.

гировертикали .

компасом состоят в том, что он указывает направление географического (а не магнитного) меридиана, что на его показания существенно меньше, чем на магнитный компас, влияют перемещающиеся металлические массы (железо, сталь) и электромагнитные поля и что его точность в условиях маневрирования и колебаний объекта значительно выше. Принцип действия Г. основан на использовании свойств гироскопа и суточного вращения Земли; его идея была предложена французским учёным Л. Фуко.
     Гирокомпас Фуко представляет собой двухстепенной астатический гироскоп , ось которого перемещается в плоскости горизонта и благодаря возникающему из-за вращения Земли гироскопическому моменту стремится совместиться с плоскостью меридиана. Г. Фуко не нашёл применения на подвижных объектах, подверженных колебаниям, но его идея была использована при разработке некоторых образцов наземных Г.
     На подвижных объектах широко применяются одно- и двухроторные Г., основанные на использовании трёхстепенных гироскопов.
     В однороторном мореходном Г. используется трёхстепенной гироскоп, центр тяжести которого смещен в его экваториальной плоскости ниже точки подвеса, т. е. позиционный гироскоп. В зависимости от способа создания маятникового эффекта различают Г. с маятником, Г. с ртутными сосудами, Г. с косвенной коррекцией. В Г. с маятником ( рис. 1 ) ротор 1заключён в гирокамеру 2, к нижней части которой подвешен груз 3. Гирокамера установлена в наружном кардановом кольце (на рис. не показано), ось вращения которого расположена вертикально. Когда ось АВротора не находится в плоскости меридиана (отклонена на Восток или на Запад), она, стремясь в соответствии со свойствами трёхстепенного гироскопа сохранять своё направление по отношению к звёздам, будет вследствие вращения Земли отклоняться от плоскости горизонта (например, её конец В, если он отклонен к Востоку, будет приподниматься, как бы следя за восхождением звёзд). Вместе с осью ABбудет отклоняться и гирокамера 2с грузом 3относительно плоскости горизонта. В результате относительно точки подвеса возникнет момент силы тяжести, который вызовет прецессионное движение оси АВк плоскости меридиана. В своём движении ось АВ«проскочит» плоскость меридиана и тогда под действием момента силы тяжести она начнёт прецессировать в обратном направлении и т.д. После погашения этих Аколебаний специальным демпфером ось АВустанавливается в плоскости меридиана.
     В Г. с ртутными сосудами ( рис. 2 ) ротор 1и гирокамера 2отбалансированы так, что их общий центр тяжести совмещен с точкой подвеса. С гирокамерой связана система сообщающихся сосудов 3, частично заполненных ртутью. К правому сосуду прикреплена т. н. лапа 5, связывающая сосуды с гирокамерой. При отклонении оси гироскопа от плоскости горизонта избыток ртути в одном из сосудов обусловливает приложение к гироскопу момента силы тяжести, аналогичного соответствующему моменту в Г. с маятником.
     В Г. с косвенной коррекцией используется трёхстепенной астатический гироскоп, на гирокамере которого установлен маятник (акселерометр), фиксирующий угол отклонения оси гироскопа от плоскости горизонта. На основании информации об этом угле в приборе формируются сигналы моментов коррекции, которые прикладываются к гироскопу с помощью соответствующих датчиков моментов, установленных на осях карданова подвеса гироскопа. Подобные приборы могут также работать в режиме гироскопа направления.
     Из однороторных Г. применяются в основном Г. с ртутными сосудами.
     Двухроторный Г. Чувствительный элемент этого Г. ( рис. 3 ) — гиросфера, или поплавок, представляет собой полую сферу 1. В гиросфере помещены гироскопы 2и 3, гидравлический успокоитель для погашения собственных колебаний и др. элементы. Оси собственного вращения гироскопов 2и 3расположены горизонтально, а оси прецессии — вертикально и связаны с шарнирным механизмом спарником 4, который соединён пружинами 5с корпусом гиросферы. В исходном положении (при невращающихся роторах) оси гироскопов составляют с направлением NSгиросферы равные углы Е=45°. Центр тяжести гиросферы находится на её вертикальной оси ниже её геометрического центра, что обеспечивает, как и в однороторном Г., необходимый маятниковый момент. Гиросфера помещена в жидкость и поэтому в подвесе имеет место лишь вязкое трение. Для обеспечения невозмущаемости Г. ускорениями объекта параметры системы подбирают так, чтобы период прецессионных колебаний гиросферы при отсутствии затухания составлял 84,4 мин. Наличие в Г. двух гироскопов существенно снижает погрешности прибора при качке корабля. Погрешности Г. при прямом курсе и постоянной скорости хода корабля не превышают нескольких десятых долей градуса. Г. весьма широко распространены на кораблях морского флота.
     Разновидность Г. — гирогоризонт-компас, предназначенный для определения курса корабля и углов отклонения его относительно плоскости горизонта.
      А. Ю. Ишлинский, С. С. Ривкин.
   Рис. 2. Принципиальная схема чувствительного элемента однороторного гирокомпаса с ртутными сосудами: 1 — ротор; 2 — гирокамера; 3 — сосуды с ртутью; 4 — соединительная трубка; 5 — лапа.
   Рис. 1. Принципиальная схема чувствительного элемента однороторного гирокомпаса с маятником: 1 — ротор; 2 — гирокамера; 3 — груз.
   Рис. 3. Принципиальная схема чувствительного элемента двухроторного гирокомпаса. NS и WE — направления север — юг и восток — запад; H 1, H 2— кинетические моменты гироскопов; 1 — гиросфера; 2, 3 — гироскопы; 4 — спарник; 5 — пружины.

ленточными червями и моногенетическими сосальщиками . Длина тела обычно 2—3 см, реже до 10 см. 5 видов (самостоятельность некоторых видов оспаривается); обитают в спиральном клапане (в кишечнике) глубоководных рыб — химер ; встречаются в различных районах Мирового океана. Для Г. характерны: отсутствие кишечника и наличие сложно устроенного розетковидного органа прикрепления на заднем конце тела. Из овального яйца, снабженного ножкой, развивается личинка —т. н. люкофора, с десятью одинаковыми крючками на заднем конце. Цикл развития, по-видимому, прямой. Многие относят Г. к подклассу цестодарий класса ленточных червей; некоторые считают их сильно видоизменившимися моногенетические сосальщиками.
     Лит.:Быховский Б. Е., Онтогенез и филогенетические взаимоотношения плоских паразитических червей, «Изв. АН СССР. Серия биологическая», 1937, т. 4, с. 1353—82; Шульц О. С., Гвоздев Е. В., Основы общей гельминтологии, М., 1970.
      Б. Е. Быховский.

Лоренца сила :
    
     где е— заряд электрона, с— скорость света. Под действием силы F^ V( центростремительная сила ) частица движется по окружности, причём частота обращения не зависит от её скорости, а определяется массой частицы mи величиной магнитного поля Н 0:
    
     Г. ч. для земной ионосферы ~ 1,4 Мгц, для солнечной короны ~ 10 4 Мгц.
     Г. ч. играет существенную роль в вопросах распространения электромагнитных волн в плазме, находящейся в постоянном магнитном поле, в частности при распространении радиоволн в ионосфере (см. также Циклотронная частота ).
      М. Б. Виноградова.

Магнитомеханическое отношение .

Магнитомеханические явления .

гироскопическое устройство , применяемое на движущихся объектах и предназначенное для определения курса объекта по отношению к плоскости магнитного меридиана. Г. к. представляет собой трёхстепенной астатический гироскоп , снабженный азимутальной и горизонтальной системами коррекции; азимутальная коррекция, чувствительным элементом которой является магнитная стрелка, удерживает ось гироскопа 1в плоскости магнитного меридиана; горизонтальная коррекция удерживает внутреннее карданово кольцо 2в положении, перпендикулярном наружному 3. Горизонтальная система коррекции состоит из потенциометра 5( рис. ) и датчика моментов 8. Азимутальная система коррекции состоит из магнитной стрелки 6, потенциометра 4и датчика моментов 7. Принцип работы систем коррекции Г. к. аналогичен таковому в гировертикали с маятниковой коррекцией. Погрешность Г. к. может достигать нескольких градусов. Прибор широко распространён в авиации, применяется также в морском флоте.
     Если магнитная система установлена вдали от гироскопа, то связь между ними осуществляется с помощью следящей системы (дистанционный Г. к.). Существуют приборы, у которых вместо магнитной системы применяется индукционный чувствительный элемент. Это т. н. гироиндукционный компас. У него, в отличие от Г. к., отсутствует азимутальный гироскоп и показания магнитного курса определяются с помощью индукционного чувствительного элемента, состоящего из пермаллоевого сердечника с обмоткой, ось которого устанавливается в плоскости магнитного меридиана. Для повышения точности прибора индукционный элемент стабилизируется относительно плоскости горизонта установкой его на гирокамере гировертикали.
      А. Ю. Ишлинский, С. С. Ривкин.
   Принципиальная схема гиромагнитного компаса: 1 — ротор; 2, 3 — внутреннее и наружное кардановы кольца; 4, 5 — потенциометры; 6 — магнитная стрелка; 7, 8 — датчики моментов.

гировертикали .

гироскопическое устройство для определения угла рыскания (отклонения от плоскости орбиты) искусственного спутника Земли. Г. представляет собой трёхстепенной астатический гироскоп , у которого относительно оси вращения наружного карданова кольца приложен вводимый пружинами восстанавливающий момент, а также момент демпфирования. Г. по принципу действия схож с маятниковым гирокомпасом , но роль маятника в нём выполняют пружины. Прибор (см. рис. ) устанавливается на спутнике, который по сигналам от индикатора вертикали стабилизируется относительно местной вертикали. При этом, если угол рыскания спутника равен нулю, то ось вращения наружного карданова кольца 2располагается по касательной к орбите, а ось Ozгироскопа — по нормали к ней. При отклонении оси гироскопа от указанного направления, вследствие того что движение спутника по орбите представляет собой вращение с угловой скоростью w 0вокруг оси, перпендикулярной к плоскости орбиты, и вследствие наличия пружин 3, возникают моменты, стремящиеся совместить ось Ozгироскопа с вектором w 0; это направление оси является устойчивым. При возникновении у спутника угла рыскания плоскость наружного карданова кольца 2выходит из совмещения с плоскостью орбиты и с потенциометра 5, установленного на оси вращения гирокамеры 1, снимается угол рыскания спутника. Существуют др. схемы Г., близкие к схеме гирокомпаса с косвенной коррекцией. При этом сигнал для системы коррекции формируется на основании показаний индикатора вертикали, установленного на борту спутника. Г. широко используют в качестве курсового прибора, с помощью которого спутник ориентируется по азимуту относительно орбитальной системы координат.
      А. Ю. Ишлинский, С. С. Ривкин.
   Принципиальная схема гироорбитанта. Oxyz — система координат, связанная с гирокамерой: 1 — гирокамера с ротором; 2 — наружное карданово кольцо; 3 — пружина; 4 — демпфер; 5 — потенциометр.

гироскопическое устройство , предназначенное в общем случае для определения местоположения объекта и параметров его движения. Г. основан на использовании гироскопов в сочетании с акселерометрами и вычислительным устройством. Основные части Г. — гироинерциальная вертикаль (см. Гировертикаль ), которая воспроизводит вертикаль места (плоскость горизонта) и определяет составляющие линейной скорости объекта, а также гироазимут (см. Гироскоп направления ), осуществляющий азимутальную ориентацию акселерометров. Г. совместно с вычислительным устройством, устройствами коррекции от источников внешней информации (измерители скорости и координат) и др. приборами образуют инерциальную навигационную систему . Иногда под Г. понимают непосредственно инерциальную навигационную систему. Г. может определять координаты местоположения объекта (широту, долготу и др.) и параметры его движения (курс, скорость, высоту полёта, углы атаки, скольжения и др.).
      А. Ю. Ишлинский, С. С. Ривкин.

Гирополукомпас

    Гирополуко'мпас, гироскопическое устройство для определения углов рыскания (изменения курса) и углов поворота объекта вокруг вертикальной оси, см.