Гидродинамические передачи: а — гидротрансформатор; б — гидромуфта; 1 — рабочее колесо насоса, установленное на ведущем валу; 2 — рабочее колесо гидротурбины, установленное на ведомом валу; 3 — неподвижный направляющий аппарат — реактор. Стрелками показано направление потока рабочей жидкости.

Подобия критерии ). Силу, с которой жидкость действует на каждый элемент поверхности движущегося тела, можно разложить на нормальную и касательную составляющие, т. е. на силу давления и силу трения. Проекция результирующей всех сил давления на направление движения даёт Г. с. давления, а проекция результирующей всех сил трения на направление движения — Г. с. трения. Тела, у которых сопротивление от сил давления мало по сравнению с сопротивлением от сил трения, считаются хорошо обтекаемыми. Г. с. плохо обтекаемых тел определяется почти полностью сопротивлением давления. При движении тел вблизи поверхности воды образуются волны, в результате чего возникает волновое сопротивление .
     При протекании жидкости по трубам, каналам и т.д. в гидравлике различают два вида Г. с.: сопротивление по длине, прямо пропорциональное длине участка потока, и местные сопротивления, связанные с изменением структуры потока на коротком участке при обтекании различных препятствий (в виде клапанов, задвижек и др.), а также при внезапном расширении или сужении потока или при изменении направления его течения. В гидравлических расчётах Г. с. оценивается величиной «потерянного» напора h v, представляющего собой ту часть удельной энергии потока, которая необратимо расходуется на работу сил сопротивления.
     Значение h vпо длине трубы при напорном движении вычисляется по формуле Дарси
    
     где l— коэффициент сопротивления; lи d— длина и диаметр трубы; v —средняя скорость; g— ускорение свободного падения. Коэфф. lопределяется характером течения. При ламинарном течении он зависит только от Рейнольдса числаRe(линейный закон сопротивления), а при турбулентном течении — ещё и от шероховатости стенок трубы. При очень больших Re(порядка 10 и более) l зависит только от шероховатости (квадратичный закон сопротивления). Местные Г. с. оцениваются общей формулой h v= z v 2/2 g, где z, — коэффициент местного сопротивления, различный для разных препятствий; зависит от числа Re.
     Числовые значения коэффициента lи zраспределяются по формулам, приводимым в справочниках. Определение величины h vдля открытых потоков производится также по специальным формулам. Г. с. в открытых потоках и при движении в напорных трубопроводах обусловлены одними и теми же физическим причинами.
     Правильное определение величины Г. с. имеет большое значение при проектировании и постройке самых разнообразных сооружений, установок и аппаратов (гидротехнические сооружения, турбинные установки, воздухо- и газоочистительные аппараты, газо-, нефте- и водопроводные магистрали, двигатели, компрессоры, насосы и т.д.).
     Лит.:Агроскин И. И., Дмитриев Г. Т. и Пикалов Ф. И., Гидравлика, 4 изд., М. — Л., 1964; Идельчик И. Е., Справочник по гидравлическим сопротивлениям, М. — Л., 1960; Альтшуль А. Д., Гидравлические потери на трение в трубопроводах, М. — Л., 1963.
      П. Г. Киселев.

Золоудаление .

полипы сменяются половым поколением — медузами . У большинства Г. бесполое поколение образует колонии, состоящие из громадного количества особей. Колония прикрепляется своим основанием к какому-либо твёрдому субстрату; вертикально поднимающийся стволик ветвится, и на его веточках сидят отдельные особи колонии — гидранты ; ротовое отверстие каждой особи окружено длинными щупальцами. В оболочке некоторых Г. откладываются известковые соли: большие скопления таких Г. образуют известковые рифы. Формирование колонии происходит в результате почкования. В отличие от гидры , у колониальных форм Г. развивающиеся из почек новые особи не отрываются, а остаются на общем стволе. Из некоторых почек развиваются медузы, образующие половые продукты. У многих Г. медузы отрываются от колонии и ведут свободноплавающий образ жизни; они раздельнополы: из их оплодотворённого яйца развивается характерная для всех кишечнополостных личинка — планула . Среди Г. известно, однако, много видов. у которых медузы остаются недоразвитыми и не отрываются от колонии, но тем не менее образуют половые клетки. Вместе с тем у некоторых Г. имеются только медузы, их личинки развиваются непосредственно в новых медуз. Все Г. питаются животной пищей, захватывая щупальцами планктонных рачков, водных личинок насекомых и даже мальков рыб. Некоторые медузы могут быть опасны и для человека, причиняя довольно сильные ожоги (например, гонионемы ).
     7 отрядов: гидры (Hydrida), лептолиды (Leptolida), лимномедузы (Limnomedusae), трахимедузы (Trachymedusae), наркомедузы (Narcomedusae). дискомедузы (Disconantae), сифонофоры (Siphonophora). Известно более 2500 видов. Г. в основном распространены в морях: исключение составляют гидра, обитающая в пресных водоёмах, и некоторые медузы, встречающиеся в озёрах Африки и реках Северной Америки, Европы и Азии, а также колониальный гидроид Moerisia pallasi, распространённый в Каспийском море и проникший в некоторые реки. В СССР встречается свыше 300 видов. Большинство Г. обитает в литоральной зоне, лишь немногие являются глубоководными формами (например, Branchiocerianthus из Тихого океана достигающий 1 мвысоты). В ископаемом состоянии Г. известны с мелового периода, но есть указания на нахождение гидромедуз даже в нижнекембрийских отложениях.
     Лит.:Руководство по зоологии, т. 1, М. — Л., 1937; Наумов Д. В., Гидроиды и гидромедузы морских, солоноватоводных и пресноводных бассейнов СССР. М. — Л., 1960; Жизнь животных, под ред. Л. А. Зенкевича, т. 1, М., 1968.
      В. Н. Никитин.

гидроидных типа кишечнополостных. Ряд учёных не разделяет класс гидроидных на подклассы, а делит его непосредственно на 7 отрядов.

гидро... , греч. нsos — равный и hэpsos — высота), линии на карте, соединяющие точки с одинаковой высотой поверхности грунтовых вод над условной нулевой поверхностью.

битумов с минеральным порошком, песком и щебнем (асфальтовые мастики, растворы и бетоны), получаемых при нагревании (горячие уплотняемые и литые асфальты ), разжижением битумов летучими растворителями (битумные лаки и эмали) или эмульгированием их в воде (битумные эмульсии, пасты, холодные асфальты). Битумы и асфальты применяют для окраски и штукатурки поверхностей сооружений (асфальтовые гидроизоляции), для уплотнения деформационных швов (асфальтовые шпонки), для пропитки строительных элементов и при изготовлении штучных Г. м., в основном рулонных (гидроизол, бризол, изол, стеклорубероид, маты). Всё большее распространение получают битумно-полимерные Г. м., обладающие повышенной эластичностью и трещиностойкостью. В СССР применяются Г. м. на основе битумов, эмульгированных в воде (холодные асфальтовые мастики, эмульбит, битумно-латексные композиции, эластим), позволяющие использовать местные материалы, упростить и удешевить гидроизоляционные работы.
     Минеральные Г. м. приготавливают на основе цементов, глины и др. минеральных вяжущих; их применяют для окрасочных (цементные и силикатные краски) и штукатурных покрытий (цементные торкрет и штукатурка), для массивных гидроизоляционных конструкций (гидрофобные засыпки, глинобетонные замки, гидратон) при антифильтрационной защите. Совершенствование минеральных Г. м. связано с применением поверхностно-активных и др. специальных добавок , высокого диспергирования смесей.
     Пластмассовые Г. м. применяют для окрасочной (эпоксидные, полиэфирные, поливиниловые, этинолевые лаки и краски), штукатурной (полимеррастворы и бетоны, фаизол) и оклеечной (полиэтиленовая, поливинилхлоридная плёнки, оппаноль) гидроизоляции поверхностей и для уплотнения деформационных швов сооружений (каучуковые герметики, резиновые и поливинилхлоридные профильные ленты, стеклоэластики). Номенклатура и объём производства этих материалов постоянно увеличиваются; наибольшее развитие получают тиоколовые герметики, эпоксидные краски, полиэфирные стеклопластики и полиэтиленовые экраны.
     Металлические Г. м. — листы из латуни, меди, свинца, обычной и нержавеющей стали, применяемые для поверхностной гидроизоляции и уплотнения деформационных швов в наиболее ответственных случаях (резервуары, плотины, диафрагмы). Алюминиевая и медная фольга применяется для усиления покрытий и рулонных Г. м. (металлоизол, фольгоизол, сисалкрафт). Металлические Г. м. постепенно заменяются пластмассовыми, стеклопластиками.
     Лит.:Рыбьев И. А., Технология гидроизоляционных материалов, М., 1964; Химически стойкие мастики, замазки и бетоны на основе термореактивных смол, М., 1968; Попченко С. Н., Холодная асфальтовая гидроизоляция. 2 изд., Л. — М., 1966; Строительные нормы и правила, ч. 1, раздел В, гл. 25. Кровельные, гидроизоляционные и пароизоляционные материалы на органических вяжущих, М., 1967; Строительные нормы и правила, ч. 1, раздел В, гл. 27. Защита строительных конструкций от коррозии, М., 1964.
     С. Н. Попченко.

гидро... и изоляция), защита строительных конструкций, зданий и сооружений от проникновения воды (антифильтрационная Г.) или материала сооружений от вредного воздействия омывающей или фильтрующей воды или др. агрессивной жидкости (антикоррозийная Г.). Работы по устройству Г. называются гидроизоляционными работами. Г. обеспечивает нормальную эксплуатацию зданий, сооружений и оборудования, повышает их надёжность и долговечность.
     Антифильтрационная Г. применяется для защиты от проникновения воды в подземные и подводные сооружения (подвалы и заглубленные помещения зданий, транспортные туннели, шахты, опускные колодцы и кессоны), через подпорные гидротехнические сооружения (плотины, их экраны, понуры, диафрагмы), а также для защиты от утечки эксплуатационно-технических или сбросных вод (каналы, туннели и др. водоводы, бассейны, отстойники, резервуары и др.).
     Антикоррозионная Г. предназначена для защиты материала сооружений от химически агрессивных жидкостей и вод (минерализованные грунтовые воды, морская вода, сточные воды промышленных предприятий), от агрессивного воздействия атмосферы (надземные металлические конструкции, гидротехнические сооружения в зоне переменного уровня воды) и от электрокоррозии, вызываемой блуждающими токами (опоры линий электропередач, трубопроводы и др. подземные металлические конструкции).
     По виду основного материала различают Г. асфальтовую, минеральную, пластмассовую и металлическую (см. Гидроизоляционные материалы ); по способу устройства ( рис. 1 ) — окрасочную, штукатурную, оклеечную, литую, пропиточную, инъекционную, засыпную, монтируемую; по основному назначению и конструктивным особенностям — поверхностную, шпоночную, работающую «на прижим» и «на отрыв», уплотняющую швы и сопряжения, комплексного назначения (теплогидроизоляция, пластичные компенсаторы). Важнейшие виды Г. характеризуются следующими особенностями.
     Окрасочная Г. (горячая и холодная) выполняется в виде тонкого (до 2 мм) многослойного покрытия, обычно из битумных и полимерных лаков и красок, для противокапиллярной и антикоррозионной защиты железобетонных и металлических конструкций. Наиболее надёжны горячие битумно-полимерные и холодные эпоксидно-каучуковые покрытия. Всё большее применение получают новые полимерные материалы холодного отверждения.
     Штукатурная Г. (горячая и холодная) представляет собой многослойное (до 2 см) покрытие; наиболее распространены для железобетонных сооружений цементный торкрет (см. Торкретирование ), холодные и горячие асфальтовые штукатурные растворы и мастики, не требующие защитного ограждения и позволяющие механизировать процесс их нанесения. Расширяется применение полимербетонных и полимерцементных покрытий, коллоидного цементного раствора.
     Оклеечная Г. производится наклейкой рулонных материалов в виде многослойного (обычно в 3—4 слоя) покрытия с обязательной защитой поверхностными стяжками и стенками. Несмотря на большое распространение, оклеечная Г. в ряде случаев заменяется окрасочной и штукатурной Г. Отличается повышенной трещиностойкостью; совершенствование её идёт по пути применения полимерных плёнок, стеклопластиков.
     Литая Г. — наиболее надёжный вид Г.; выполняется, как правило, из горячих асфальтовых мастик и растворов разливкой их по горизонтальному основанию (в 2—3 слоя общей толщиной 20—25 мм) и заливкой за стенку или опалубку на стенах (толщиной 30—50 мм); вследствие сложности и дороговизны выполняется в особо ответственных случаях. Развитие её идёт по пути применения асфальтокерамзитобетона, битумоперлита, пеноэпоксидов и др. пенопластов.
     Засыпная Г. устраивается засыпкой сыпучих гидроизоляционных материалов в водонепроницаемые слои и полости, например, огражденные опалубкой. Аналогична по конструкции и назначению литой Г., но имеет большую толщину (до 50 см) и комплексное теплогидроизоляционное назначение (гидрофобные пески и порошки, асфальтоизол) при небольшой водонепроницаемости.
     Пропиточная Г. выполняется пропиткой строительных изделий из пористых материалов (бетонные плиты и блоки, асбестоцементные листы и трубы, блоки из известняка и туфа) в органическом вяжущем (битум, каменноугольный пек, петролатум, полимерные лаки). Пропиточная Г. наиболее надёжна для сборных элементов, подвергающихся интенсивным механическим воздействиям (сваи, трубы, тюбинги, фундаментные блоки).
     Инъекционная Г. осуществляется нагнетанием вяжущего материала в швы и трещины строительных конструкций или в примыкающий к ним грунт методами, аналогичными устройству противофильтрационных завес ; используется, как правило, при ремонте Г. Для её устройства всё шире применяются новые полимеры (карбамидные, фурановые смолы).
     Монтируемая Г. выполняется из специально изготовленных элементов (металлические и пластмассовые листы, профильные ленты), прикрепляемых к основному сооружению монтажными связями. Применяется в особо сложных случаях. Совершенствование её идёт по пути использования стеклопластиков, жёсткого поливинилхлорида, индустриального изготовления сборных железобетонных изделий, покрытых в заводских условиях окрасочной или штукатурной Г.
     Наиболее распространённый конструктивный вид Г. — поверхностные покрытия в сочетании с уплотнением деформационных или конструктивных швов и устройством сопряжений, обеспечивающих непрерывность всего напорного фронта сооружения. Поверхностные Г. конструируются таким образом, чтобы они прижимались напором воды к изолируемой несущей конструкции ( рис. 2 ); разработаны также новые виды конструктивной Г., работающей «на отрыв».
     Существенное значение в Г. сооружений имеют уплотнения деформационных швов ( рис. 3 ); они устраиваются для придания швам водонепроницаемости и защиты их от засорения грунтом, льдом, плавающими телами. Помимо водонепроницаемости, уплотнения должны также обладать высокой деформативной способностью, гибкостью, с тем чтобы они могли свободно следовать за деформациями сопрягаемых элементов или секций сооружения. Наиболее распространённые типы уплотнений — асфальтовые шпонки и прокладки, металлические диафрагмы и компенсаторы, резиновые и пластмассовые диафрагмы, прокладки и погонажные герметики. Предусматривается также широкое применение битумно-полимерных герметиков, стеклопластиков и стеклоэластиков, позволяющих создавать более простые и надёжные уплотнения.
     Г., работающая «на отрыв», выполняется в виде покрытий, наносимых на защищаемую конструкцию со стороны, обратной напору воды ( рис. 4 ). Применяется главным образом при ремонте и восстановлении Г. сооружений (например, путём оштукатуривания изнутри затопляемых подвалов зданий) и для Г. подземных сооружений, несущие конструкции которых бетонируются впритык к окружающему грунту или скальному основанию — туннели, опускные колодцы, подземные помещения большого заглубления (при антифильтрационной их защите). Для устройства Г. этого типа применяются гидроизоляционные покрытия, допускающие анкеровку за основную конструкцию (литая и монтируемая Г.) либо обладающие высокой адгезией к бетону при длительном воздействии воды (цементный торкрет, холодная асфальтовая и эпоксидная окрасочная Г.).
     Комплекс работ по устройству Г. включает: подготовку основания, устройство гидроизоляционного покрова и защитного ограждения, уплотнение деформационных швов и сопряжений Г. При выборе типа Г. отдают предпочтение таким покрытиям, которые, при равной надёжности и стоимости, позволяют комплексно механизировать гидроизоляционные работы, ликвидировать их сезонность. В СССР разработаны новые типы гидроизоляционных устройств, успешно разрешающие эти проблемы: асфальтовые штукатурные и полимерные окрасочные, пропиточные и монтируемые Г.
     Лит.:Попченко С. Н., Старицкий М. Г., Асфальтовые гидроизоляции бетонных и железобетонных сооружений, М. — Л., 1962; Носков С. К., Устройство гидроизоляции в промышленном строительстве, М., 1963; Строительные нормы и правила, ч. 3, раздел В, гл. 9. Гидроизоляция и пароизоляция, М., 1964; Нечаев Г. А., Федотов Е. Д., Применение пластических масс для гидроизоляции зданий, Л. — М., 1965; Указания по проектированию гидроизоляции подземных частей зданий и сооружений. СН 301—65, М., 1965; Бовин Г. П., Возведение водонепроницаемых сооружений из бетона и железобетона, М., 1969.
      Г. П. Бовин, С. Н. Попченко.
   Рис. 1. Типы поверхностных гидроизоляционных покрытий: а — окрасочная; б — штукатурная; в — оклеечная; г — литая; д — засыпная; е — пропиточная; ж — инъекционная; з — монтируемая; 1 — изолируемая конструкция; 2 — грунтовка поверхности; 3 — гидроизоляционный покров; 4 — защитное ограждение.
   Рис. 2. Конструкция гидроизоляции подземных сооружений: а — при одностороннем напоре воды (подвал здания); б — при двустороннем напоре воды (подземный канал); 1 — несущая конструкция; 2 — поверхностная гидроизоляция; 3 — бетонное основание; 4 — уплотнение деформационного шва; 5 — напорный фронт воды.
   Рис. 3. Уплотнение деформационного шва здания ГЭС (поперечный разрез по зданию станции): 1 — вертикальная асфальтовая шпонка с электрообогревом; 2 — смотровой колодец; 3 — горизонтальная асфальтовая шпонка; 4 — заполнение шва холодной асфальтовой штукатуркой; 5 — полный шов; 6 — уплотнение железобетонным брусом; 7 — труба для подлива асфальтовой мастики.
   Рис. 4. Поверхностная гидроизоляция, работающая «на отрыв»: а — асфальтовая гидроизоляция; б — металлическая гидроизоляция; 1 — несущая конструкция; 2 — поверхностная гидроизоляция; 3 — защитное ограждение; 4 — стальные анкеры; 5 — напорный фронт воды; 6 — стальная обшивка.

гидро... и греч. нsos — равный, piezo — давлю), изопьезы, пьезоизогипсы, линии на карте, соединяющие точки с одинаковой величиной напоров подземных вод.