Страница:
Гидропередача объёмная
,
Гидродинамическая передача
).
Объёмный Г. м. позволяет с высокой точностью поддерживать или изменять скорость машины при произвольном нагружении, осуществлять слежение — точно воспроизводить заданные режимы вращательного или возвратно-поступательного движения, усиливая одновременно управляющее воздействие. Наиболее широко объёмный Г. м. применяется в металлорежущих станках, прессах, в системах управления летательных аппаратов, судов, тяжёлых автомобилей, в системах автоматического управления и регулирования тепловых двигателей, гидротурбин. Реже объёмный Г. м. используется в качестве главных приводов транспортных установок на автомобилях, кранах.
Динамический Г. м. позволяет осуществлять только вращательное движение. В приводах этого вида частота вращения ведущего вала автоматически меняется с изменением нагрузки, что делает их особо пригодными для транспортных установок: скорость экипажа автоматически меняется в зависимости от сопротивления движению. На судах Г. м. используют для привода винтов. Находят применение динамические Г. м. и в стационарных установках: для привода питательных насосов ТЭЦ, шахтных подъёмных машин, вентиляторов и т. и. В этих случаях на них возлагаются те же задачи, что и на объёмный Г. м. — программное изменение скорости приводимой машины.
Примером смешанного Г. м. может служить привод отдельных конструкций штамповочных прессов, в которых энергия от электродвигателя забирается центробежным насосом, подающим жидкость в гидравлический цилиндр, который приводит в движение рабочий инструмент пресса. Возможны и др. комбинации. Например, в Г. м., используемом для запуска газовых турбин, энергия сжатого газа в гидроаккумуляторе сообщается жидкости, которая подаётся к гидротурбине, раскручивающей запускаемый тепловой двигатель.
На рис. дана схема гидропривода легкового автомобиля, включающего в себя гидродинамическую передачу (гидротрансформатор) и объёмный Г. м. для управления сцеплением, ленточными тормозами, заполнением гидротрансформатора. Прямая или понижающая передача устанавливается распределителем — объёмным Г. м., соединённым с рычагом.
Объёмные Г. м. строятся на мощности до 5000 квт, однако основная масса этих устройств имеет мощность 5—15 квт; известны самолётные Г. м. с частотой вращения до 18000 об/мин, однако более распространены Г. м. с частотой вращения до 1000 об/мин. Динамические Г. м. работают с частотой вращения до 35000 об/мин(хотя известны Г. м. и на 300 об/мин), ограничений по передаваемой мощности практически нет (известны установки на 18000 квти более, наибольшее число построенных Г. м. — автомобильные агрегаты, их мощность до 400 квт).
Лит. см. при ст. Гидродинамическая передача , Гидропередача объёмная .
Схема гидропривода легкового автомобиля: 1 — гидротрансформатор; 2 — распределитель; 3 — предохранительный клапан; 4 — клапан переключения насосов; 5 — гидроаккумулятор; 6 — сцепление; 7 — цилиндры ленточных тормозов; 8 — ленточные тормоза; 9 — резервуар; 10 — насосы; 11 — клапаны; 12 — маслоохладитель; 13 — вакуумный модулятор.
бумаги
и
картона
. Г. состоит из цилиндрической ванны с ножами и плоского ротора с такими же ножами, при вращении которых создаётся интенсивная циркуляция суспензии. Г. бывают периодического и непрерывного действия. В последнем случае в днище ванны устанавливается перфорированное сито (экстрактор) для непрерывного отвода волокнистой суспензии. Диаметр ванны до 6
м, производительность до 180
тв сутки.
Объёмный Г. м. позволяет с высокой точностью поддерживать или изменять скорость машины при произвольном нагружении, осуществлять слежение — точно воспроизводить заданные режимы вращательного или возвратно-поступательного движения, усиливая одновременно управляющее воздействие. Наиболее широко объёмный Г. м. применяется в металлорежущих станках, прессах, в системах управления летательных аппаратов, судов, тяжёлых автомобилей, в системах автоматического управления и регулирования тепловых двигателей, гидротурбин. Реже объёмный Г. м. используется в качестве главных приводов транспортных установок на автомобилях, кранах.
Динамический Г. м. позволяет осуществлять только вращательное движение. В приводах этого вида частота вращения ведущего вала автоматически меняется с изменением нагрузки, что делает их особо пригодными для транспортных установок: скорость экипажа автоматически меняется в зависимости от сопротивления движению. На судах Г. м. используют для привода винтов. Находят применение динамические Г. м. и в стационарных установках: для привода питательных насосов ТЭЦ, шахтных подъёмных машин, вентиляторов и т. и. В этих случаях на них возлагаются те же задачи, что и на объёмный Г. м. — программное изменение скорости приводимой машины.
Примером смешанного Г. м. может служить привод отдельных конструкций штамповочных прессов, в которых энергия от электродвигателя забирается центробежным насосом, подающим жидкость в гидравлический цилиндр, который приводит в движение рабочий инструмент пресса. Возможны и др. комбинации. Например, в Г. м., используемом для запуска газовых турбин, энергия сжатого газа в гидроаккумуляторе сообщается жидкости, которая подаётся к гидротурбине, раскручивающей запускаемый тепловой двигатель.
На рис. дана схема гидропривода легкового автомобиля, включающего в себя гидродинамическую передачу (гидротрансформатор) и объёмный Г. м. для управления сцеплением, ленточными тормозами, заполнением гидротрансформатора. Прямая или понижающая передача устанавливается распределителем — объёмным Г. м., соединённым с рычагом.
Объёмные Г. м. строятся на мощности до 5000 квт, однако основная масса этих устройств имеет мощность 5—15 квт; известны самолётные Г. м. с частотой вращения до 18000 об/мин, однако более распространены Г. м. с частотой вращения до 1000 об/мин. Динамические Г. м. работают с частотой вращения до 35000 об/мин(хотя известны Г. м. и на 300 об/мин), ограничений по передаваемой мощности практически нет (известны установки на 18000 квти более, наибольшее число построенных Г. м. — автомобильные агрегаты, их мощность до 400 квт).
Лит. см. при ст. Гидродинамическая передача , Гидропередача объёмная .

бумаги
и
картона
. Г. состоит из цилиндрической ванны с ножами и плоского ротора с такими же ножами, при вращении которых создаётся интенсивная циркуляция суспензии. Г. бывают периодического и непрерывного действия. В последнем случае в днище ванны устанавливается перфорированное сито (экстрактор) для непрерывного отвода волокнистой суспензии. Диаметр ванны до 6
м, производительность до 180
тв сутки.
гидро...
и греч. sбlpinx — труба), скопление в маточной трубе женщин прозрачной жидкости бледно-жёлтого цвета (транссудата) вследствие нарушения в трубе крово- и лимфообращения при её воспалении — сальпингите (см.
Сальпингоофорит
).
самолёт
, способный базироваться, производить взлёт и посадку на водной поверхности. Общие принципы аэродинамической и конструктивной компоновки Г. такие же, как и у сухопутного самолёта, но дополнительно Г. удовлетворяет специфическим требованиям эксплуатации (остойчивость на плаву, устойчивость пробега и разбега, способность маневрирования на водной поверхности и др.). При нахождении на плаву вес Г. полностью воспринимается гидростатической подъёмной силой (водоизмещением его корпуса), в процессе разбега — подъёмной силой глиссирующей поверхности днища его корпуса и аэродинамической подъёмной силой крыла, которая при достижении взлётной скорости обеспечивает отрыв Г. от водной поверхности. Профилированные обводы днища корпуса Г. создают гидродинамическую подъёмную силу, обусловливают устойчивость бега, достижение минимальных перегрузки и брызгообразования (при разбеге и пробеге Г.). Наличие на днище корпуса Г. поперечного уступа — редана способствует отрыву Г. от водной поверхности на предвзлётных скоростях. Опыт применения подводных крыльев (сов. Г. Бе-8) в качестве взлётно-посадочных устройств Г. показал значительное упрощение пилотирования при взлёте и посадке.
Г. обычно строят по двум конструктивным схемам: в виде летающей лодки, в корпусе которой располагаются экипаж, пассажиры и установлено необходимое навигационно-пилотажное оборудование, и в виде обычного сухопутного самолёта, имеющего шасси с поплавками. Боковую остойчивость летающей лодки на плаву обеспечивают подкрыльные поплавки или «жабры» (обтекаемые водоизмещающие ёмкости), прикрепленные по бокам корпуса лодки. Г. с взлётно-посадочным устройством в виде сочетания колёсного шасси и лодки или поплавков (самолёт-амфибия) может базироваться как на
акваториях
, так и на сухопутных аэродромах.
В России первый Г. поплавкового типа был создан в 1911 Я. М.
Гаккелем
. Этот Г. был отмечен на Международной авиационной выставке в 1911 большой серебряной медалью. Приоритет в создании летающей лодки (1911) принадлежит О. С. Костовичу. Первые летающие лодки в России (М-1, М-4, М-9) были построены в 1913—1915 под рук. Д. П. Григоровича. После Великой Октябрьской социалистической революции над созданием Г. для авиации военно-морского флота и гражданской авиации СССР работали авиаконструкторы Д. П. Григорович, А. Н. Туполев (МК-1, установленные на поплавки самолёты ТБ-1 и Р-6), Г. М. Бериев (морской ближний разведчик МБР-2, морской пассажирский Г. МП-1; корабельные катапультные Г. Бе-2 и Бе-4; патрульная летающая лодка Бе-6; реактивный Г. Бе-10 и турбовинтовой самолёт-амфибия М-12), И. В. Четвериков (Че-2), В. Б. Шавров (самолёт-амфибия Ш-2) и др. За рубежом строительством Г. занимались авиационные фирмы во Франции, США, Великобритании, Германии, Италии и Японии. На Г. Бе-10 в 1961 советскими лётчиками Н. И. Андриевским и Г. И. Бурьяновым установлено 12 международных рекордов, в том числе скорости полёта (912
км/ч), высоты полёта, (14962
м) и грузоподъёмности (15206
кг). Дальнейшее развитие идёт по пути создания Г. различного назначения: для грузопассажирских перевозок в районах, изобилующих акваториями, для разведки рыбы, спасательных работ на море, тушения лесных пожаров и др.
Лит.:Самсонов П. Д., Проектирование и конструкции гидросамолётов, М. — Л., 1936; Косоуров К. Ф., Теоретические основы гидроавиации, М., 1961; Шавров В. Б., История конструкции самолётов в СССР, М., 1969.
Г. М. Бериев.
Отечественный гидросамолёт Бе-4.
Отечественный гидросамолёт Бе-6.
Отечественный гидросамолёт Бе-10.
Отечественный гидросамолёт Бе-8 (на подводных крыльях).
Отечественный гидросамолёт М-4.
Отечественный гидросамолёт МБР-2.
Отечественный гидросамолёт М-12 (самолёт-амфибия).
Отечественный гидросамолёт АНТ-22 (МК-1).







