фотоэдс ) илиэлектрический ток (фототок). Действие Ф. основывается на фотоэлектронной эмиссии или фотоэффекте внутреннем.">фотоэлемент ) ,в котором закодированный на сигналограмме сигнал превращается в электрический сигнал.
     Электронно-фотографическая запись и Ф. з. когерентным светом позволяют осуществить более качественную (по сравнению с Ф. з. некогерентным светом) запись высокочастотных колебаний и повысить плотность записи; это обусловливает целесообразность (и перспективность) использования таких видов Ф. з. для записи изображений.
     Лит.:Бургов В. А., Основы записи и воспроизведения звука, М., 1954; Джакония В. Е., Запись телевизионных изображений, Л., 1972.
      В. А. Бургов.

Звёздная величина.

Звукозапись, Фотографическая запись.
   Схема светомодулирующего устройства с зеркальным модулятором света для фотографической звукозаписи: 1 — записывающая лампа; 2 и 6 — конденсорные линзы; 3 — диафрагма с М-образным вырезом; 4 — изображающая линза; 5 — модулирующее зеркальце; 7 — диафрагма с узким прямоугольным вырезом; 8 — микрообъектив; 9 — световой штрих на кинопленке; 10 — кинопленка; 11 — фрагмент фонограммы с «сфотографированным» на ней звуком.

Зенитная труба фотографическая.

характеристической кривой фотографического материала на ось логарифмов экспозиций.Ф. ш. показывает то предельное отношение яркостей на объекте съёмки, которое данный фотоматериал ещё способен передать без нелинейных искажений. См. ст. Сенситометрия (там же см. рис. 1 и лит.).

геля желатины с содержащимися в ней микрокристаллами галогенида серебра, которые находятся в Ф. э. в виде кристаллов правильной кубической или кубооктаэдрической формы с размерами 0,01–0,02 мкм(особомелкозернистая ядерная фотографическая эмульсия ) ,0,2–0,3 мкм(высокочувствительные Ф. э.) и более 0,5 мкм(рентгенографические эмульсии). С увеличением размера микрокристаллов светочувствительность Ф. э. возрастает, однако увеличивается также зернистость. Для придания Ф. э. необходимых свойств в них вводят дубители (ацетат хрома, хромокалиевые квасцы и др., см. Дубление фотографическое) , пластификаторы(глицерин, этиленгликоль), спектральные сенсибилизирующие красители (обычно полиметиновые; см. также Сенсибилизация оптическая), стабилизаторы (производные триазаиндолицина и др.), антиокислители (пирокатехин), антисептики (фенол, хлоркрезол), антивуалирующие вещества (бромид калия и др.) и поверхностно-активные вещества.Применение указанных добавочных веществ позволяет получать Ф. э. для изготовления большого ассортимента фотографических материалов,различающихся по общей и спектральной чувствительности, градационным и структурометрическим характеристикам (см. Структурометрия фотографическая ) .
     Производство Ф. э. заключается в приготовлении суспензии галогенида серебра в среде защитного коллоида с последующим физическим (первым) и химическим (вторым) созреванием. Галогенид серебра образуется при взаимодействии галогенидов щелочных металлов или аммония с нитратом серебра (при аммиачном способе из аммиаката серебра) в водном растворе желатины. На стадии физического созревания протекает кристаллизационный процесс возникновения микрокристаллов галогенида серебра различного размера. Одновременно из-за различия в растворимости мелких и крупных микрокристаллов происходит постепенное исчезновение мелких с одновременным увеличением размера крупных до заданной величины. На стадии химического созревания происходят адсорбция активных микропримесей желатины на поверхности сформировавшихся микрокристаллов галогенида серебра и образование комплексных соединений между ними и ионами серебра. Возникшие неустойчивые комплексы распадаются, что ведёт к нарушениям структуры кристаллической решётки. Места нарушений образуют центры светочувствительности, которые и определяют основные фотографические свойства Ф. э. (Под действием света центры светочувствительности переходят в центры проявления, составляющие скрытое фотографическое изображение.) После химического созревания в эмульсию вводят добавочные вещества и подготовляют её для полива на соответствующую подложку. См. также ст. Фотография,раздел Изготовление светочувствительных материалов на основе AgHal.
     Лит.:Килинский И. М., Леви С. М., Технология производства кинофотопленок, Л., 1973; Чибисов К. В., Химия фотографических эмульсий, М., 1975; Миз К., Джеймс Т., Теория фотографического процесса, пер. с англ., Л., 1973.
      В. С. Чельцов.

фотографии и кинематографии для получения фотографических изображений, реактивы для их химической обработки и вспомогательные материалы.
     Светочувствительные материалы состоят из укрепленного на подложке тонкого эмульсионного слоя (см. Фотографическая эмульсия ) или из бесподложечных слоев для регистрации заряженных частиц высоких энергий (см. Ядерная фотографическая эмульсия ) .По химическому составу эти материалы делятся на серебросодержащие, в которых в качестве светочувствительного компонента используются различные галогениды серебра и их смеси (главным образом AgBr), и бессеребряные, в которых используются соединения железа, хрома (см. Пигментная бумага ) ,диазосоединения (см. Диазотипия ) и др. Бессеребряные материалы отличаются очень низкой светочувствительностью и применяются лишь для получения позитивов,главным образом в светокопировальном процессе (см. Светокопировальная бумага, Фотокопирование) .По виду подложки, на которой укреплен эмульсионный светочувствительный слой, различают бумагу фотографическую (глянцевая, матовая и др. сорта бумаги), пластинки фотографические (силикатное или органическое стекло) и плёнки кино- и фотографические (триацетат целлюлозы или различные синтетические полимерные плёнки).
     Фотореактивы применяются для превращения скрытого фотографического изображения в видимое или для улучшения качества последнего. Для этой цели используют проявители фотографические (см. также Проявляющие вещества ) ,фиксажи, иногда называемые закрепителями (см. Фиксирование фотографическое ) ,и дубящие вещества (см. Дубление фотографическое ) .Улучшить качество изображения удаётся при обработке светочувствительных Ф. м. ослабителями (см. Ослабление фотографическое ) или усилителями (см. Усиление фотографическое ) .Применение некоторых неорганических кислот и их солей даёт возможность придать позитивам нужную однотонную окраску (см. Окрашивание фотографических изображений ) .В некоторых операциях, например усилении и тонировании черно-белых изображений, используют отбеливающие вещества (см. Отбеливание фотографическое ) .
     К вспомогательным Ф. м. относятся: специальная свето- и влагозащитная бумага для упаковки светочувствительных Ф. м.; клеи для склеивания киноплёнки и для наклеивания фотобумаги на различные материалы; покровные лаки для защиты позитивов на керамике и металле от вредного влияния атмосферы.
      Л. Я. Крауш.

экспозицией Н,которую испытал фотографический материал, и оптической плотностьюD почернения фотографического,полученного после проявления этого материала. Известно несколько десятков Ф. э. Теоретически и практически наиболее важны следующие Ф. э.
     1) Соляризация (см. также ст. Сенситометрия и рис. 1 там же), наблюдаемая при больших значениях Н,и т. н. 2-е обращение, т. е. переход к возрастанию Dс ростом Нпри значениях Нещё более высоких, чем нужно для соляризации. Оба Ф. э. на практике встречаются лишь при очень больших передержках, но иногда сознательно используются для получения некоторых художественных эффектов.
     2) Невзаимозаместимость(см. Невзаимозаместимости явление ) .Этот Ф. э. оказывает сильное влияние на результаты съёмки очень слабо светящихся (например, звёзд) или очень сильно светящихся (например, взрывов) объектов.
     3) Эффект прерывистого освещения, т. е. зависимость всех параметров характеристической кривой,в том числе и значения Dпри данной величине Н,от того, сообщается ли экспозиция путём непрерывного освещения или разбивается на nчастных экспозиций H 1, H 1,..., Н п( n> 2), разделённых темновыми паузами (при соблюдении условия H 1+ H 2+... + Н п= Н= const); эффект проявляется как зависимость Dне только от разбивки единой экспозиции на ряд частных, но и от способа такой разбивки (числа дробных экспозиций, их длительностей, частоты следования друг за другом). Этот Ф. э. сказывается на практике при съёмке периодических процессов (например, искрового разряда ) ,при ослаблении светового потока вращающимся диском с прорезями и т.д.
     4) Эффект двойных экспозиций– получение при двойном экспонировании светом (при разных уровнях освещённости ) или излучениями разной природы такого значения D,которое больше суммы D 1+ D 2почернений от каждого экспонирования по отдельности. Если 1-е экспонирование само по себе не создаёт почернения ( D 1= 0) и его действие лишь повышает чувствительность к последующему экспонированию, этот Ф. э. называется гиперсенсибилизацией с помощью предварительного экспонирования, а если почернения не создаёт само по себе 2-е экспонирование ( D 2= 0), лишь усиливая действие 1-го экспонирования, такой Ф. э. называется латенсификацией с помощью последующего экспонирования. Эти Ф. э. используют при съёмке слабосветящихся объектов.
     5) Температурные эффекты– зависимость Dпри данном значении Нот температуры во время экспонирования, а также различный характер этой зависимости при разных уровнях освещённости Е монотонное возрастание Dс убыванием температуры при низких Еи с ростом температуры при высоких Еи сложное немонотонное изменение Dс температурой в области умеренных Е,типичных в большинстве случаев практической съёмки. Эти Ф. э. могут существенно влиять на результаты съёмки, хотя не всегда принимаются во внимание.
     6) Эффект Гершеля– частичное или полное разрушение скрытого фотографического изображения последующим экспонированием красным или ещё более длинноволновым излучением; является важным способом исследования скрытого изображения и механизма его образования.
     7) Регрессия скрытого изображения– постепенное его разрушение, обычно непреднамеренное (тепловое, химическое или то и другое одновременно под действием окружающей среды) за время между экспонированием и проявлением; в результате регрессии проявление приводит к пониженным значениям D,не соответствующим фактической величине Н.Этот Ф. э. влияет на результаты съёмки, если проявление откладывается надолго, например в экспедициях (особенно в жарком и влажном климате).
     8) Эффект Сабатье– полное или частичное обращение изображения (уменьшение Dс увеличением Нпри всех или только при малых значениях Н) путём равномерного экспонирования проявленного неотфиксированного фотоматериала и последующего дополнительного проявления. Этот Ф. э. (также используемый в целях художественной выразительности) представляет собой эффективное средство выделения на снимке т. н. эквиденсит – зон равного значения D(см. Эквиденситометрия ) .
   
      Лит.см. при ст. Фотография.
      А. Л. Картужанский.

аэрофотосъёмки, микросъёмкии др. специальных видов съёмки. По размерам получаемых изображений (формату кадров) Ф. а. подразделяются на миниатюрные (13ґ17 мм) ,полуформатные (18ґ24 мм) ,малоформатные (28ґ28 и 24ґ36 мм) ,среднеформатные (от 45ґ60 до 60ґ90 мм) и крупноформатные (90ґ120 мми более).
     В состав Ф. а. обычно входят следующие основные части (механизмы и узлы) (см. рис. ): светонепроницаемая камера; съёмочный объектив с механизмом для его фокусировки (наводки на резкость; о характеристиках и типах объективов Ф. а. см. ст. Объектив , раздел Фотографические объективы); видоискатель; фотографический затвор ; кассета фотографическая и механизм перемотки фотоплёнки.
     Светонепроницаемая камера является корпусом-основой, внутри которого и на котором смонтированы все составные части Ф. а.
     Съёмочный объектив образует действительные изображения оптические объектов съёмки в плоскости светочувствительного слоя фотоматериала. Присоединяется к корпусу большей частью с помощью резьбы, иногда используется штыковое (байонетное) соединение. Некоторые Ф. а. рассчитаны на применение сменных объективов, имеющих различные фокусные расстояния,или оснащаются объективом с переменным фокусным расстоянием (панкратическим объективом). Фокусировка объектива осуществляется посредством разворота фокусировочного кольца, обеспечивающего перемещение всего оптического блока либо отдельных его компонентов вдоль оптической оси;при этом достигается совмещение плоскости оптического изображения объекта съёмки с плоскостью фотоматериала. Наиболее простой способ фокусировки сводится к совмещению индекса на оправе объектива с одним из делений на шкале расстояний, при этом расстояние до объекта съёмки обычно оценивается на глаз. Для ускорения фокусировки по шкале расстояний последняя иногда разбивается на несколько участков (зон), соответствующих тому или иному характеру съёмки (например, съёмка портрета, группы людей, пейзажа); каждому сюжету присваивается определённый символ, наносимый на шкалу расстояний. Фокусировка в этом случае осуществляется совмещением одного из символов с индексом на оправе объектива. Часто фокусировку производят по изображению на матовом стекле, образуемому самим съёмочным объективом (см., например, Зеркальный фотоаппарат ) или вспомогательным объективом. При фокусировке по матовому стеклу фокусировочное кольцо разворачивают до тех пор, пока наблюдаемое оптическое изображение объекта съёмки, образуемое на матированной поверхности, не будет наиболее резким. Т. к. при фокусировке объектива по матовому стеклу световое отверстие объектива желательно открывать полностью (в этом случае изображение на матовом стекле имеет наибольшую освещённость ) ,то некоторые объективы принято оснащать т. н. прыгающей диафрагмой,которая максимально раскрыта при фокусировке и автоматически быстро уменьшает своё отверстие до заранее установленного значения перед срабатыванием затвора. Фокусировка с помощью монокулярного дальномера производится разворотом фокусировочного кольца до тех пор, пока два оптических изображения объекта съёмки, соответствующие двум ветвям дальномера и наблюдаемые через его окуляр, не совместятся в одно изображение.
     Иногда Ф. а. используют для съёмки в невидимых для глаза (но фиксируемых фотослоем) ультрафиолетовых (УФ) или инфракрасных (ИК) лучах. В этих случаях применяют или зеркальные объективы, или объективы, линзовые компоненты которых изготовлены из материалов, прозрачных для соответствующих лучей: кварца, флюорита, фторида лития и др. – при съёмке в УФ-лучах; хлорида натрия, кремния, германия, флюорита, фторида лития, иодида цезия и др. – при съёмке в ИК-лучах.