Индийскому национальному конгрессу . В 1922 стал генеральным секретарем, а затем президентом Всеиндийской федерации ж.-д. рабочих. В 1926 избран президентом Всеиндийского конгресса профсоюзов , в 1929 участвовал в создании Всеиндийской федерации профсоюзов и стал одним из ее руководителей. В 1937—39 министр труда, промышленности и кооперации в правительстве Мадрасской провинции. Во время 2-й мировой войны 1939—45 находился в тюремном заключении за активное участие в борьбе против английского колониального господства. В 1946—47 министр труда и промышленности в правительстве шт. Мадрас, в 1947—51 первый посол независимой Индии на Цейлоне, в 1952—54 министр труда в центральном правительстве Индии. В 1957—60 губернатор шт. Утгар-Прадеш, в 1961—65 шт. Керала, в 1965—67 шт. Майсур. В 1967 — мае 1969 вице-президент Индии и председатель верхней палаты парламента (совета штатов). В мае — июле 1969 исполнял обязанности президента, с августа 1969 президент Индии.
      В. В. Гири.
   В. В. Гири.

весы и Г. появились с развитием торговли в странах Древней Месопотамии (Двуречья) и Египте несколько тысяч лет назад. Известны древние вавилонские, египетские, греческие, римские и др. Г. разнообразной формы (в частности, имеющие вид фигур и голов священных животных). В Древней Руси, как и в ряде др. стран, денежные единицы (монеты) выполняли одновременно и роль мер массы. В конце 18 в. в России были установлены чугунные Г. шарообразной формы в наборе: 2 и 1 пуд ; 27, 9, 3 и 1 фунт ; 81, 27, 9, 3 и 1 золотник . Применение Г. с такими наименованиями (но в несколько ином наборе) сохранилось в России вплоть до введения метрической системы мер .
     В СССР и др. странах, принявших метрическую систему мер, масса Г. выражается в килограммах, граммах и миллиграммах. Для взвешивания драгоценных камней служат часто Г., масса которых выражается в каратах (1 метрический карат = 200 мг). В США, Англии, Канаде и ряде др. стран наряду с метрическими используют Г., масса которых выражается в фунтах , а также в дольных и кратных от него единицах.
     Различают Г. рабочие (для взвешиваний, они подразделяются на 5 классов), эталонные Г. и образцовые Г. (для поверочных работ, их существует 4 разряда). Рабочие Г. могут быть либо накладными в виде отдельных Г. или наборов Г. различной массы, либо встроенными в весы. Встроенные Г. — неотъемлемая часть весов, поэтому они применяются и подвергаются поверке только в данных весах.
     Г. характеризуются номинальным значением массы, наибольшим допустимым отклонением от номинального значения (точностью подгонки) и пределом допустимой погрешности определения массы при поверке. Ниже приводятся в качестве примера наибольшие допустимые отклонения (D) для гирь 2-го класса:

Номинальная масса гирь D, мг Номинальная масса гирь D, мг
5 кг ±0,8 10 г ±0,25
2 кг ±3,0 5 г ±0,16
1 кг ±2,5 2 г ±0,12
500 г ±1,6 1 г ±0,08
200 г ±1,2 500 мг ±0,06
100 г ±0,8 200 мг ±0,04
50 г ±0,6 100 мг— ±0,02
20 г ±0,4 1 мг

     Лучший материал для точных Г. — платиноиридиевый сплав (90Pt, 10%%  Ir), из которого изготовлен эталон килограмма. Др. точные Г. изготовляют из немагнитной нержавеющей стали (25% Cr, 20% Ni), немагнитного хромоникелевого сплава (80% Ni, 20% Cr). Материалами для миллиграммовых Г. могут служить также алюминий и тантал.
     Выпускаются Г. и наборы Г. с номинальными значениями массы: 20, 10, 5, 2, 1 кг; 500, 200, 100, 50, 20, 10, 5, 2, 1 г; 500, 200, 100, 50, 20, 10, 5, 2, 1 мг. Для специальных целей применяются Г. как большей массы (от 50 до 5000 кг— для поверки автомобильных и вагонных весов и динамометров), так и меньшей массы (до 0,1 мг— для поверки и градуировки крутильных микровесов).
     Лит.:ГОСТ 7328—65. Гири общего назначения, М., 1965; ГОСТ 14636—69, Поверочная схема для гирь и весов, М., 1969.
      Н. А. Смирнова.
   Рабочие гири 3-го класса.
   Разновес лабораторных гирь.

Гирин . В сельском хозяйстве преобладает земледелие. Основные продовольственные культуры: кукуруза, просо, гаолян; из технических — соя и сахарная свёкла. Разводят крупный рогатый скот, свиней, овец, лошадей, маралов. Сбор женьшеня.
      Я. М. Бергер.
   
     Исторический очерк. В древности на территории провинции Г. обитали тунгусские племена. В 8—13 вв. большая часть её входила последовательно в состав государств: тунгусского Бохай, киданьского Ляо, чжурчжэньского Цзинь. В 1234 она была завоёвана монголами, которые затем захватили и Китай. После уничтожения монгольского господства в Китае во 2-й половине 14 в. южная часть территории Г. перешла под власть китайцев, а её остальные районы оставались под властью монгольских и тунгусских племён. В начале 17 в. территории Г. находилась полностью под властью маньчжур, которые в середине 17 в. завоевали и Китай. При маньчжурской династии Цин (1644—1911) Г. и др. провинции Маньчжурии считались доменом маньчжурского дома. Население её в течение длительного времени было немногочисленным, переселение туда китайцев запрещалось вплоть до 60-х гг. 19 в. Во 2-й половине 19 в. началось заселение Г. китайцами, сопровождавшееся значительным увеличением площади обрабатываемых земель. Развитию экономики Г. способствовала постройка Россией в 1903 Китайско-Восточной ж. д. После оккупации японцами Маньчжурии в 1931 и создания марионеточного государства Маньчжоу-Го лучшие земли Г. были захвачены японскими колонизаторами. В августе 1945 Г. была освобождена от японских оккупантов Советской Армией. В 1946—48 большая часть территории Г. оказалась под властью гоминьдановцев. В марте — сентябре 1948 провинция Г. была полностью освобождена от гоминьдановских войск Народно-освободительной армией Китая.
      В. П. Илюшечкин.

исторической школы права , представитель националистического направления «германистов». Исходный пункт воззрений Г. — понятие германского товарищества или общины, которое он противопоставлял индивидууму — основе буржуазного либерализма 19 в. Истинно германское право, органически рождающееся в недрах товариществ и характеризующееся духом общности, подчинением личности целому и т.п., Г. считал более высокой ступенью по сравнению с буржуазными правовыми системами, основанными на римском праве и принципах естественного права . Собранный Г. большой фактический материал по истории германского государства и права в значительной мере обесценивается его реакционно-националистической концепцией, воспринятой впоследствии фашистской идеологией.
     Соч.: Das deutsche Genossenschaftsrecht, Bd 1—4, В., 1868—1913; Deutsches Privatrecht, Bd 1—3, Lpz. — Mьnch., 1895—1917.
      В. А. Туманов.

Мирутский процесс ). Репрессии колонизаторов несколько ослабили «Г. к.», но уже в 30-х гг. он занял важное место в организованном рабочем движении. После достижения Индией независимости (1947) «Г. к.» в 1951 объединился с левосоциалистическим профсоюзом «Милл маздур сабха» в один союз «Милл маздур юнион» (Союз фабричных рабочих), который в 1958 вошел во вновь созданный объединённый союз текстильщиков Бомбея «Бумбай гирни камгар юнион» (Бомбейский союз фабричных рабочих); последний входит во Всеиндийский конгресс профсоюзов .

гироскоп .

гироскоп направления .

гироскопическое устройство для определения направления истинной вертикали или плоскости горизонта, а также углов наклона объекта относительно этой плоскости. Простейшим негироскопическим прибором такого рода служит физический маятник (отвес). Однако он не пригоден для движущегося объекта, т.к. не будет устанавливаться вдоль истинной вертикали при вращательном или ускоренном поступательном движении объекта (он будет несколько отклоняться от вертикали и при равномерном поступательном движении объекта вследствие вращения Земли); кроме того, при качке у него могут возникнуть вынужденные колебания с большими размахами. Г. в значительной мере свободна от этих недостатков и поэтому широко применяется на самолётах, кораблях и др. движущихся объектах.
     В качестве простейшей Г. может служить трёхстепенной астатический гироскоп , ось которого стремится сохранять своё направление в мировом пространстве. Однако по отношению к вращающейся Земле эта ось будет со временем изменять своё направление. Поэтому без корректирующих устройств такой прибор может служить лишь кратковременным указателем направления (в частности, вертикали). Подобные приборы, называют гирогоризонтом и гировертикантом, применяются в баллистической ракете для определения углов её отклонения в вертикальной и горизонтальной плоскостях (углы тангажа, рыскания и крена). Для длительного удержания оси астатического гироскопа в вертикальном положении используют те или иные системы коррекции.
     Г. с маятниковой системой коррекции ( рис. 1 ) — трёхстепенной астатический гироскоп, в котором система коррекции состоит из маятников-корректоров 4, 5, фиксирующих углы отклонения оси гироскопа от вертикали места, и датчиков моментов 6, 7, прикладывающих к гироскопу соответствующие корректирующие моменты, вызывающие прецессию оси гироскопа к вертикали места. Потенциометры 8и 9служат для определения углов наклона объекта относительно плоскости горизонта. Погрешности Г. этого типа, определяемые отклонениями оси гироскопа от вертикали места, могут составлять от долей градуса до единиц угловых минут. В прецизионных Г. для повышения их точности учитываются поправки на вращение Земли и собственное движение объекта.
     При установке на корабле Г. с маятниковой коррекцией определяют углы бортовой и килевой качки, а на летательном аппарате — углы крена и тангажа. Применяются в системах автоматической стабилизации различных подвижных объектов, в успокоителях качки корабля, для стабилизации летательного аппарата и др., а также для определения искривления буровых скважин, шахт и т.п.
     Другим типом Г., не требующим применения системы коррекции, является гиромаятник, т. с. гироскоп с 3 степенями свободы, центр тяжести G которого лежит на оси ротора на некотором расстоянии lот точки опоры О ( рис. 2 ). При отклонении оси Ozгироскопа от вертикали Oz, ось Ozпод действием силы тяжести Рначинает прецессировать вокруг Oz, описывая конус с вершиной в точке О. Т. к. собственный кинетический момент гироскопа Ночень велик, то период прецессии
     T = 2pH/lP(1)
     (где l= OG) также велик, что делает прибор практически нечувствительным к колебаниям объекта. В реальном приборе прецессионные колебания оси Ozпогашаются специальным демпфером и ось Ozгироскопа приходит в положение, близкое к вертикали. Однако чтобы прибор обладал необходимой точностью при ускоренном движении (маневрировании) объекта, период Тдолжен удовлетворять условию М. Шулера (быть равным периоду колебаний математического маятника, длина которого равна радиусу Земли), т. е. составлять 84,4 мин, что до сих пор практически осуществить не удалось. В реализованных конструкциях Тобычно ~ 10—20 мин, вследствие чего подобные Г. при маневрировании объекта имеют значительные погрешности. Гиромаятники применяют в секстанте для стабилизации относительно плоскости горизонта его оптические системы и в некоторых корабельных системах стабилизации, используемых преимущественно при постоянных значениях скорости и курса корабля.
     Прибором, позволяющим определять с высокой степенью точности направление вертикали при ускоренном движении объекта, на котором установлен прибор, является гироинерциальная вертикаль ( рис. 3 ). В ней, кроме гироскопов, используются акселерометры и вычислительные устройства (интеграторы), при этом осуществляется искусственное моделирование маятника с периодом, равным периоду М. Шулера. Гироинерциальная вертикаль состоит из астатического трёхстепенного гироскопа, на гирокамере 1 которого расположены акселерометры 3, 4 (в реальных схемах акселерометры устанавливают на гиростабилизированной платформе). Измеряемые акселерометрами кажущиеся ускорения a xи a yобъекта вдоль горизонтальных осей Охи Оупоступают в интеграторы 5, 6; их выходные сигналы (скорости v Eи v Nвдоль осей Охи Оу) вводятся на датчики моментов 7, 8, прикладывающие к гироскопу моменты коррекции, которые вызывают прецессию оси гироскопа Ozк вертикали. При соответствующем выборе коэффициенты пропорциональности между сигналом с интегратора и величиной момента коррекции период прецессии оказывается равным периоду Шулера. Благодаря этому устройство обладает высокой точностью при маневрировании объекта и его погрешности не превосходят несколько угловых минут. Гироинерциальные вертикали широко используются в инерциальных навигационных системах , устанавливаемых на кораблях и летательных аппаратах.
      А. Ю. Ишлинский, С. С. Ривкин.
   Рис. 3. Принципиальная схема гироинерциальной вертикали: 1 — гирокамера с ротором; 2 — наружное карданово кольцо; 3, 4 — акселерометры; 5, 6 — интеграторы; 7, 8 — датчики моментов.
   Рис. 1. Принципиальная схема гировертикали с маятниковой коррекцией: 1 — ротор; 2, 3 — внутреннее и наружное кардановы кольца: 4, 5 — маятники-корректоры; 6, 7 — датчики моментов; 8, 9 — потенциометры.
   Рис. 2. Принципиальная схема гиромаятника: 1 — гирокамера с ротором; 2 — наружное карданово кольцо.

гировертикаль