ЧCaSiO 3 14

     Ф. у. увеличивают урожай и улучшают его качество, ускоряют созревание растений, повышают их устойчивость к полеганию и засухе. Последнее имеет особое значение для СССР, где основные земледельческие районы расположены в зоне недостаточного увлажнения. Установлена высокая эффективность Ф. у. во всех почвенно-климатических зонах страны, при внесении под все с.-х. культуры. Положительное действие их особенно проявляется на фоне обеспечения растений азотом и калием, при глубокой заделке Ф. у. в почву. Внесение 60 кгP 2O 5(основное удобрение) под озимую пшеницу даёт дополнительно 2–5 цс 1 газерна. В зонах возделывания яровой пшеницы внесение 60–80 кгP 2O 5повышает урожай на 1,5–2,5 цс 1 га.В связи с малой подвижностью Ф. у. оказывают последействие в течение нескольких лет: в засушливых районах 6–8 лет, в зоне достаточного увлажнения 2–3 года.
     Дозы Ф. у. зависят от почвенных условий, особенности культуры, обеспеченности растений элементами питания. В СССР вносят в качестве основного удобрения (под вспашку или культивацию) 60–120 кг/гаP 2O 5и припосевного – 10–40 кг/гаP 2O 5. Подкормка фосфором, как правило, малоэффективна, за исключением орошаемых земель.
     На орошаемых землях республик Средней Азии и Азербайджана применение 100–120 кг/гаP 2O 5под хлопчатник повышает сбор хлопка-сырца на 3–5 цс 1 га.В зонах свеклосеяния 60–120 кг/гаP 2O 5увеличивают урожай сахарной свёклы на 25–50 цс 1 гаи повышают сахаристость корнеплодов на 0,1–0,3%. Внесение в качестве основного удобрения 60 кг/гаP 2O 5под подсолнечник на чернозёмах Украины, Молдавии, лесостепи РСФСР и степной зоны Сев. Кавказа повышает урожайность семян на 1–4,5 цс 1 га;использование 20 кг/гаP 2O 5или вместе с 10 кг/гаN в рядки при посеве даёт прибавку 1,0–3,4 цс 1 га.При достаточном фосфорном питании в подсолнечнике увеличивается также содержание жира. При удобрении фосфором в дозе 90 кг/гаурожайность картофеля на дерново-подзолистых и чернозёмных почвах повышается па 25–30 цс 1 га; при этом содержание крахмала в клубнях возрастает на 0,6–1,2%. Ф. у. эффективны также при внесении под др. с.-х. культуры – кормовые, овощные, плодовые.
     Лит.:Прянишников Д. Н., Избр. соч., т. 1, 3, М., 1963; Справочная книга по химизации сельского хозяйства, под ред. В. М. Борисова, М., 1969; Географические закономерности действия удобрений, М., 1975.
      О. В. Сдобникова.

Фосфора окислы.

бактериальное удобрение для всех с.-х. культур, содержащее споры микроорганизмов, способных переводить фосфорорганические соединения в усвояемую для растений форму.

фосфор и греч. lэsis – разрушение), ферментативная реакция расщепления химических связей в некоторых биологически важных соединениях с участием фосфорной кислоты; сопровождается включением фосфорильной группы (–H 2PO 3) в образующиеся продукты. Ферменты, катализирующие Ф., называются