Страница:
Т® 0 К существует порог – минимальная частота w
0(или максимальная длина волны l
0) излучения, за которой Ф. э. не возникает; 3) максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой излучения и не зависит от его интенсивности.">фотоэлектронной эмиссии
или
фотоэффекте внутреннем.
Ф., действие которого основано на фотоэлектронной эмиссии, представляет собой (рис., а) электровакуумный прибор с 2 электродами – фотокатодом и анодом (коллектором электронов), помещенными в вакуумированную либо газонаполненную стеклянную или кварцевую колбу. Световой поток, падающий на фотокатод, вызывает фотоэлектронную эмиссию с его поверхности; при замыкании цепи Ф. в ней протекает фототок, пропорциональный световому потоку. В газонаполненных Ф. в результате ионизации газа и возникновения несамостоятельного лавинного электрического разряда в газах фототок усиливается. Наиболее распространены Ф. с сурьмяно-цезиевым и кислородно-серебряно-цезиевым фотокатодами.
Ф., действие которого основано на внутреннем фотоэффекте, – полупроводниковый прибор с гомогенным электронно-дырочным переходом ( р–n-переходом) ( рис. , б) , полупроводниковым гетеропереходомили контактом металл-полупроводник (см. Шотки диод ) .Поглощение оптического излучения в таких Ф. приводит к увеличению числа свободных носителей внутри полупроводника.Под действием электрического поля перехода (контакта) носители заряда пространственно разделяются (например, в Ф. с р–n-переходом электроны накапливаются в n-oбласти, а дырки – в р-области), в результате между слоями возникает фотоэдс; при замыкании внешней цепи Ф. через нагрузку начинает протекать электрический ток. Материалами, из которых выполняют полупроводниковые Ф., служат Se, GaAs, CdS, Ge, Si и др.
Ф. обычно служат приёмниками излучения или приёмниками света (полупроводниковые Ф. в этом случае нередко отождествляют с фотодиодами ) ;полупроводниковые Ф. используют также для прямого преобразования энергии солнечного излучения в электрическую энергию – в солнечных батареях, фотоэлектрических генераторах.
Основные параметры и характеристики Ф. 1) Интегральная чувствительность (ИЧ) – отношение фототока к вызывающему его световому потоку при номинальном анодном напряжении (у вакуумных Ф.) или при короткозамкнутых выводах (у полупроводниковых Ф.). Для определения ИЧ используют, как правило, эталонные источники света (например, лампу накаливания с воспроизводимым значением цветовой температуры нити, обычно равным 2840 К). Так, у вакуумных Ф. (с сурьмяно-цезиевым катодом) ИЧ составляет около 150 мка/лм,у селеновых – 600–700 мка/лм,у германиевых – 3Ч10 4 мка/лм.2) Спектральная чувствительность – величина, определяющая диапазон значений длин волн оптического излучения, в котором практически возможно использовать данный Ф. Так, у вакуумных Ф. с сурьмяно-цезиевым катодом этот диапазон составляет 0,2–0,7 мкм,у кремниевых – 0,4–1,1 мкм,у германиевых – 0,5–2,0 мкм.3) Вольтамперная характеристика – зависимость фототока от напряжения на Ф. при постоянном значении светового потока; позволяет определить оптимальный рабочий режим Ф. Например, у вакуумных Ф. рабочий режим выбирается в области насыщения (область, в которой фототок практически не меняется с ростом напряжения). Значения фототока (вырабатываемого, например, кремниевым Ф., освещаемым лампой накаливания) могут при оптимальной нагрузке достигать (в расчёте на 1 см 2освещаемой поверхности) несколько десятков ма(для кремниевых Ф., освещаемых лампой накаливания), а фотоэдс – нескольких сотен мв.4) Кпд, или коэффициент преобразования солнечного излучения (для полупроводниковых Ф., используемых в качестве преобразователей энергии), – отношение электрической мощности, развиваемой Ф. в номинальной нагрузке к падающей световой мощности. У лучших образцов Ф. кпд достигает 15–18%.
Ф. используют в автоматике и телемеханике, фотометрии, измерительной технике, метрологии, при оптических, астрофизических, космических исследованиях, в кино- и фототехнике, факсимильной связи и т.д.; перспективно использование полупроводниковых Ф. в системах энергоснабжения космических аппаратов, морской и речной навигационной аппаратуре, устройствах питания радиостанций и др.
Лит.:Рывкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Фотоэлектронные приборы, М., 1965; Васильев А. М., Ландсман А. П., Полупроводниковые фотопреобразователи М 1971.
М. М. Колтун.
Схематическое изображение фотоэлемента с внешним (а) и внутренним (б) фотоэффектом; К — фотокатод; А — анод; Ф — световой поток; n и p — области полупроводника с донорной и акцепторной примесями; Е — источник постоянного тока, служащий для создания в пространстве между К и А электрического поля, ускоряющего фотоэлектроны; R н— нагрузка; пунктирной линией обозначен р — n-переход.
фотонов
). Ф. был открыт в 1887 Г.
Герцем.Первые фундаментальные исследования Ф, выполнены А. Г.
Столетовым
(1888). Он установил, что в возникновении фототока в цепи, содержащей металлические электроды и источник напряжения, существенную роль играет освещение отрицательного электрода и что сила фототока пропорциональна интенсивности света. Ф.
Ленард
(1899) доказал, что при освещении металлов из них испускаются электроны. Первое теоретическое объяснение законов Ф. дал А.
Эйнштейн
(1905). В дальнейшем теория Ф. была развита в наиболее последовательном виде И. Е.
Таммом
и С. П.
Шубиным
(1931). Большой вклад в экспериментальное исследование Ф. внесли работы А. Ф.
Иоффе
(1907), П. И.
Лукирского
и С. С. Прилежаева (1928).
Ф., действие которого основано на фотоэлектронной эмиссии, представляет собой (рис., а) электровакуумный прибор с 2 электродами – фотокатодом и анодом (коллектором электронов), помещенными в вакуумированную либо газонаполненную стеклянную или кварцевую колбу. Световой поток, падающий на фотокатод, вызывает фотоэлектронную эмиссию с его поверхности; при замыкании цепи Ф. в ней протекает фототок, пропорциональный световому потоку. В газонаполненных Ф. в результате ионизации газа и возникновения несамостоятельного лавинного электрического разряда в газах фототок усиливается. Наиболее распространены Ф. с сурьмяно-цезиевым и кислородно-серебряно-цезиевым фотокатодами.
Ф., действие которого основано на внутреннем фотоэффекте, – полупроводниковый прибор с гомогенным электронно-дырочным переходом ( р–n-переходом) ( рис. , б) , полупроводниковым гетеропереходомили контактом металл-полупроводник (см. Шотки диод ) .Поглощение оптического излучения в таких Ф. приводит к увеличению числа свободных носителей внутри полупроводника.Под действием электрического поля перехода (контакта) носители заряда пространственно разделяются (например, в Ф. с р–n-переходом электроны накапливаются в n-oбласти, а дырки – в р-области), в результате между слоями возникает фотоэдс; при замыкании внешней цепи Ф. через нагрузку начинает протекать электрический ток. Материалами, из которых выполняют полупроводниковые Ф., служат Se, GaAs, CdS, Ge, Si и др.
Ф. обычно служат приёмниками излучения или приёмниками света (полупроводниковые Ф. в этом случае нередко отождествляют с фотодиодами ) ;полупроводниковые Ф. используют также для прямого преобразования энергии солнечного излучения в электрическую энергию – в солнечных батареях, фотоэлектрических генераторах.
Основные параметры и характеристики Ф. 1) Интегральная чувствительность (ИЧ) – отношение фототока к вызывающему его световому потоку при номинальном анодном напряжении (у вакуумных Ф.) или при короткозамкнутых выводах (у полупроводниковых Ф.). Для определения ИЧ используют, как правило, эталонные источники света (например, лампу накаливания с воспроизводимым значением цветовой температуры нити, обычно равным 2840 К). Так, у вакуумных Ф. (с сурьмяно-цезиевым катодом) ИЧ составляет около 150 мка/лм,у селеновых – 600–700 мка/лм,у германиевых – 3Ч10 4 мка/лм.2) Спектральная чувствительность – величина, определяющая диапазон значений длин волн оптического излучения, в котором практически возможно использовать данный Ф. Так, у вакуумных Ф. с сурьмяно-цезиевым катодом этот диапазон составляет 0,2–0,7 мкм,у кремниевых – 0,4–1,1 мкм,у германиевых – 0,5–2,0 мкм.3) Вольтамперная характеристика – зависимость фототока от напряжения на Ф. при постоянном значении светового потока; позволяет определить оптимальный рабочий режим Ф. Например, у вакуумных Ф. рабочий режим выбирается в области насыщения (область, в которой фототок практически не меняется с ростом напряжения). Значения фототока (вырабатываемого, например, кремниевым Ф., освещаемым лампой накаливания) могут при оптимальной нагрузке достигать (в расчёте на 1 см 2освещаемой поверхности) несколько десятков ма(для кремниевых Ф., освещаемых лампой накаливания), а фотоэдс – нескольких сотен мв.4) Кпд, или коэффициент преобразования солнечного излучения (для полупроводниковых Ф., используемых в качестве преобразователей энергии), – отношение электрической мощности, развиваемой Ф. в номинальной нагрузке к падающей световой мощности. У лучших образцов Ф. кпд достигает 15–18%.
Ф. используют в автоматике и телемеханике, фотометрии, измерительной технике, метрологии, при оптических, астрофизических, космических исследованиях, в кино- и фототехнике, факсимильной связи и т.д.; перспективно использование полупроводниковых Ф. в системах энергоснабжения космических аппаратов, морской и речной навигационной аппаратуре, устройствах питания радиостанций и др.
Лит.:Рывкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Фотоэлектронные приборы, М., 1965; Васильев А. М., Ландсман А. П., Полупроводниковые фотопреобразователи М 1971.
М. М. Колтун.
Схематическое изображение фотоэлемента с внешним (а) и внутренним (б) фотоэффектом; К — фотокатод; А — анод; Ф — световой поток; n и p — области полупроводника с донорной и акцепторной примесями; Е — источник постоянного тока, служащий для создания в пространстве между К и А электрического поля, ускоряющего фотоэлектроны; R н— нагрузка; пунктирной линией обозначен р — n-переход.