световых эталонов.
     Воспроизведение мгновенных (пиковых) значений силы света в импульсе и освечивания осуществляется при помощи импульсных газоразрядных источников света.Номинальные значения пиков силы света у выпускаемых в СССР шаровых (типа ИШО-1) и трубчатых (ИПО-75) Ф. л. составляют соответственно 3Ч10 5и 10 6 кд,а освечивания – 0,9 и 300 кдЧ сек.Относительное квадратичное отклонение пиковой силы света в импульсах у этих Ф. л. не превышает 1,7%.
     Значения яркостной и цветовой температур в диапазоне от 800 до 3000 К в УФ, видимой и ближней ИК областях спектра воспроизводятся образцовыми и рабочими температурными Ф. л. накаливания с телом накала в виде нити, ленты или светящейся полости.
     Для воспроизведения значений длин волн при градуировке спектральных приборов служат спектральные газоразрядные лампы с линейчатым спектром, резонансное излучение которых сосредоточено в очень узких спектральных интервалах. Воспроизведение распределения мощности УФ излучения в абсолютных единицах осуществляется с помощью газоразрядной ртутной лампы – т. н. ультрафиолетовой нормали.
     Лит.см. при ст. Фотометрия.
      В. А. Гаванин.

фотометрических величин.На Ф. с. можно устанавливать и перемещать на точно измеряемое расстояние источники света, фотометрические головки (см. Фотометр ) и различные применяемые в фотометрии приспособления. Основная часть Ф. с. – прямолинейные направляющие со шкалой (обычно длина 3–5 ми ценой делений 1 мм) ;на направляющих легко перемещаются и закрепляются каретки с установленными на них приборами и приспособлениями. Рассеянный и посторонний свет устраняется поперечными светопоглощающими экранами – промежуточными с отверстиями для фотометрируемого пучка лучей и концевыми. Вспомогательное оборудование Ф. с. включает отвес, измеритель расстояний, вращающийся поглотитель, держатель с поворотным лимбом и пр.

оптическое излучение.Различают энергетические фотометрические величины и редуцированные фотометрические величины.Первые из них характеризуют излучение безотносительно к его действию на какой-либо приёмник излучения;они выражаются в единицах, образованных на основе единиц энергии: джоуля (система СИ), эрга или калории.
     Редуцированные, или эффективные, Ф. в. оценивают излучение по его действию на те или иные селективные приёмники излучения. Если в качестве такого приёмника служит человеческий глаз, соответствующие Ф. в. называются световыми величинами.Для характеристики излучения по его действию на др. селективные приёмники (бактерии, растения и т.д.) предложены и применяются др. системы редуцированных Ф. в.: бактерицидные Ф. в., фитовеличины и др.

Двойные звёзды.

количественного анализа,основанных на зависимости между концентрацией вещества в растворе или газе и поглощением излучения. Эта зависимость для монохроматического излучения выражается (в определённой области концентраций) Бугера – Ламберта – Вера законом.Ф. а. включает измерения в видимой, ультрафиолетовой и инфракрасной областях спектра. Обычно при Ф. а. сравнивают интенсивность излучения, прошедшего через пробу анализируемого материала, с первоначальной интенсивностью или интенсивностью эталонного образца. Метод Ф. а., в котором используется видимый свет, называется колориметрией.Ф. а., в процессе которого сканируется интенсивность проходящего излучения, диспергированного на монохроматические составляющие, называется спектрофотометрией.Близок к Ф. а. метод атомной абсорбции, а также методы турбидиметрического (см. Турбидиметрия ) и нефелометрического анализа.
   
      Лит.:Шарло Г., Методы аналитической химии. Количественный анализ неорганических соединений, пер. с франц., М. – Л., 1965; Бабко А. К., Пилипенко А. Т., Фотометрический анализ, М., 1968; Берштейн И. Я., Каминский Ю. Л., Спектрофотометрический анализ в органической химии, Л., 1975.
      Ю. А. Клячко.

космологических парадоксов.

почернения фотографического,масса проявленного серебра на единице площади фотослоя, которая, будучи равномерно распределена по этому слою, даст оптическую плотность его почернения, равную 1. Величина, обратная Ф. э., называется кроющей способностью проявленного серебра. Ф. э. зависит от выбора фотоматериала, условий его проявления и др. факторов, определяющих размеры, структуру и расположение проявленных зёрен серебра в фотослое. Типичные значения Ф. э. для многих фотоматериалов имеют значения от 1 до 3 г/м 2.

фото... и ...метрия ) ,раздел физической оптики, в котором рассматриваются энергетические характеристики оптического излучения,испускаемого источниками, распространяющегося в различных средах и взаимодействующего с телами. При этом энергия электромагнитных колебаний оптического диапазона усредняется по малым интервалам времени, которые, однако, значительно превышают период таких колебаний. Ф. охватывает как экспериментальные методы и средства измерений фотометрических величин,так и относящиеся к этим величинам теоретические положения и расчёты.
     Основным энергетическим понятием Ф. является поток излучения Ф е, имеющий физический смысл средней мощности, переносимой электромагнитным излучением. Пространственное распределение Ф еописывают энергетические фотометрические величины,производные от потока излучения по площади и (или) телесному углу.В фотометрии импульсной применяются также интегральные по времени фотометрические величины. В узком смысле Ф. иногда называют измерения и расчёт величин, относящихся к наиболее употребительной системе редуцированных фотометрических величин–системе световых величин ( освещённости, силы света, яркости, освечивания, светимостии пр.; соответствующие энергетические фотометрические величины – энергетическая освещённость, энергетическая сила света, энергетическая яркость и т.д.). Световые величины – это фотометрические величины, редуцированные в соответствии со спектральной чувствительностью т. н. среднего светлоадаптированного человеческого глаза (важнейшего для деятельности человека приёмника света;см. Адаптация физиологическая;об условиях, при которых получают характеристики среднего глаза как приёмника, см. ст. Световые величины ) .Применяются и др. системы редуцированных (по отношению к др. приёмникам) фотометрических величин: эритемные, бактерицидные, фотосинтетические. Изучение зависимостей фотометрических величин от длины волны излучения и спектральных плотностей энергетических величин составляет предмет спектрофотометрии и спектрорадиометрии. Методы Ф. широко применяются в астрономии для исследования космических источников излучения в различных диапазонах спектра излучения (см. Астрофотометрия, Показатель цвета) .Сведение Ф. лишь к измерениям световых величин ошибочно.
     Фундаментальный для Ф. закон Е= I/l 2 ,согласно которому освещённость Еизменяется обратно пропорционально квадрату расстояния lот точечного источника с силой света Iбыл сформулирован И. Кеплером в 1604. Однако основоположником экспериментальной Ф. следует считать П. Бугера,который опубликовал в 1729 описание визуального метода количественного сравнения источников света – установления (путём изменения расстояний до источников) равенства освещённостей соседних поверхностей с использованием в качестве прибора глаза. Методы визуальной Ф. применяются в отдельных случаях до настоящего времени (2-я половина 20 в.) и в результате работ сов. учёных, которые ввели понятие т. н. эквивалентной яркости, распространены на область малых яркостей. В зависимости от используемых методов измерения фотометрических величин Ф. условно делят на визуальную, фотографическую, фотоэлектрическую, фотохимическую и так далее.
     Начатое И. Ламбертом (1760) развитие теоретических методов Ф. нашло обобщённое выражение в теории светового поля,доведённой до стройной системы сов. учёным А. А. Гершуном (30-е гг. 20 в.). Современная теоретическая Ф. распространена на мутные среды.Теоретическая Ф. основывается на соотношении dФ е = L edG,выражающем в дифференциальной форме закон квадратов расстояний; здесь dФ едифференциал потока излучения элементарного пучка лучей, мерой множества которых (см. Мера множества ) является дифференциал dG фактора геометрического, L eэнергетическая яркость излучения. Фотометрические свойства веществ и тел характеризуются пропускания коэффициентами t, отражения коэффициентами r и поглощения коэффициентами a ,которые для одного и того же тела связаны очевидным соотношением t + r + a = 1. Ослабление потока излучения узконаправленного пучка при прохождении через вещество описывается Бугера – Ламберта – Бера законом.
     Экспериментальные методы Ф. основаны на абсолютных и относительных измерениях потока излучения различными селективными и неселективными приёмниками излучения (т. е. приёмниками, реакция которых зависит или не зависит от длины волны излучения). Для определения размерных фотометрических величин применяют либо фотометры с непосредственным сравнением неизвестного и известного потоков, либо фотометры, предварительно градуированные в соответствующих единицах измерения энергетических или редуцированных фотометрических величин. В частности, для передачи значений световых величин обычно используют сличаемые с государственными световыми эталонами образцовые и рабочие светоизмерительные лампы – источники с известными фотометрическими характеристиками. Ф. лазерного излучения в основном построена по принципу использования образцовых и рабочих спектрально неселективных приёмников излучения, сличаемых с государственными эталонами мощности и энергии когерентного излучения лазеров.Измерение безразмерных величин t и r выполняется фотометрами с применением относительных методов, путём регистрации отношения реакций линейного приемника излучения на соответствующие потоки излучения. Применяется также уравнивание реакций линейного или нелинейного приёмника излучения изменением по определённому закону в известное число раз сравниваемых потоков излучения.
     Теоретические и экспериментальные методы Ф. находят применение в светотехнике и технике сигнализации, в астрономии и астрофизике, при расчёте переноса излучения в плазме газоразрядных источников света и звёзд, при химическом анализе веществ, в пирометрии,при расчётах теплообмена излучением и во многих др. областях науки и производства.
     Лит.:Бугер П., Оптический трактат о градации света, пер. с франц., М., 1950; Гершун А. А., Избр. труды по фотометрии и светотехнике, М., 1958; Мешков В. В., Основы светотехники, ч. 1–2, М. – Л., 1957–61; Тиходеев П. М., Световые измерения в светотехнике. (Фотометрия), 2 изд., М. – Л., 1962; Волькенштейн А. А., Визуальная фотометрия малых яркостей, М. – Л., 1965; Сапожников Р. А., Теоретическая фотометрия, 2 изд., Л., 1967; Гуревич М. М., Введение в фотометрию, Л., 1968.
      А. С. Дойников.

фотометрии,в котором изучают импульсные потоки излучения и оценивают их параметры в интервалах времени, меньших периодов повторения исследуемых импульсов излучения.
     После исследований, относившихся к т. н. проблесковым огням (франц. учёные А. Блондель и Ж. Рей), которые были выполнены в конце 19 – начале 20 вв., а также работ 20–30-х гг. 20 в., подытоженных французской фотометристкой М. Моро-Ано, современное развитие Ф. и. началось в 50–60-е гг. и связано с применением импульсных ламп и лазеров.
     Ф. и. включает расчёт и измерение энергетических, пространственных, спектральных и временных характеристик источников импульсного излучения, теоретическое обоснование методов и расчёт погрешностей измерений, а также метрологическое обеспечение единства измерений (о том, насколько это важно, можно судить по приводимым в ст. Фотометр типичным значениям погрешностей). Система фотометрических величин в Ф. и. дополняется интегралами по времени от энергетических фотометрических величин и световых величин ( освечивание, экспозиция,интеграл яркости по времени), характеризующими энергию импульсов излучения, а также величинами (параметрами), используемыми в измерительной импульсной технике.
     Плотность потоков излучения импульсных источников, особенно в нано- и пикосекундном диапазонах длительностей импульсов (10 -12–10 -9 сек) ,часто достигает значений, при которых не выполняются те или иные законы классической фотометрии, безусловно справедливые в области постоянства т. н. передаточной функции оптических материалов и приёмников излучения.Эта функция характеризует ряд важных свойств оптических сред и приёмников света при воздействии на них импульсов излучения или меняющегося во времени излучения вообще, например пропускания коэффициент образца среды или спектральную чувствительность фотоприёмника в определённый момент времени. Развитие лазерной техники ставит перед Ф. и. задачи разработки новых методов измерений, таких, как детектирование световых импульсов нелинейными кристаллами (см. Нелинейная оптика ) ,автоматическая обработка получаемых результатов измерения и создание приёмников излучения с высоким временным разрешением и с широким диапазоном линейной зависимости реакции приёмника от изменения воздействующего потока излучения.
     Импульсные методы измерения излучений, обеспечивающие высокие точность и чувствительность, применяются и для получения фотометрических характеристик тел (коэффициент пропускания, отражения коэффициента и др.). Эти методы весьма перспективны в связи с применением в схемах фотометров цифровой вычислительной техники, быстродействие которой согласуется с длительностью импульсов распространённых источников излучения (обработка информации ведётся в т. н. реальном масштабе времени).
     Лит.:Волькенштейн А. А., Кувалдин Э. В., Фотоэлектрическая импульсная фотометрия, Л., 1975.
      Э. В. Кувалдин.

спектрального анализа.Применяется главным образом для количественного определения в растворах атомов многих металлов и редкоземельных элементов по их спектральным линиям или полосам. Источником возбуждения спектров является пламя светильного газа, водорода, ацетилена или дициана. Анализируемый раствор инжектируется в пламя в виде аэрозоля в токе кислорода или воздуха. Наиболее распространено водород-кислородное пламя, характеризующееся достаточно высокой температурой (2900 К), малой интенсивностью собственного излучения и отсутствием в пламени твёрдых частиц при неполном сгорании.