угольной кислоты H 2CO 3, например NaHCO 3( гидрокарбонат натрия ). Г. получают действием CO 2на карбонаты или гидроокиси в присутствии воды. При нагревании они превращаются в средние соли — карбонаты , например 2NaHCO 3= Na 2Co 3+ H 2O + CO 2. В противоположность большинству карбонатов все Г. в воде растворимы. Г. кальция Са (НСО 3) 2обусловливает временную жёсткость воды . В организме Г. выполняют важную физиологическую роль, являясь буферными веществами, регулирующими постоянство реакции крови (см. Буферные системы ).

кодеина , с которым Г. сходен по действию, но более активен. Применяют в таблетках при различных заболеваниях лёгких и верхних дыхательных путей.

Водолазное дело .

глюкокортикоидов ; гормон, образующийся в коре надпочечников и регулирующий преимущественно углеводный обмен. Надпочечники человека секретируют за сутки от 5 до 30 мгГ. При состояниях напряжения (см. Адаптационный синдром ) и при введении адренокортикотропного гормона образование Г. может увеличиваться в 5 раз.
     В медицинской практике применяют Г. как препарат из группы гормональных препаратов , оказывающий противовоспалительное и антиаллергическое действие. Г. (и Г.-ацетат в виде суспензий) назначают при лечении ревматизма, бронхиальной астмы, лейкемии, эндокринных и др. заболеваний; местно (чаще в виде мази) при экземе, нейродермитах, глазных заболеваниях и др.

Гидрогенизация деструктивная .

беспламенного взрывания , основанный на использовании энергии паров воды, азота и углекислого газа, образующихся с выделением тепла в результате практически мгновенного протекания внутри патрона (также называется Г.) химической реакции специальной порошкообразной смеси.

оксидоредуктаз ; катализируют включение в молекулу субстрата атома кислорода из О 2. Реакция протекает при участии окисляющегося при этом восстановленного никотинамидадениндинуклеотид-фосфата . Г. играют важную роль в обмене ряда циклических соединений, в том числе стероидов .

Гидроний и Оксониевые соединения .

гидролиза ). Г. широко распространены в клетках растений и животных. Участвуют в процессах обмена белков, нуклеиновых кислот, углеводов, липидов и др. биологически важных соединений. По типу гидролизуемой связи класс Г. делят на ряд подклассов: действующие на сложноэфирные связи (например, липаза); на гликозильные связи (например, амилаза); на пептидные связи (например, пепсин); на кислотноангидридные связи (например, аденозинтрифосфатаза) и т.д.
     По химической природе большинство Г. — простые белки; для проявления их каталитической активности необходимо наличие неизмененных сульфгидрильных (SH—) групп, занимающих определенное положение в полипептидной цепи. Ряд Г. получен в кристаллическом виде (уреаза, пепсин , трипсин , химотрипсин и др.). Механизм каталитического действия некоторых исследованных Г. включает соединение фермента с расщепляемым веществом с последующим отщеплением продуктов реакции и освобождением фермента. Показано, что в механизмах ферментативного гидролиза много общего с механизмом действия трансфераз и что некоторые Г. могут переносить отщепляемые группы не только на воду, но и на др. молекулы.
      Е. И. Королев.

гидро... и греч. lбkkos — яма и lнthos — камень), многолетний бугор пучения с ледяным ядром, образующийся в результате увеличения объёма подземной воды при замерзании в условиях гидростатического напора в областях развития многолетнемёрзлых горных пород. Г. достигают 25—40 мвысоты и 200 мширины и имеют форму купола с крутыми склонами, пологого кургана или валообразного поднятия; сверху ядро покрыто приподнятыми деформированными отложениями, которые разбиты трещинами. В СССР распространены главным образом в Якутии.

гидро... и греч. lэsis — разложение, распад), реакция ионного обмена между различными веществами и водой. В общем виде Г. можно представить уравнением:
   
     где А—В — гидролизующееся вещество, А—Н и В—ОН — продукты Г.
     Равновесие в процессе Г. солей подчиняется действующих масс закону . Если в результате Г. образуется нерастворимое или легколетучее вещество, Г. идёт практически до полного разложения исходной соли. В остальных случаях Г. солей проходит тем полнее, чем слабее соответствующая соли кислота или основание.
     Если Г. подвергается соль, образованная слабой кислотой и сильным основанием, например KCN, раствор имеет щелочную реакцию; это объясняется тем, что анион слабой кислоты частично связывает образовавшиеся при диссоциации воды ионы Н +и в растворе остаётся избыток ионов OH -:
    
     Раствор соли сильной кислоты и слабого основания, например NH 4Cl, — кислый
    
     Если заряд катиона (или аниона) соли больше единицы, то Г. часто приводит к образованию кислых (или основных) солей в качестве продуктов первой ступени процесса, например:
     CuCl 2® Cu (OH) Cl ® Cu (OH) 2.
     Количественной характеристикой Г. солей может служить степень гидролиза ( a), определяемая отношением концентрации гидролизованной части молекул к общей концентрации данной соли в растворе; в большинстве случаев она невелика. Так, в 0,1 молярных растворах ацетата натрия CH 3COONa или хлорида аммония NH 4CI при 25 °С a= 0,01%, а для ацетата аммония CH 3COONH 4 a= 0,5%. С повышением температуры и разбавлением раствора степень Г. увеличивается.
     Г. солей лежит в основе многих важных процессов в химической промышленности и лабораторной практике. Частичный Г. трёхкальциевого силиката является причиной выделения свободной извести при взаимодействии портландцемента с водой (см. Цемент ). Благодаря Г. возможно существование буферных систем , способных поддерживать постоянную кислотность среды. Такие растворы имеют и очень важное физиологическое значение — постоянная концентрация ионов Н +необходима для нормальной жизнедеятельности организма. С Г. солей связан ряд геологических изменений земной коры и образование минералов, формирование природных вод и почв.
     Гидролиз органических соединений — расщепление органического соединения водой с образованием двух или более веществ. Обычно Г. осуществляется в присутствии кислот (кислотный Г.) или щелочей (щелочной Г.). Гидролитическому расщеплению чаще всего подвергаются связи атома углерода с другими атомами (галогенами, кислородом, азотом и др.). Так, щелочной Г. галогенидов служит методом получения (в том числе и промышленного) спиртов и фенолов, например:
    
     В зависимости от строения углеводородного радикала (R) и от условий реакции Г. галогенпроизводных может осуществляться как мономолекулярный (S N 1) или бимолекулярный (S N 2) процесс. В случае мономолекулярной реакции вначале происходит ионизация связи углерод — галоген, а затем образующийся ион карбония реагирует с водой; щёлочь, если она добавлена, не влияет на скорость Г. и служит только для нейтрализации выделяющейся галогеноводородной кислоты и смещения равновесия:
    
     В случае бимолекулярной реакции скорость Г. прямо пропорциональна концентрации щёлочи:
      R—Hal ++ HO -® R—OH+ Hal -S N2 .
     Исключительно важен Г. сложных эфиров (реакция, обратная этерификации):
   
     Кислотный Г. сложных эфиров является обратимым процессом:
   
     Щелочной Г. сложных эфиров необратим, поскольку он приводит к образованию спирта и соли кислоты:
   
     Этот процесс широко применяется в промышленности для получения спиртов и кислот, например при омылении жиров с целью получения глицерина и солей высших алифатических кислот (мыла).
     Аналогично сложным эфирам гидролизуются амиды кислот:
   
     Случаи Г. углерод-углеродной связи сравнительно редки. К ним относятся, в частности, кетонное (действием кислот и разбавленных щелочей) и кислотное (действием концентрированной щёлочи) расщепление 1,3-дикарбонильных соединений, например ацетоуксусного эфира:
   
     Термин «Г.» обычно применяется в органической химии также по отношению к некоторым процессам, которые более правильно было бы называть гидратацией ; примером может служить превращение нитрилов кислот в амиды:
   
     Г. сложноэфирных, гликозидных (в углеводах) и амидных (в белках) связей играет огромную роль в жизнедеятельности любых организмов, например, в таких процессах, как усвоение пищи, передача нервных импульсов и т. п. Г. в живом организме катализируется ферментами гидролазами . См. также Гидролиз растительных материалов .
     Лит.:Киреев В. А., Курс физической химии, 2 изд., М., 1956; Реутов О. А., Теоретические проблемы органической химии, 2 изд., М., 1964.

Гидролиз растительных материалов .

Сахара ) непищевого растительного сырья (древесные отходы, хлопковая шелуха, подсолнечная лузга и т.п.) с водой в присутствии катализаторов — минеральных кислот. Исходное растительное сырьё обычно содержит до 75% нерастворимых в воде полисахаридов в виде целлюлозы и гемицеллюлоз, при разложении которых вначале образуются промежуточные соединения, а затем простейшие сахара — монозы. Наряду с образованием моноз происходит и их частичный распад с образованием фурфурола, органических кислот, гуминовых кислот и др. веществ. Скорость гидролиза растет с увеличением температуры и концентрации кислоты.
     Г. р. м. является основой гидролизных производств, служащих для получения важных пищевых, кормовых и технических продуктов. В производственных условиях продуктами Г. р. м. являются гидролизаты — растворы моноз (пентоз и гексоз, в частности глюкозы), летучие вещества (органические кислоты, спирты) и твёрдый остаток — гидролизный лигнин. Выход моноз может достигать 90% от полисахаридов. Гидролизаты подвергают дальнейшей биохимической или химической переработке в зависимости от профиля гидролизных производств и требуемых видов товарной продукции.
     Наиболее распространена биохимическая переработка гидролизатов для получения белково-витаминных веществ — дрожжей кормовых . Один из важнейших продуктов гидролизного производства — этиловый спирт также получают биохимическим путём— сбраживанием гексоз гидролизатов.
     Пищевую глюкозу и техническую ксилозу получают соответственно из гексозных и пентозных гидролизатов путём очистки их от минеральных и органических примесей, упаривания и кристаллизации. При химической переработке гидролизатов восстановлением содержащихся в них моноз получают многоатомные спирты : из гексоз образуются соответствующие гекситы (сорбит, маннит, дульцит и т.д.), а из пентоз — пентиты (ксилит, арабит и др.). Путём гидрогенолиза многоатомных спиртов можно получить глицерин, пропиленгликоль и этиленгликоль. Дегидратацией пентоз получают фурфурол, выход которого зависит от состава сырья и условий гидролиза и дегидратации. При дегидратации гексоз образуется левулиновая кислота, используемая в ряде химических синтезов.
     При пиролизе лигнина образуются смолы и полукокс, который подвергают термической активации для получения активных газовых и обесцвечивающих углей. При обработке гидролизного лигнина концентрированной серной кислотой образуется активный уголь — коллактивит. При обработке щелочами лигнин растворяется, а при последующем подкислении выделяется активированный лигнин, являющийся активным наполнителем синтетического каучука. Гидролизный лигнин используют также как топливо. См. также Гидролизная промышленность .
      С. В. Чепиго.

Гидролизер

    Гидро'лизер, аппарат для проведения реакции гидролиза в крахмалопаточном производстве. Г. бывают периодического и непрерывного действия. Первые в свою очередь делятся на аппараты, работающие при атмосферном давлении (заварные чаны) и при повышенном давлении (конверторы). В заварном чане вода и кислота доводятся до интенсивного кипения, в чан из мерника подаётся крахмальное молоко (заварка), гидролиз крахмала (осахаривание) происходит одновременно с выпариванием сиропа. Длительность заварки и осахаривания 4—4,5 ч. В конверторах гидролиз ведётся при повышенных температуре и давлении и продолжается всего 18—20 мин. Г. непрерывного действия имеют ряд преимуществ: непрерывность процесса, позволяющая регулировать осахаривание и, следовательно, повысить качество сиропа; более равномерное потребление пара; сокращение расхода топлива. Все процессы протекают одновременно над разными порциями крахмального молока, которое непрерывно и последовательно переходит из одной зоны в другую. Такой Г. состоит из трубчатого 5-секционного подогревателя и осахаривателей. В подогревателе осуществляется клейстеризация крахмала и нагревание клейстера до температуры осахаривания (около 145°C). Далее сироп поступает на два последовательно соединённых осахаривателя, где завершается осахаривание. Гидролиз продолжается 8—10 мин.